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Abstract. We completely characterize genus-0 K-theoretic Gromov–
Witten invariants of a compact complex algebraic manifold in terms
of cohomological Gromov–Witten invariants of this manifold. This
is done by applying (a virtual version of) the Kawasaki–Hirzebruch–
Riemann–Roch formula for expressing holomorphic Euler charac-
teristics of orbibundles on moduli spaces of genus-0 stable maps,
analyzing the sophisticated combinatorial structure of inertia stacks
of such moduli spaces, and employing various quantum Riemann–
Roch formulas from fake (i.e. orbifold–ignorant) quantum K-theory
of manifolds and orbifolds (formulas, either previously known from
works of Coates–Givental, Tseng, and Coates–Corti–Iritani–Tseng,
or newly developed for this purpose by Tonita). The ultimate
formulation combines properties of overruled Lagrangian cones in
symplectic loop spaces (the language that has become traditional
in description of generating functions of genus-0 Gromov-Witten
theory) with a novel framework of adelic characterization of such
cones. As an application, we prove that tangent spaces of the
overruled Lagrangian cones of quantum K-theory carry a natural
structure of modules over the algebra of finite-difference operators
in Novikov’s variables. As another application, we compute one
of such tangent spaces for each of the complete intersections given
by equations of degrees l1, . . . , lk in a complex projective space of
dimension ≥ l2

1
+ · · ·+ l2k − 1.

0. Motivation

K-theoretic Gromov–Witten invariants of a compact complex alge-
braic manifold X are defined as holomorphic Euler characteristics of
various interesting vector bundles over moduli spaces of stable maps
of compact complex curves to X. They were first introduced in [10]
(albeit, in a limited generality of genus-0 curves mapped to homoge-
neous Kähler spaces), where it was shown that such invariants define
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on K0(X) a geometric structure resembling Frobenius structures of
quantum cohomology theory.
At about the same time, it was shown [14] that simplest genus-0 K-

theoretic GW-invariants of the manifold X of complete flags in Cn+1

are governed by the finite-difference analogue of the quantum Toda
lattice. More precisely, a certain generating function for K-theoretic
GW-invariants, dubbed in the literature the J-function (and depend-
ing on n variables, namely, Novikov’s variables Q1, . . . , Qn introduced
to separate contributions of complex curves in X by their degrees)
turns out to be a common eigenfunction (known in representation the-
ory as Whittaker’s function) of n commuting finite-difference operators,
originating from the center of the quantized universal enveloping alge-
bra Uqsln+1. In quantum cohomology theory, the corresponding fact
was established by B. Kim [18], who showed that the cohomological
J-function of the flag manifold X = G/B of a complex simple Lie al-
gebra g is a Whittaker function of the Langlands-dual Lie algebra g

′.
The K-theoretic generalization involving quantized universal envelop-
ing algebras Uqg

′ was stated in [14] as a conjecture (confirmed recently
in [2]).
Foundations for K-theoretic counterpart of GW-theory were laid

down by Y.-P. Lee [20] in the reasonable generality of arbitrary com-
plex algebraic target spaces X (and holomorphic curves of arbitrary
genus). While the general structure and universal identities (such as
the string equation, or topological recursion relations) of quantum co-
homology theory carry over to case of quantum K-theory, the latter is
still lacking certain computational tools of the former one, and for the
following reason.
The so-called divisor equations in quantum cohomology theory tell

that the number of holomorphic curves of certain degree d with an
additional constraint, that a certain marked point is to lie on a cer-
tain divisor p, is equivalent to (more precisely, differs by the factor
(p, d) from) the number of such curves without the marked point and
without the constraint. Consequently, the dependence of J-functions
on Novikov’s variables is redundant to their behavior as functions on
H2(X) introduced through constraints at marked points. In particular,
differential equations satisfied by the J-function in Novikov’s variables
(e.g. the Toda equations in the case of flag manifolds) are directly
related to the quantum cup-product on H∗(X).
In K-theory, however, any analogue of the divisor equation is seem-

ingly missing, and respectively the K-theoretic analogue of the quan-
tum cup-product, and differential equations of the Frobenius-like struc-
ture on K0(X) are completely detached from the way the J-functions
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depend on Novikov’s variables. Because of this lack of structure with
respect to Novikov’s variables, it appears even more perplexing that in
examples (such as projective spaces, or flag manifolds) the J-functions
of quantum K-theory turn out to satisfy interesting finite-difference
equations.

The idea of computing K-theoretic GW-invariants in cohomologi-
cal terms is naturally motivated by the classical Hirzebruch–Riemann–
Roch formula [15]

χ(M,V ) :=
∑

k

(−1)k dimHk(M,V ) =

∫

M

ch(V ) td(TM).

The problem (which is at least a decade old) of putting this idea to work
encounters the following general difficulty. The HRR formula needs to
be applied to the base M which, being a moduli space of stable maps,
behaves as a virtual orbifold (rather than virtual manifold). The HRR
formula for orbibundles V on orbifoldsM was established by Kawasaki
[17] and expresses the holomorphic Euler characteristic (which is an
integer) as an integral over the inertia orbifold IM (rather than M
itself). The latter is a disjoint union of strata corresponding to points
with various types of local symmetry (and M being one of the strata
corresponding to the trivial symmetry).
When M is a moduli space of stable maps, the strata of the inertia

stack IM parametrize stable maps with prescribed automorphisms. It is
reasonable to expect that individual contributions of such strata can be
expressed as integrals over moduli spaces of stable maps from quotient
curves, and thus in terms of traditional GW-invariants. However, the
mere combinatorics of possible symmetries of stable maps appears so
complicated (not mentioning the complexity of the integrands required
by Kawasaki’s theorem), that obtaining a “quantum HRR formula”
expressing K-theoretic GW-invariants via cohomological ones didn’t
seem feasible.

In the present paper, we give a complete solution in genus-0 to the
problem of expressing K-theoretic GW-invariants of a compact complex
algebraic manifold in terms of its cohomological GW-invariants. The
solution turned out to be technology-consuming, and we would like to
list here those developments of the last decade that made it possible.
One of them is the Quantum HRR formula [7, 4] in fake quantum

K-theory. One can take the right-hand side of the classical Hirzebruch–
Riemann–Roch formula for the definition of χfake(M,V ) on an orbifold
M . Applying this idea systematically to moduli spaces of stable maps,
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one obtains fake K-theoretic GW-invariants, whose properties are sim-
ilar to those of true ones, but the values (which are rational, rather
than integer) are different. The formula expresses fake K-theoretic
GW-invariants in terms of cohomological ones.
Another advance is the Chen–Ruan theory [1, 3] of GW-invariants of

orbifold target spaces, and the computation by Jarvis–Kimura of such
invariants in the case when the target is the quotient of a point (or
more generally a manifold) by the trivial action of a finite group.
Next is the theorem of Tseng [24] expressing twisted GW-invariants

of orbifold target spaces in terms of untwisted ones.
Yet, two more “quantum Riemann–Roch formulas” of [4] had to be

generalized to the case of orbifold targets. This is done in [21, 23].
Finally, our formulation of the Quantum HRR Theorem in true quan-

tum K-theory is based on a somewhat novel form of describing generat-
ing functions of GW-theory, which we call adelic characterization. For
a general and precise formulation of the theorem, the reader will have
to wait until Section 6, but here we would like to illustrate the result
with an example that was instrumental in shaping our understanding.

Let

J = (1− q)
∑

d≥0

Qd

(1− Pq)n(1− Pq2)n · · · (1− Pqd)n
.

Here P is unipotent, and stands for the Hopf bundle on CP n−1, satis-
fying the relation (1 − P )n = 0 in K0(CP n−1). It is a power series in
Novikov’s variable Q with vector coefficients which are rational func-
tions of q, and take values in K0(CP n−1). It was shown1 in [14] that J
represents (one value of) the true K-theoretic J-function of CP n−1.
On the other hand, one can use quantum Riemann–Roch and Lef-

schetz theorems of [4] and [5] to compute, starting from the cohomolog-
ical J-function of CP n−1, a value of the J-function of the fake quantum
K-theory. The result (see Section 10) turns out to be the same: J .
This sounds paradoxical, since — one can check this directly for CP 1

in low degrees! — contributions of non-trivial Kawasaki strata neither
vanish nor cancel out.
In fact this is not a contradiction, for as it turns out, coefficients

of the series J do encode fake K-theoretic GW-invariants, when J is
expanded into a Laurent series near the pole q = 1. Furthermore,
when J is expanded into a Laurent series near the pole q = ζ−1, where
ζ is a primitive m-th root of unity, the coefficients represent certain

1Using birational invariance of holomorphic Euler characteristcs replacing certain
moduli spaces of stable maps to CPn−1 with toric compactifications.
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fake K-theoretic GW-invariants of the orbifold target space CP n−1/Zm.
Moreover, according to our main result, these properties altogether
completely characterize those Q-series (whose coefficients are vector-
valued rational functions of q) which represent true genus-0 K-theoretic
GW-invariants of a given target manifold.
This fact is indeed the result of application of Kawasaki’s HRR for-

mula to moduli spaces of stable maps. Namely, the complicated com-
binatorics of strata of the inertia stacks can be interpreted as a certain
identity which, recursively in degrees, governs the decomposition of the
J-function into the sum of elementary fractions of q with poles at all
roots of unity. The theorem is stated in Section 6 (after the general
notations, properties of quantum K-theory, Kawasaki’s HRR formula,
and results of fake quantum K-theory are described in Sections 1–5),
and proved in Sections 7 and 8.
In Section 10, we develop a technology that allows one to extract con-

crete results from this abstract characterization of quantum K-theory.
In particular, we prove (independently of [14]) that the function J is in-
deed the J-function of CP n−1, as well as similar results for codimension-
k complete intersections of degrees l1, . . . , lk satisfying l

2
1+ · · ·+ l2k ≤ n.

Let qQ∂Q denote the operator of translation through log q of the vari-
able logQ. It turns out that for every s ∈ Z,

(
PqQ∂Q

)s
J = (1− q)P s

∑

d≥0

Qdqsd

(1− Pq)n(1− Pq2)n · · · (1− Pqd)n

also represent genus-0 K-theoretic GW-invariants of CP n−1. This ex-
ample illustrates a general theorem of Section 9, according to which
J-functions of quantum K-theory are organized into modules over the
algebra Dq of finite-difference operators in Novikov’s variables. This
turns out to be a consequence of our adelic characterization of quantum
K-theory in terms of quantum cohomology theory, and of the D-module
structure (and hence of the divisor equation) present in quantum co-
homology theory.

1. K-theoretic Gromov–Witten invariants

Let X be a target space, which we assume to be a nonsingular com-

plex projective variety. Let M
X,d

g,n denote Kontsevich’s moduli space of
degree-d stable maps to X of complex genus-g curves with n marked

points. Denote by L1, . . . , Ln the line (orbi)bundles over M
X,d

g,n formed
by the cotangent lines to the curves at the respective marked points.
When a1, . . . , an ∈ K0(X), and d1, . . . , dn ∈ Z, we use the correlator
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notation
〈a1L

d1 , . . . , anL
dn〉X,dg,n

for the holomorphic Euler characteristic over M
X,d

g,n of the following
sheaf:

ev∗1(a1)L
d1
1 . . . ev∗n(an)L

dn
n ⊗Ovir.

Here evi : M
X,d

g,n → X are the evaluation maps, and Ovir is the virtual

structure sheaf of the moduli spaces of stable maps. The sheaf Ovir was
introduced by Yuan-Pin Lee [20]. It is an element of the Grothendieck

group of coherent sheaves on the stack M
X,d

g,n , and plays a role in K-
theoretic version of GW-theory of X pretty much similar to the role of

the virtual fundamental cycle [M
X,d

g,n ]
vir in cohomological GW-theory of

X. According to [20], the collection of virtual structure sheaves on the

spaces M
X,d

g,n satisfies K-theoretic counterparts of Kontsevich–Manin’s
axioms [19] for Gromov–Witten invariants.
Note that, in contrast with cohomological GW-theory, where the in-

variants are rational numbers, K-theoretic GW-invariants are integers.
The following generating function for K-theoretic GW-invariants is

called the genus-0 descendant potential of X:

F :=
∑

n,d

Qd

n!
〈t(L), . . . , t(L)〉X,d0,n .

Here Qd denotes the monomial in the Novikov ring, the formal series
completion of the semigroup ring of the Mori cone of X, where the
monomial represents the degree d of rational curves in X, and t stands
for any Laurent polynomial of one variable, L, with vector coefficients
in K0(X). Thus, F is a formal function of t with Taylor coefficients in
the Novikov ring.

2. The symplectic loop space formalism

Let C[[Q]] be the Novikov ring. Introduce the loop space

K :=
[
K0(X)⊗ C(q, q−1)

]
⊗ C[[Q]].

By definition, elements of K are Q-series whose coefficients are vector-
valued rational functions on the complex circle with the coordinate
q. It is a C[[Q]]-module, but we often suppress Novikov’s variables in
our notation and refer to K as a linear “space.” Moreover, abusing
notation, we write K = K(q, q−1), where K = K0(X)⊗C[[Q]]. We call
elements of K “rational functions of q with coefficients in K,” meaning
that they are rational functions in the Q-adic sense, i.e. modulo any
power of the maximal ideal in the Novikov ring.
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We endow K with symplectic form Ω, which is a C[[Q]]-valued non-
degenerate anti-symmetric bilinear form:

K ∋ f, g 7→ Ω(f, g) = [Resq=0 +Resq=∞]
(
f(q), g(q−1)

) dq

q
.

Here (·, ·) stands for the K-theoretic intersection pairing on K:

(a, b) := χ(X; a⊗ b) =

∫

X

td(TX) ch(a) ch(b).

It is immediate to check that the following subspaces in K are La-
grangian and form a Lagrangian polarization, K = K+ ⊕K−:

K+ = K[q, q−1], K− = {f ∈ K | f(0) 6= ∞, f(∞) = 0} ,

i.e. K+ is the space of Laurent polynomials in q, and K− consists of
rational functions vanishing at q = ∞ and regular at q = 0.
The following generating function for K-theoretic GW-invariants is

defined as a map K+ → K and is nicknamed the big2 J-function of X:

J (t) := (1− q) + t(q) +
∑

a

Φa
∑

n,d

Qd

n!
〈

Φa

1− qL
, t(L), . . . , t(L)〉X,d0,n+1.

The first summand, 1−q, is called the dilaton shift, the second, t(q), the
input, and the sum of the two lies in K+. The remaining part consists
of GW-invariants, with {Φa} and {Φa} being any Poincaré-dual bases
of K0(X). It is a formal vector-valued function of t ∈ K+ with Taylor
coefficients in K−.

Indeed, the moduli space M
X,d

0,n+1 is a “virtual orbifold” of finite

dimension. In particular, in the K-ring of it, the line bundle L−1
1 sat-

isfies a polynomial equation, P (L−1
1 ) = 0, with P (0) 6= 0.3 From

P (q) − P (L) = F (q, L)(L − q), where degF < degP , we find (by
putting L = L−1

1 ) that 1/(1 − qL1) = L−1
1 F (q, L−1

1 )/P (q). Thus each
correlator is a reduced rational function of q with no pole at q = 0 and
a zero at q = ∞.

Proposition. The big J-function coincides with the differential of
the genus-0 descendant potential, considered as the section of the cotan-
gent bundle T ∗K+ which is identified with the symplectic loop space

2In our terminology, specializing the Laurent polynomial t to a constant yields
the J-function (without the adjective “big”), while taking t = 0 makes it the small

J-function.
3On a manifold of complex dimension < D we would have: (L − 1)D = 0 for

any line bundle L, i.e. L would be unipotent. This may be false on an orbifold, as
the minimal polynomial of a line bundle can vanish at roots of 1, but it does not
vanish at 0 since L−1 exists.
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by the Lagrangian polarization K = K+ ⊕ K− and the dilaton shift
f 7→ f + (1− q):

J (t) = 1− q + t(q) + dtF .

Proof. To verify the claim, we compute the symplectic inner prod-
uct of the K−-part of J (t), with a variation, δt ∈ K+, of the input, and
show that it is equal to the value of the differential dtF on δt. Note
that, since δt has no poles other than q = 0 or ∞, we have (think of L
in this identity as a letter):

Ω

(
∑

a

Φa ⊗
Φa

1− qL
, δt

)
= −Ω

(
δt,
∑

a

Φa ⊗
Φa

1− qL

)
=

− [Resq=0 +Resq=∞]

∑
a δt

a(q)Φa

1− q−1L

dq

q
= Resq=L

δt(q)

q − L
= δt(L).

Therefore the symplectic inner product in question is equal to

∑

n,d

Qd

n!
〈δt(L), t(L), . . . , t(L)〉X,d0,n+1 = (dtF)(δt),

as claimed.

3. Overruled Lagrangian cones

A Lagrangian variety, L, in the symplectic loop space (K,Ω) is called
an overruled Lagrangian cone if L is a cone with the vertex at the origin,
and if for every regular point of L, the tangent space, T , is tangent to
L along the whole subspace (1− q)T . In particular: (i) tangent spaces
are invariant with respect to multiplication by q− 1, (ii) the subspaces
(q − 1)T lie in L (so that L is ruled by a finite-parametric family of
such subspaces), and (iii) the tangent spaces at all regular points in a
ruling subspace (q − 1)T are the same and equal to T .

Theorem ([13]). The range of the big J-function J of quantum K-
theory of X is a formal germ at J (0) of an overruled Lagrangian cone.

Proof. As explained in [13], this is a consequence of the relation
between descendants and ancestors.
The ancestor correlators of quantum K-theory

K0(X) ∋ τ 7→ 〈a1L̄
d1 , . . . , anL̄

dn〉X,dg,n (τ),

are defined as formal power series of holomorphic Euler characteristics
∞∑

l=0

1

l!
χ
(
M

X,d

g,n+l;O
vir ev∗1(a1)L̄

d1
1 · · · ev∗n(an)L̄

dn
n ev∗n+1(τ) · · · ev

∗
n+l(τ)

)
,
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where L̄i, the “ancestor” bundles, are pull-backs of the universal cotan-
gent line bundles Li on the Deligne-Mumford space Mg,n by the con-

traction map ct : M
X,d

g,n+l → Mg,n. The latter map involves forgetting
the map of holomorphic curves to the target space as well as the last l
marked points.
The genus-0 ancestor potential is defined by

F τ :=
∑

n,d

Qd

n!
〈t̄(L̄), . . . , t̄(L̄)〉X,d0,n (τ)

and depends on t̄ and τ . The graph of its differential is identified in
terms of the ancestor version of the big J-function:

J = 1−q+ t̄(q)+
∑

a,b

ΦaG
ab(τ)

∑

n,d

Qd

n!
〈

Φb

1− qL̄
, t̄(L̄), . . . , t̄(L̄)〉X,d0,n+1(τ).

Here
(
Gab
)
= (Gab)

−1, and

Gab(τ) := (Φa,Φb) +
∑

n,d

Qd

n!
〈Φa, τ, . . . , τ,Φb〉

X,d
0,2+n.

In the ancestor version of the symplectic loop space formalism, the loop
space and its polarization K = K+ ⊕K− are the same as in the theory
of descendants, but the symplectic form Ωτ is based on the pairing
tensor (Gab) rather than the constant Poincaré pairing (Φa,Φb).
Let L ⊂ (K,Ω) and Lτ ⊂ (K,Ωτ ) be Lagrangian submanifolds de-

fined by the descendant and ancestor J-functions J and J . Then

Lτ = SτL,

where Sτ : K → Kτ is an isomorphism of the symplectic loop spaces,
defined by the following matrix Sτ = (Sab ):

Sab = δab +
∑

l,d

Qd

l!

∑

µ

gaµ〈Φµ, τ, . . . , τ,
Φb

1− qL
〉X,d0,2+n.

It is important that the genus-0 Deligne-Mumford spaces M0,n are
manifolds (of dimension n− 3). Consequently, the line bundles L̄i are
unipotent. Moreover, at the points t̄ ∈ K+ with t̄(1) = 0 the ancestor
potential F τ has all partial derivatives of order < 3 equal to 0. In
geometric terms, the cone Lτ is tangent to K+ along (1− q)K+. This
means that the cone L is swept by ruling subspaces (1 − q)S−1

τ K+

parametrized by τ ∈ K, and that each Lagrangian subspace SτK+ is
tangent to L along the corresponding ruling subspace. The theorem
follows.
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The proof of the relationship L = SτL is based on comparison of the
bundles Li and L̄i, and is quite similar to the proof of the corresponding
cohomological theorem given in Appendix 2 of [6]. It uses the K-
theoretic version of the WDVV-identity introduced in [10], as well as
the string and dilaton equations.
The genus-0 dilaton equation can be derived from the geometric fact

(ft1)∗(1 − L1) = 2 − n about the K-theoretic push-forward along the

map ft1 : M
X,d

0,n+1 → M
X,d

0,n forgetting the first marked point. It leads
to the relation

〈1− L, t(L), . . . , t(L)〉X,d0,n+1 = (2− n)〈t(L), . . . , t(L)〉X,d0,n .

The latter translates into the degree-2 homogeneity of F with respect
to the dilaton-shifted origin, and respectively to the conical property
of L.
The string equation is derived from (ft1)∗1 = 1 (thanks to rationality

of the fibers of the forgetting map) and relationships between ft∗1(Li)
and Li for i > 1 (see for instance [10]). It can be stated as the tangency
to the cone L of the linear vector field in K defined by the operator of
multiplication by 1/(1− q). The operator of multiplication by

1

1− q
−

1

2
=

1

2

1 + q

1− q

is anti-symmetric with respect to Ω and thus defines a linear Hamilton-
ian vector field. Since L is a cone, this vector field is also tangent to L,
which lies therefore on the zero level of its quadratic Hamilton function.
This gives another, Hamilton-Jacobi form of the string equation.

4. Hirzebruch–Riemann–Roch formula for orbifolds

Given a compact complex manifold M equipped with a holomorphic
vector bundle E, the Hirzebruch–Riemann–Roch formula [15] provides
a cohomological expression for the super-dimension (i.e. Euler charac-
teristic) of the sheaf cohomology:

χ(M,E) := dimH•(M,E) =

∫

M

td(TM) ch(E).

The generalization of this formula to the case when M is an orbifold
and E an orbibundle is due to T. Kawasaki [17]. It expresses χ(M,E)
as an integral over the inertia orbifold IM of M :

χ(M,E) =

∫

[IM ]

td(TIM) ch

(
Tr(E)

Tr(
∧•N∗

IM)

)
.
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By definition, the structure of an n-dimensional complex orbifold on
M is given by an atlas of local charts U → U/G(x), the quotients
of neighborhoods of the origin in Cn by (linear) actions of finite local
symmetry groups (one group G(x) for each point x ∈M).
By definition, charts on the inertia orbifold IM have the form U g →

U g/Zg(x), where U
g is the fixed point locus of g ∈ G(x), and Zg(x) is

the centralizer of g in G(x). For elements g from the same conjugacy
class, the charts are canonically identified by the action of G(x). Thus,
locally near x ∈ M , connected components of the inertia orbifold are
labeled by conjugacy classes, [g], in G(x). Integration over the funda-
mental class [IM ] involves the division by the order of the stabilizer of
a typical point in U g (and hence by the order of g at least).
Near a point (x, [g]) ∈ IM , the tangent and normal orbibundles

TIM and NIM are identified with the tangent bundle to U g and normal
bundle to U g in U respectively.
The Kawasaki’s formula makes use of the obvious lift to IM of the

orbibundle E onM . By
∧•N∗

IM , we have denoted theK-theoretic Euler
class of NIM , i.e. the exterior algebra of the dual bundle, considered
as a Z2-graded bundle (the “Koszul complex”).
The fiber F of an orbibundle on IM at a point (x, [g]) carries the

direct decomposition into the sum of eigenspaces Fλ of g. By Tr(F ) we
denote the trace bundle4, the virtual orbibundle

Tr(F ) :=
∑

λ

λFλ.

The denominator in Kawasaki’s formula is invertible because g does
not have eigenvalue 1 on the normal bundle to its fixed point locus.
Finally, td and ch denote the Todd class and Chern character.

When M is a global quotient, M̃/G, of a manifold by a finite group,

and E is a G-equivariant bundle over M̃ , Kawasaki’s result reduces to
Lefschetz’ holomorphic fixed point formula for super-traces in the sum

χ(M,E) = dimH•(M̃, E)G =
1

|G|

∑

g∈G

tr
(
g | H•(M̃, E)

)
.

The orbifoldM is contained in its inertia orbifold IM as the compo-
nent corresponding to the identity elements of local symmetry groups.
The corresponding term of Kawasaki’s formula is

χfake(M,E) :=

∫

M

td(TM) ch(E).

4In fact, super-trace, if the bundle is Z2-graded.
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We call it the fake holomorphic Euler characteristic of E. It is gener-
ally speaking a rational number, while the “true” holomorphic Euler
characteristic χ(M,E) is an integer.
Note that the right hand side of Kawasaki’s formula is the fake holo-

morphic Euler characteristic of an orbibundle, Tr(E)/Tr(
∧•(N∗

IM)),
on the inertia orbifold.

Our goal in this paper is to use Kawasaki’s formula for expressing
genus-0 K-theoretic GW-invariants in terms of cohomological ones. We
refer to [22] (see also the thesis [21]) for the virtual version of Kawasaki’s
theorem, which justifies application of the formula to moduli spaces of
stable maps.
The moduli spaces of stable maps are Deligne–Mumford stacks, i.e.

locally are quotients of spaces by finite groups. The local symmetry
groups G(x) are automorphism groups of stable maps. A point in the

inertia stack IM
X,d

0,n is specified by a pair: a stable map to the target
space and an automorphism of the map. In a sense, a component of
the inertia stack parametrizes stable maps with prescribed symmetry.
The components themselves are moduli spaces naturally equipped

with virtual fundamental cycles and virtual structure sheaves. In fact,
they are glued from moduli spaces of stable maps of smaller degrees
— quotients of symmetric stable maps by the symmetries. Thus the
individual integrals of Kawasaki’s formula can be set up as certain
invariants of fake quantum K-theory, i.e. fake holomorphic Euler char-
acteristics of certain orbibundles on spaces glued from usual moduli
spaces of stable maps.
Our plan is to identify these invariants in terms of conventional

ones and express them — and thereby the “true” genus-0 K-theoretic
Gromov-Witten theory — in terms of cohomological GW-invariants.
For this, a summary of relevant results about fake quantum K-

theory, including the Quantum Hirzebruch–Riemann–Roch Theorem
of Coates–Givental [4, 7], will be necessary.

5. The fake quantum K-theory

Fake K-theoretic GW-invariants are defined by

〈a1L
d1 , . . . , anL

dn〉X,dg,n :=
∫
[
M

X,d
g,n

]vir td
(
T
M

X,d
g,n

)
ch
(
ev∗1(a1)L

d1
1 . . . ev∗n(an)L

dn
n

)
,

i.e. as cohomological GW-invariants involving the Todd class of the
virtual tangent bundle to the moduli spaces of stable maps.
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The Chern characters ch(Li) are unipotent, and as a result, generat-
ing function for the fake invariants are defined on the space of formal
power series of L− 1. In particular, the big J-function

J fake := 1− q + t(q) +
∑

a

Φa
∑

n,d

Qd

n!
〈

Φa

1− qL
, t(L), . . . , t(L)〉X,d0,n+1

takes an input t5 from the space Kfake
+ = K[[q − 1]] of power series in

q − 1 with vector coefficients, and takes values in the loop space

Kfake :=

{
Q-series whose coefficients
are Laurent series in q − 1

}
.

The symplectic form is defined by

Ωfake(f, g) := −Resq=1

(
f(q), g(q−1)

) dq
q
.

Expand 1/(1− qL) into a series of powers of L− 1:

1

1− qL
=
∑

k≥0

(L− 1)k
qk

(1− q)k+1
.

According to [7], we obtain a Darboux basis:

Φa(q − 1)k, Φaqk/(1− q)k+1, a = 1, . . . , dimK0(X), k = 0, 1, 2, . . .

Taking Kfake
− to be spanned over K by qk/(1 − q)k+1, we obtain a La-

grangian polarization of (Kfake,Ωfake). As before, the big J-function co-
incides, up to the dilaton shift 1− q, with the graph of the differential
of the genus-0 descendant potential: J fake(t) = 1− q + t(q) + dtF

fake.
The range of the function J fake forms (a formal germ at J (0) of) an

overruled Lagrangian cone, Lfake. The proof is based on the relationship
[13] between gravitational descendants and ancestors of fake quantum
K-theory, which looks identical to the one in “true” K-theory (although
the values of fake and true GW-invariants disagree).
In fact the whole setup for fake GW-invariants can be made purely

topological, extended to include K1(X), and moreover, generalized to
all complex-orientable extraordinary cohomology theories (i.e. complex
cobordisms). In this generality, the quantum Hirzebruch–Riemann–
Roch theorem of [4, 7] expresses the fake GW-invariants (of all genera)
in terms of the cohomological gravitational descendants. The special

5Note that we still treat our generating functions as formal in t. In particular,
an input here is a series in q− 1 whose coefficients can be arbitrary as long as they
remain ”small”. In practice they will be the sums of indeterminates (like t, which
are small in their own, t-adic topology) with constants taken from the maximal
ideal of Novikov’s ring (and thus small in the Q-adic sense).
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case we need is stated below, after a summary of the symplectic loop
space formalism of quantum cohomology theory.

Take H = Heven(X) ⊗ Q[[Q]], and (a, b)H =
∫
X
ab. Let H denote

the space of power Q-series whose coefficients are Laurent series in one
indeterminate, z. Abusing notation we write: H = H((z)), (remem-
bering that elements of H are Laurent series only modulo any power
of Q). Define in H the symplectic form

ΩH(f, g) = Resz=0 (f(−z), g(z))
H dz,

and Lagrangian polarization

H+ = H[[z]], H− = z−1H[z−1].

Using Poincaré-dual bases of H, and the notation ψ = c1(L), we define
the big J-function of cohomological GW-theory

J H = −z + t(z) +
∑

a

φa
∑

n,d

Qd

n!
〈

φa
−z − ψ

, t(ψ), . . . , t(ψ)〉X,d0,n+1.

It takes inputs t from H+, takes values
6 in H, and coincides with the

graph of differential of the cohomological genus-0 descendant potential,
FH , subject to the dilaton shift −z: J H(t) = −z + t(z) + dtF

H . Here

FH :=
∑

n,d

Qd

n!
〈t(ψ), . . . , t(ψ)〉X,d0,n ,

where for ai ∈ H and di ≥ 0, we have:

〈a1ψ
d1 , . . . , anψ

dn
n 〉X,d0,n :=

∫
[
M

X,d
0,n+1

] ev
∗
1(a1)c1(L1)

d1 · · · ev∗n(an)c1(Ln)
dn .

The range of the function J H is a Lagrangian cone, LH ⊂ H, overruled
in the sense that its tangent spaces, T , are tangent to LH along zT (see
Appendix 2 in [6]).

Theorem ([7], see details in [4]). Denote by △ the Euler–Maclaurin
asymptotic of the infinite product

△ ∼
∏

Chern roots x of TX

∞∏

r=1

x− rz

1− e−x+rz
.

6The previous footnote about fake K-theory applies here too. In particular, for
the formal function, to assume values in H merely means that the coefficients of it
as a formal t-series become Laurent series in z when reduced modulo a power of Q.
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Identify Kfake with H using the Chern character isomorphism ch : K →
H and ch(q) = ez. Then Lfake is obtained from LH by the pointwise
multiplication on H by △:

ch
(
Lfake

)
= △LH .

Remarks. (1) Given a function x 7→ s(x), the Euler–Maclaurin
asymptotics of

∏∞

r=1 e
s(x−rz) is obtained by the formal procedure:

∞∑

r=1

s(x− rz) =

(
∞∑

r=1

e−rz∂x

)
s(x) =

z∂x
ez∂x − 1

(z∂x)
−1s(x)

=
s(−1)(x)

z
−
s(x)

2
+

∞∑

k=1

B2k

(2k)!
s(2k−1)(x)z2k−1,

where s(k) = dks/dxk, s(−1) is the anti-derivative
∫ x
0
s(ξ)dξ, and B2k

are Bernoulli numbers. Taking es(x) to be the Todd series, x/(1− e−x),
and summing over the Chern roots x of the tangent bundle TX , we get:

△ =
1√

td(TX)
exp

{
∑

k≥0

∑

l≥0

s2k−1+l
B2k

(2k)!
chl(TX)z

2k−1

}
,

where the coefficients sl hide another occurrence of Bernoulli numbers:

e
∑

l≥0 slx
l/l!

=
x

1− e−x
= 1 +

x

2
+

∞∑

l=1

B2l

(2l)!
x2l.

(2) Note that neither ch : K → H nor △ : H → H is symplectic: the
former because (a, b)fake = (ch(a), td(TX) ch(b))

H 6= (ch(a), ch(b))H ,
the latter because of the factor td(TX)

−1/2. However the composition
ch−1 ◦△ : H → Kfake is symplectic.
(3) The transformation between cohomological and K-theoretic J-

functions (or descendant potentials) encrypted by the theorem, involves
three aspects. One is the transformation △, while the other two are
the changes of the polarization and dilaton shift. Namely, ch−1 : H →
Kfake maps H+ to K+ but does not map H− to Kfake

− , and there is a

discrepancy between the dilaton shifts: ch−1(−z) = log q−1 6= 1− q.
(4) Since Lfake is an overruled cone, it is invariant under the multi-

plication by the ratio (1−q)/ log q−1. This shows one way of correcting
for the discrepancy in dilaton shifts.
(5) The proof of the theorem does not exploit any properties of over-

ruled cones. One uses the family tdǫ(x) := ǫx/(1− e−ǫx) of “extraordi-
nary” Todd classes to interpolate between cohomology and K-theory,
and establishes an infinitesimal version of the theorem. For this, the
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twisting classes tdǫ(TMX,d
g,n

) of the moduli spaces are expressed in terms

of the descendant classes by applying the Grothendieck–Riemann–Roch

formula to the fibrations ftn+1 : M
X,d

g,n+1 → M
X,d

g,n .
We refer for all details to the dissertation [4]. However, in Section

8, we indicate geometric origins of the three changes described by the
theorem: the change in the position of the cone, in the dilaton shift,
and in the polarization.

6. Adelic characterization of quantum K-theory

Recall that point f ∈ K is a series in the Novikov variables, Q,
with vector coefficients which are rational functions of q±1. For each
ζ 6= 0,∞, we expand (coefficients of) f in a Laurent series in 1 − qζ
and thus obtain the localization fζ near q = ζ−1. Note that for ζ = 1,
the localization lies in the loop space Kfake of fake quantum K-theory.
The main result of the present paper is the following theorem, which
provides a complete characterization of the true quantum K-theory in
terms of the fake one.

Theorem. Let L ⊂ K be the overruled Lagrangian cone of quantum
K-theory of a target space X. If f ∈ L, then the following conditions
are satisfied:
(i) f has no pole at q = ζ−1 6= 0,∞ unless ζ is a root of 1.
(ii) When ζ = 1, the localization fζ lies in Lfake.
In particular, the localization J (0)1 at ζ = 1 of the value of the J-

function with the input t = 0 lies in Lfake. In the tangent space to Lfake

at the point J (0)1, make the change q 7→ qm, Qd 7→ Qmd, and denote by
T the resulting subspace in Kfake. Let ∇ζ denote the Euler–Maclaurin
asymptotics as qζ → 1 of the infinite product:

∇ζ ∼qζ→1

∏

K-theoretic Chern
roots P of T ∗

X

∏∞

r=1(1− qmrP )∏∞

r=1(1− qrP )
.

(iii) If ζ 6= 1 be a primitive m-th root of 1, then
(
∇−1
ζ fζ

)
(q/ζ) ∈ T .

Conversely, if f ∈ K satisfies conditions (i),(ii),(iii), then f ∈ L.

Remarks. (1) The cone L is a formal germ at J (0). The statements
(direct and converse) about “points” f ∈ L are to be interpreted in the
spirit of formal geometry: as statements about families based at J (0).
(2) K-theoretic Chern roots P are characterized by ch(P ) = e−x

where x are cohomological Chern roots of TX .
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(3) After the substitution qζ = ez the infinite product becomes

∏

Chern roots x

m−1∏

k=1

∞∏

r=0

(1− ζ−kekze−x+mrz)−1.

The Euler–Maclaurin expansion has the form

log∇ζ =
s(−1)

mz
+
s

2
+
∑

k>0

B2k

(2k)!
(mz)2k−1s(2k−1),

where s also depends on z as a parameter:

s(x, z) = − log
∏

x

m−1∏

k=1

(1− ζ−kekze−x).

Note that since x are nilpotent, s(x, z) is polynomial in x with coeffi-
cients which expand into power series of z. The scalar factor of ∇ζ is
es(0,0)/2 = m−dimX/2 since for each of dimX Chern roots,

lim
x→0

m−1∏

k=1

(1− ζ−ke−x) = lim
x→0

1− e−mx

1− e−x
= m.

(4) The (admittedly clumsy) definition of subspace T can be clarified
as follows. The tangent space to Lfake at the point J (0)1 is the range
of the linear map S−1 : Kfake

+ → Kfake, where S−1 is a matrix Laurent
series in q − 1 with coefficients in the Novikov ring (see Section 3).

Let S̃ be obtained from S by the change q 7→ qm, Qd 7→ Qmd. Then

T := S̃−1Kfake
+ .

(5) The condition (iii) seems ineffective, since it refers to a tangent
space to the cone Lfake at a yet unknown point J (0)1. However, we
will see later that the three conditions together allow one, at least
in principle, to compute the values J (t) for any input t, assuming
that the cone Lfake is known, in a procedure recursive on degrees of
stable maps. In particular, this applies to J (0)1. The cone Lfake,
in its turn, is expressed through LH , thanks to the quantum HRR
theorem of the previous section, by a procedure which in principle has
a similar recursive nature. Altogether, our theorem expresses all genus-
0 K-theoretic gravitational descendants in terms of the cohomological
ones. Thus this result indeed qualifies for the name: the Hirzebruch–
Riemann–Roch theorem of true genus-0 quantum K-theory.

We describe here a more geometric (and more abstract) formulation
of the theorem using the adelic version of the symplectic loop space
formalism.
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For each ζ 6= 0,∞, let Kζ be the space of power Q-series with vector
Laurent series in 1− qζ as coefficients. Define the symplectic form

Ωζ(f, g) = −Resq=ζ−1

(
f(q), g(q−1)

) dq

q
,

and put Kζ
+ := K[[1− qζ]]. The adele space is defined as the subset in

the Cartesian product:

K̂ ⊂
∏

ζ 6=0,∞

Kζ

consisting of collections fζ ∈ Kζ such that, modulo any power of
Novikov’s variables, fζ ∈ K+ for all but finitely many values of ζ.
The adele space is equipped with the product symplectic form:

Ω̂(f, g) = −
∑

Resq=ζ−1

(
fζ(q), gζ(q

−1)
) dq

q
.

Next, there is a map K → K̂ : f 7→ f̂ , which to a rational function
of q±1 assigns the collection (fζ) of its localizations at q = ζ−1 6= 0,∞.
Due to the residue theorem, the map is symplectic:

Ω(f, g) = Ω̂(f̂ , ĝ).

Given a collection Lζ ⊂ (Kζ ,Ωζ) of overruled Lagrangian cones such

that modulo any power of Novikov’s variables, Lζ = Kζ
+ for all but

finitely many values of ζ, the product
∏

ζ 6=0,∞ Lζ ⊂ K̂ becomes an
adelic overruled Lagrangian cone in the adele symplectic space.
In fact, “overruled” implies invariance of tangent spaces under mul-

tiplication by 1 − q. Since 1 − q is invertible at q = ζ−1 6= 1, all Lζ

with ζ 6= 1 must be linear subspaces.

According to the theorem, the image L̂ ⊂ K̂ of the cone L ⊂ K under

the map ̂ : K → K̂ followed by a suitable adelic (pointwise) completion,
is an adelic overruled Lagrangian cone:

L̂ =
∏

ζ 6=0,∞

Lζ ,

where Lζ = Kζ
+ unless ζ is a root of 1, Lζ = Lfake when ζ = 1, and

Lζ = ∇ζT
ζ when ζ 6= 1 is a root of 1, T ζ ⊂ Kζ being obtained from

the subspace T ⊂ Kfake (described in the theorem) by the isomorphism
Kfake → Kζ induced by the change q 7→ qζ.

Corollary. Two points f, g ∈ L lie in the same ruling space of L
if and only if their expansions f1, g1 near q = 1 lie in the same ruling
space of Lfake.
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Proof. If f1, g1 lie in the same ruling space of Lfake, then ǫf̂ +

(1 − ǫ)ĝ ∈ L̂ for each value of ǫ, and therefore, by the theorem, the
whole line ǫf + (1− ǫ)g lies in L. The converse is, of course, also true:
if the line through f, g lies in L then the line through f1, g1 lies in
Lfake. It remains to notice that ruling spaces of L or Lfake are maximal
linear subspaces of these cones (because this is true modulo Novikov’s
variables, i.e. in the classical K-theory). �

7. Applying Kawasaki’s formula

Here we begin our proof of the theorem formulated in the previous
section. The big J-function (see Section 2) consists of the dilaton shift
1−q, the input t(q), and holomorphic Euler characteristics of bundles on

virtual orbifolds M
X,d

0,n+1. The Euler characteristics can be expressed,
by applying Kawasaki’s formula, as sums of fake holomorphic Euler

characteristics over various strata of the inertia stacks IM
X,d

0,n+1. A
point in the inertia stack is represented by a stable map with symmetry
(an automorphism, possibly trivial one). A stratum is singled out by
the combinatorics of such a curve with symmetry. Figure 1 below is
our book-keeping device for cataloging all the strata.
Let us call what is written in a given seat of a correlator the content

of that seat. In the J-function, the content of the first marked point
has the factor 1/(1− qL). We call this marked point the horn.
Given a stable map with symmetry, we focus our attention on the

horn. The symmetry preserves the marked point and acts on the
cotangent line at this point with an eigenvalue, which we denote ζ.
In Figure 1, contributions of strata with ζ = 1 are separated from
those where ζ 6= 1, in which case ζ is a primitive root of 1 of certain
order m 6= 1.
When ζ = 1, the symmetry is trivial on the irreducible component

of the curve carrying the horn. In the curve, we single out the max-
imal connected subcurve containing the horn on which the symmetry
is trivial, and call this subcurve (and the restriction to it of the stable
map) the head.
The heads themselves are stable maps without symmetry, and are

parametrized by moduli spaces M
X,d′

0,n′+1. Apart from the horn, the
n′ marked points are either marked points of the whole curve or the
nodes where “arms” are attached. An arm is a stable map obtained
as a connected component of what is left of the original curve when
the head is removed. The arm has its own horn — the nodal point
where it is attached to the head. An arm can be any stable map with
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1/m

(1−q) + t(q) + 

1
1−qL

ζ
+ 

stem

tail

points
marked

arms

roots of 1

horns

head
inputshift

dilaton

Cataloging the strata.Figure 1.

legs

1
1−qL ζ

symmetry, with the only restriction: at its horn, the eigenvalue of the
symmetry 6= 1 (because otherwise the head could be increased).
In Figure 1, contributions of the strata with the eigenvalues ζ 6= 1

are appended into the sum
∑

. If g denotes the symmetry of the stable
map, and ζ is a primitive mth root of 1, then gm acts trivially on the
component carrying the horn. We single out the maximal connected
subcurve on which gm is trivial. Then the restriction of the stable map
to it has g as a symmetry of order m. We call the quotient stable map
(of the quotient curve) the stem. We will come back soon to a detailed
discussion of “legs” and “tails” attached to the stems.
Let us denote by L the universal cotangent line (on the moduli space

of stems) at the horn. The content in the fake holomorphic Euler
characteristic represented by this term in the sum

∑
has the factor

1/(1 − qL1/mζ). Indeed, if L′ denotes the universal cotangent line to
the original stable map, restricted to the stratum in question, then (in
the notation of Kawasaki’s formula in Section 4) ch(TrL′) = ζec1(L)/m.
Note that c1(L) is nilpotent on each of the stem or head spaces. Thus,

Figure 1 provides the decomposition of J into the Laurent polynomial
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part 1− q+ t(q) and elementary fractions 1/(1− qζ)r at different poles
q = ζ−1 6= 0,∞. We are ready for our first conclusion.

Proposition 1. The localization Jζ at ζ = 1 lies in the cone Lfake

of fake quantum K-theory.

Proof. Denote by t̃(q) the sum of t(q) and of all the terms of
∑

with ζ 6= 1. Note that in genus 0, stable maps of degree 0 have no
non-trivial automorphisms. So all terms of the sum

∑
have non-zero

degrees. This shows that (thanks to Novikov’s variables) the whole sum
t̃ makes sense as a q-series lying in Kfake

+ , and is “small” in the (t, Q)-
adic sense, hence qualifying on the role of an input of fake quantum
K-theory of X. We claim that the whole sum shown on Figure 1 is the
value of J-function of this fake theory with the input t̃.
Indeed, examine contributions into the virtual Kawasaki formula [22]

of the terms with ζ = 1. Denote by L− the cotangent line at a marked
point of the head. When the marked point of the head is that of the
original curve, the content of it is t(L−). When this is a node where
an arm is attached, denote by L+ the cotangent line to the arm. The
only ingredients that do not factor into separate contributions of the
head and of the arms are ∑

aΦa ⊗ Φa

1− L− Tr(L′
+)
.

The top comes from the gluing of the arm to the head, and the bottom
from the smoothing of the curve at the node, as a mode of perturbation
normal to the stratum of the inertia orbifold. We conclude that the
content of the marked point of the head correlator is exactly t̃(L−).
Thus J (t) is represented as

1− q + t̃(q) +
∑

a

Φa
∑

n′,d′

Qd′

n′!
〈

Φa

1− qL
, t̃(L), . . . , t̃(L)〉X,d

′

0,n′+1 = J fake(t̃),

since the correlators come from the fake K-theory of X. �

Let us return to the term with ζ 6= 1. The stem curve itself is
typically the quotient of CP 1 by the rotation through ζ about two
points: the horn and one more — let’s call it the butt — where the
eigenvalue of the symmetry on the cotangent line is ζ−1. In fact the
stem can degenerate into the quotient of a chain of several copies of
CP 1, with the same action of the symmetry on each of them, and
connected “butt-to-horn” to each other (and even further, with other
irreducible components attached on the “side” of the chain, see Figure
2 in the next section). In this case the butt of the stem is that of the
last component of the chain. The butt can be a regular point of the
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whole curve, a marked point of it, or a node where the tail is attached
(see Figure 1). The tail can be any stable map with any symmetry,
except that at the point where it is attached to the stem, the eigenvalue
of the symmetry cannot be equal to ζ. (Otherwise the stem chain could
be prolonged.) In Figure 1, put δt(q) = 1−q+ t(q)+ ť(q), where ť(q) is
the sum of all remaining terms except the one with the pole at q = ζ−1

(with this particular value of ζ). We claim that the expansion Jζ of
the big J-function near q = ζ−1 has the form

δt(q)+
∑

a

Φa

∑

n,d

Qmd

n!

[
Φa

1− qL1/mζ
, T (L), . . . , T (L), δt(L1/m/ζ)

]X,d

0,n+2

,

where [. . . ] are certain correlators of “stem” theory, and T (L) are leg
contributions, both yet to be identified.
Indeed, let L+ denote the cotangent line at the butt of the stem, and

L′
+ its counterpart on the m-fold cover. When the butt is a marked

point, its content is t(L
1/m
+ ζ), and when it is the node with a tail

attached, then it is ť(L
1/m
+ ζ). This is because ch(TrL′

+) = ζec1(L+)/m.
The case when the butt is a regular point on the original curve but a
marked point on the stem, can be compared to the case when the butt
is a marked point on the original curve as well. In the former case,
the conormal bundle to the stratum of stable maps with symmetry is
missing, comparing to the latter case, the line L′

+. In other words,
one can replace the former contribution with the latter one, by taking

the content at the butt to be 1 − L
1/m
+ ζ, i.e. the K-theoretic Euler

factor corresponding to the conormal line bundle L′
+. We summarize

our findings.

Proposition 2. The expansion Jζ of J near q = ζ−1 is a tangent
vector to the range of the fake J-function of the “stem” theory at the
“leg” point, T .

Our next goal is to understand leg contributions T (L).

Proposition 3. Let T̃ (L) denote the arm contribution t̃(L) com-
puted when the input t = 0. Then

T (L) = Ψm
(
T̃ (L)

)
.

We recall that Adams’ operations Ψm are additive and multiplicative
endomorphisms of K-theory acting on a line bundle by Ψm(L) = Lm.
In this proposition, Ψm acts not only on L and elements of K0(X), but
also by Ψm(Qd) = Qmd on Novikov’s variables.
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Proof. The legs of a stable map with an automorphism, g, of order
m 6= 1 on the cotangent line at the horn, are obtained by removing the
stem (and the tail). Each leg shown in Figure 1 represents m copies of
the same stable map glued to them-fold cover of the stem and cyclically
permuted by g. The automorphism gm preserves each copy of the leg
but acts non-trivially on the cotangent line at the horn of the leg (i.e.
the point of gluing), since otherwise the stem could be extended. The
only other restriction on what a leg could be is that it cannot carry (or
be) a marked point of the original curve, since the numbering of the m
copies of the marked point would break the symmetry. This identifies
each of the m copies of a leg with an arm carrying no marked points.
As in the proof of Proposition 1, denote by L− and L′

+ the cotangent
lines at the point of gluing to the m-fold cover of the stem and to the
leg respectively. Then the smoothing perturbation at the node of the
curve with symmetry represents a direction normal to the stratum of
symmetric curves. In the denominator of the virtual Kawasaki formula
[22], it is represented by one Euler factor 1− L−Tr(L′

+) for each copy
of the leg. As in the case of arms, the gluing factor has the form

∑
aΦa ⊗ Φa

1− L− Tr(L′
+)
.

Then ch(Φa) and ch
(
Tr(L′

+)
)
are integrated out over the moduli space

of legs, and the leg contributes into the fake Euler characteristics over
the space of stems through Φa and L−. We claim however that the
contribution of the gluing factor into the stem correlator has the form

Ψm(Φa)⊗ Φa

1− Lm− Tr(L′
+)
.

This follows from the following general lemma.

Lemma. Let V be a vector bundle, and g the automorphism of V ⊗m

acting by the cyclic permutation of the factors. Then

Tr(g | V ⊗m) = Ψm(V ).

We conclude that the contribution of the leg into stem correlators is
obtained from t̃(L−) (the contribution of the arm into head correlators)
by computing it at the input t = 0 (this eliminates those arms that
carry marked points), then applying Ψm, and also replacing Qd with
Qmd, because the total degree of the m copies of a leg is m times the
degree of each copy. �
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Proof of Lemma. It suffices to prove it for the universal UN -bundle,
or equivalently, for the vector representation V = CN of UN . Comput-
ing the value at h ∈ UN of the character of Tr(g | V ⊗m), considered as
a representation of UN , we find that it is equal to tr(gh⊗m), because
g and h⊗m commute. Let ei denote eigenvectors of h with eigenvalues
xi. A column of the matrix of gh⊗m in the basis ei1 ⊗· · ·⊗ eiN has zero
diagonal entry unless i1 = · · · = iN . Thus, tr(gh

⊗N) = xm1 + · · · + xmN .
This is the same as the trace of h on Ψm(V ). �

Remark. The lemma can be taken for the definition of Adams’ op-
erations. For a permutation g with r cycles of lengths m1, . . . ,mr, it
implies:

Tr(g | V ⊗m) = Ψm1(V )⊗ · · · ⊗Ψmr(V ).

Proposition 4. Propositions 1,2,3 unambiguously determine the
big J-function J in terms of stem and head correlators.

Proof. Figure 1 can be viewed as a recursion relation that recon-
structs J (t) by induction on degrees d of Novikov’s monomials Qd (in
the sense of the natural partial ordering on the Mori cone). The key
fact is that in genus 0, constant stable maps have no non-trivial auto-
morphisms (and have > 2 marked or singular points). Consequently,
arms which are not marked points, as well as legs, or stems with no
legs attached, must have non-zero degrees. As a result, setting t = 0,
one can reconstruct J (0) up to degree d from head and stem correla-
tors, assuming that tails and arms are known in degrees < d, and then

reconstruct the arm T̃ (q) and tail δt(q) (at t = 0) up to degree d from

projections J (0)1 and J (0)ζ to Kfake
+ and Kζ

+ respectively.
It is essential here that even when the head has degree 0, it suffices

to know the arms up to degree < d (since at least 2 arms must be
attached to the head). Also, when both the stem and the tail have
degree 0, and there is only one leg attached, Proposition 3 recovers the
information about the leg up to degree d from that of the arm up to
degree d/m < d.

The previous procedure reconstructs T̃ (the arm at t = 0), and hence

the leg T = Ψm(T̃ ) in all degrees. Now, starting with any (non-zero)
input t, one can first determine t̃ up to degree d from stem correlators,
assuming that tails are known in degrees < d, and then recover J (t)
(and hence arms and tails) up to degree d. �

Thus, to complete the proof of the theorem, it remains to show that
the tangent spaces from Proposition 2 coincide with the Lagrangian
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spaces Lζ = ∇ζT
ζ described in the adelic formulation of the theorem.

This will be done in the next section.

8. Stems as stable maps to X/Zm

Let ζ 6= 1 be a primitive mth root of 1, and let M
X,d

0,n+2(ζ) denote a
stem space. It is formed by stems of degree d, considered as quotient
maps by the symmetry of order m acting by ζ on the cotangent line at

the horn of the covering curve. It is a Kawasaki stratum in M
X,md

0,mn+2.

Proposition 5. The stem space M
X,d

0,n+2(ζ) is naturally identified

with the moduli space M
X/Zm,d

0,n+2 (g, 1, . . . , 1, g−1) of stable maps to the
orbifold X/Zm.

Remark. This Proposition refers to the GW-theory of orbifold target
spaces in the sense of Chen–Ruan [3] and Abramovich–Graber–Vistoli
[1]. In particular, evaluations at marked points take values in the
inertia orbifold, and notation of the moduli space indicates the sectors,
i.e. components of the inertia orbifold where the evaluation maps land.
In the case at hands the inertia orbifold is X × Zm, and the string
(g, 1, . . . , 1, g−1), where g is the generator of Zm, designates (in a way
independent of ζ) the sectors of the marked points.

Proof. The paper [16] by Jarvis–Kimura describes stable maps to
the orbifold point/Zm = BZm in a way that can be easily adjusted
to our case X/Zm = X × BZm. Namely, they are stable maps to X
equipped with a principal Zm-cover over the complement to the set of
marked and nodal points, possibly ramified over these points in a way
balanced at the nodes (i.e. such that the holonomies around the node
on the two branches of the curve are inverse to each other). The stem
space is obtained when two marked points are assigned holonomies g±1

of maximal order, and all other marked points are unramified. �

Thus, introducing the simplifying notation M := M
X,d

0,n+2(ζ), we
identify stem correlators in the virtual Kawasaki formula [22] with in-
tegrals:
[ Φ

1− qζL1/m
,T (L), . . . , T (L), δt(L)

]X,d
0,n+2

=

∫

[M]vir
td(TM) ch


ev∗1 Φ ev∗n+2 δt(ζ

−1L
1/m
n+2)

∏n+1
i=2 ev∗i T (Li)

(1− qζL
1/m
1 ) Tr

(∧•N∗
M

)


 ,
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Here [M]vir is the virtual fundamental cycle of the moduli space in
GW-theory of X/Zm, TM is the virtual tangent bundle to M, and NM

is the normal bundle to M considered as a Kawasaki stratum in the
appropriate moduli space of stable maps to X which are the m-fold
covers of the stems. In several steps, we will express stem correlators
in terms of cohomological GW-theory of X.

Let (H,Ω) be the symplectic loop space of cohomological GW-theory
of X:

H = H((z)), Ω(f, g) = Resz=0(f(−z), g(z)) dz, (A,B) =

∫

X

AB.

Recall that the J-function of this theory is

J H
X (t) := −z + t(z) +

∑

a

φa
∑

n,d

Qd

n!
〈

φa

−z − ψ
, t(ψ), . . . , t(ψ)〉X,d0,n+1.

For the purpose of applications to K-theory, we will ignore all odd-
degree cohomology classes (that is, set all odd variables to 0), and
respectively assume that H here denotes the even-dimensional part of
cohomology.
Our first task is to express in terms of J H

X the J-finction of the
orbifold X/Zm. The answer is immediately extracted from the paper
[16] by Jarvis–Kimura: one only needs to replace the ground field Q

with the group ring Q[Zm] (in fact, the center of the group ring, but
our group is abelian). In other words, to parameterize the cone LHX/Zm

,

one needs to replace in the above formula for J H
X the variable t with∑

h∈Zm
t(h)h, where each t(h) ∈ H[[z]]. The resulting J-function takes

values in H ⊗Q Q[Zm]. The components corresponding to different
group elements are referred to as “sectors”. The Poincaré pairing on X
becomes divided by m (since the fundamental class [X/Zm] = [X]/m)
and coupled with the usual inner product on the group ring: (h, h′) = 0
for h′ 6= h−1, and (h, h−1) = 1/m (so that sector h pairs non-trivially
only with sector h−1).
For the purpose of expressing stem correlators, we need only one

type of correlators for X/Zm. It is obtained by setting
∑

h t
(h)h =

t · g0 + (δt)g−1, and differentiating the resulting J-function one time in
the direction of δt at the point δt = 0. Thus, this is a tangent vector
to the cone LX/Zm , but we also need to keep track of its applications
point (obtained by setting δt = 0 before differentiation), and so we give
names to both, the application point: J H

X/Zm
(t), belonging to sector g0,

and the tangent vector δJ H
X/Zm

(t), belonging to sector g−1. Thus, we
have the following Proposition.
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Proposition 6. J H
X/Zm

(t) = J H
X (t), and

δJ H
X/Zm

= δt(z) +
∑

a

φa
∑

n,d

〈
φa

−z − ψ
, t(ψ), . . . , t(ψ), δt(ψ)〉X,d0,n+2.

Remark. The Poincaré pairing on the identity sector differs from
the usual one by the factor 1/m. As a result, the basis Poincaré-dual

to φa is mφa =: φ̃a. This change would show in the definition of the
J-function of X/Zm. However, correlators in the orbifold theory also
differ from the usual ones by the factor 1/m, and these two changes
cancel out.

The sum TM ⊕ NM is the restriction to M of the virtual tangent
bundle to the moduli space of stable maps of degree md with mn + 2
marked points. According to [4], in the Grothendieck group K0(M),
this tangent bundle is represented by push-forward from the universal

family π̃ : C̃ → M:7

π̃∗ ev
∗ TX + π̃∗(1− L−1) +

(
−π̃∗̃i∗OZ̃

)∨
,

where L stands for the universal cotangent line at the “current” (mn+

3-rd) marked point of the universal curve, ĩ : Z̃ → C̃ is the embed-
ding of the nodal locus, and ∨ means dualization. This decomposes
the virtual bundle into the sum of three parts, respectively responsible
for: (i) deformations of maps to X of a fixed complex curve, (ii) defor-
mations of complex structure and/or configuration of marked points,
and (iii) bifurcations of the curve’s combinatorics through smoothing
at the nodes.
Part (i) is the index bundle

Ind(TX) := π̃∗ẽv
∗(TX).

Here we use the following notation: maps π : C → M and ev : C →

X/Zm form the universal stable map diagram, while π̃ : C̃ → M and

ẽv : C̃ → X are their Zm-equivariant lifts to the family of ramified
Zm-covers.
We need to extract from the index bundle the eigenspace of the

generator, g, of the group Zm, with the eigenvalue ζ−k. For this, we
begin with the Zm-module C where g acts by ζk, denote Cζk the cor-

responding line bundle over BZm, and take
(
Ind(TX)⊗ Cζk

)Zm
. This

(trivial) result can be expressed in terms of orbifold GW-theory of
X/Zm = X × BZm as π∗ ev

∗
(
TX ⊗ Cζk

)
. Namely, as we mentioned

7In [4], we find TX − 1 in place of TX , but in genus 0, π̃∗(1) = 1.
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in Section 4, the K-theoretic push-forward operation on global quo-
tients considered as orbifolds automatically extracts the invariant part
of sheaf cohomology. Thus,

Tr(Ind(TX)) = ⊕m−1
k=0 ζ

−kπ∗ ev
∗
(
TX ⊗ Cζk

)
.

Recall that an invertible characteristic class of complex vector bun-
dles is determined by an invertible formal series in one variable, the
1st Chern class x = c1(l) of the universal line bundle. Alongside the
usual Todd class td, we introduce moving Todd classes (aka equivariant
K-theoretic inverse Euler classes), one for each λ 6= 1:

td(l) =
x

1− e−x
, tdλ(l) =

1

1− λe−x
.

The contribution of Tr(Ind(TX)) into our integral over M reads:

(*) td (π∗ ev
∗(TX))

m−1∏

k=1

tdζk
(
π∗ ev

∗(TX ⊗ Cζk)
)
.

Introduce J tw
X/Zm

and δJ tw
X/Zm

as twisted counterparts of J H
X/Zm

and

δJ H
X/Zm

. Namely, following [6], one defines GW-invariants twisted by a
chosen bundle, E, over the target space, and a chosen multiplicative
characteristic class, S, by systematically replacing virtual fundamental
cycles of moduli spaces of stable maps with their cap-products (such
as [M]vir ∩ S(Ind(E)) in our case) with the chosen characteristic class
of the corresponding index bundle.

Proposition 7. Denote by � and �ζ the Euler–Maclaurin asymp-
totics of the infinite products

� ∼
∏

Chern roots x of TX

∞∏

r=1

x− rz

1− e−mx+mrz
,

�ζ ∼
∏

Chern roots x of TX

∞∏

r=1

x− rz

1− ζ−re−x+rz/m
.

Then J tw
X/Zm

lies in the overruled Lagrangian cone �LHX , and δJ
tw
X/Zm

lies in the transformed tangent space �ζT�−1J tw
X/Zm

LHX .

Proof. The Quantum Riemann–Roch Theorem of [6], which ex-
presses twisted GW-invariants in terms of untwisted ones, was gener-
alized to the case of orbifold target spaces by Hsian-Hua Tseng [24].
The proposition is obtained by direct applications of the Quantum RR
Theorem of [24] to each of the twisting data E = TX ⊗ Cζk , S = tdζk .
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For k = 0, the Euler–Maclaurin asymptotics (for both J tw and δJ tw)
come from the product

∞∏

r=1

x− rz

1− e−x+rz
,

and for k 6= 0, from
∞∏

r=1

1

1− ζke−x+rz

for J tw, and
∞∏

r=1

1

1− ζke−x+rz−kz/m

for δJ tw. The extra factor e−kz/m in the denominator comes from the
way how in the orbifold HRR theorem of [5], the logarithm (k/m in
our case) of the eigenvalue (e2piik/m), by which the symmetry g acts
on the twisting bundle (TX ⊗ Cζk), enters the “Bernoulli polynomial”

ingredient of the formula. Namely, ekt/m

et−1
, where t = z∂x, formally

expands as
∑∞

r=1 e
(k/m)z∂x−rz∂x .

Multiplying out the products over k = 0, . . . ,m − 1, and using∏m−1
k=0 (1−ζ

ku) = 1−um and ζm = 1 to simplify, we obtain the required
results. �

Part (ii) of the bundle TM ⊕ NM comes from deformations of the
complex structure and marked points. It can be described as the K-

theoretic push-forward π̃∗(1−L
−1) along the universal curve π̃ : C̃ → M

(think of H1(Σ, TΣ)). To express the trace Tr of it, one need to consider
push-forwards of L−1 ⊗ Cζk and appropriately twisted GW-invariants
of the orbifold X/Zm. More precisely, we need the twisting classes to
have the form:

td
(
π∗(1− L−1)

) m−1∏

k=1

tdζk
(
π∗[(1− L−1) ev∗(Cζk)]

)
.

The general problem of computing GW-invariants of orbifolds twisted
by characteristic classes of the form

∏

α

Sα
(
π∗[(L

−1 − 1) ev∗(Eα)]
)

is solved in [23] (see also Chapter 2 of thesis [21]). The answer is
described as the change of the dilaton shift.8 Namely, if −z = c1(L

−1),
and Sα denote the twisting multiplicative characteristic class, then the
dilaton shift changes from −z to −z

∏
α Sα(L

−1Eα). In our situation,

8Generalizing the case of manifold target spaces discussed in [4].
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α = 0, . . . ,m − 1, S0 = td−1, Sk = td−1
ζ for k 6= 0, and Ek = Cζk .

Respectively, the new dilaton shift is

−z
(1− ez)

(−z)

m−1∏

k=1

(1− ζkez) = 1− emz.

Thus, the dilaton shift changes from −z to 1− emz.

Parts (i) and (ii) together form the part of the virtual tangent bun-

dle to M
md,X

0,mn+2 (albeit restricted to M) logarithmic with respect to the
nodal divisor. What remains is part (iii), supported on the nodal divi-
sor, which consists of one-dimensional summands (one per node), the
smoothing mode of the glued curve at the node. Contributions of part
(iii) into the ratio td(TM)/ ch(Tr

∧•(N∗
M
) in the virtual Kawasaki for-

mula is described in terms of yet another kind of twisted GW-invariants
of the orbifold X/Zm, where the twisting classes are supported at the
nodal locus. The effect of such twisting on GW-invariants can be found
by a recursive procedure based on ungluing the curves at the nodes. As
it is seen in [4], this does not change the overruled Lagrangian cones,
but affects generating functions through a change of polarization. Re-
ferring to [23] (or [21]) for the generalization to orbifold target spaces
needed here, we state the results.
Let M denote a moduli space of stable maps to the orbifold X/Zm,

and π : C → M the projection of the universal family of such stable
maps. Let Z = ∪h∈ZmZh be the decomposition of the nodal stratum
Z ⊂ C into the disjoint union according to the ramification type of
the node, and i : Zh → C denote the embedding. Let Sh,a be invert-
ible multiplicative characteristic classes, and Eh,α arbitrary orbibundles
over X/Zm, where h ∈ Zm, α = 1, . . . , Kh. The twisting in question is
obtained by systematically including into the integrands of GW-theory
of X/Zm the factors

∏

h∈Zm

Kh∏

α=1

Sh,α (π∗[i∗OZh
⊗ ev∗Eh,α]) .

According to the results of [23] (Theorem 1.10.3 in [21]), the effect of
such twisting is completely accounted by a change of polarization in
the symplectic loop space of GW-theory of X/Zm, described separately
for each sector. Namely, for the sector corresponding to h ∈ Zm, define
a power series uh(z) = z + a2z

2 + a3z
3 + · · · by

z

uh(z)
=

Kh∏

α=1

S−1
h.a (Eh,a ⊗ L) , where c1(L) := z.
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Define the Laurent series vh,k, k = 0, 1, 2, . . . , by

1

uh(−ψ − z)
=
∑

k≥0

(uh(ψ))
k vh,k(z),

which is the expansion of the L.H.S. in the region |ψ| < |z|. Then, as
one can check, φaz

k, φavh,k(z), a = 1, . . . , dimH, k = 0, 1, 2, . . . , form
a (topological) Darboux basis in the sector h of the symplectic loop
spaces of the GW-theory of X/Zm. The genus-0 descendant potential
of the twisted theory is expressed from that of untwisted one by taking
the overruled Lagrangian cone of the untwisted theory for the graph
of differential of a function in the Lagrangian polarization associated
with this basis. Note that the positive space polarization, which is
spanned by {φaz

k}, stays the same as in the untwisted theory, while
the negative space, which is spanned by {φavh,k(z)}, differs from that
of untwisted theory, which is spanned by {φaz−1−k}.

Remarks. (1) The standard polarization H± of the symplectic loop
space of quantum cohomology theory of a manifold is obtained by the
same formalism:

1

−ψ − z
=
∑

k≥0

ψk

(−z)k+1
,

and H− is spanned by φa(−z)−1−k, k = 0, 1, 2, . . . .
(2) As it was mentioned in Section 5, in fake K-theory one obtains

a Darboux basis from z/u(z) = td(L), and respectively the expansion:

1

1− eψ+z
=
∑

k≥0

(eψ − 1)k
ekz

(1− ez)k+1
.

Consequently, Kfake
+ and Kfake

− are spanned respectively by Φa(q − 1)k

and Φaqk/(1− q)k+1, a = 1, . . . , dimK, k = 0, 1, 2, . . . .

In stem theory, there are two types of nodes (Figure 2). When a
stem acquires an unramified node (as shown in the top picture), the
covering curve carries a Zm-symmetric m-tuple of nodes. The smooth-
ing bundle has dimension m and carries a regular representation of
Zm. When a stem degenerates into a chain of two components glued
at a balanced ramification point of order m (the bottom picture), the
smoothing mode is one-dimensional and carries the trivial represen-
tation of Zm. Contributions of these smoothing modes into the ratio
td(TM)/ ch(Tr

∧•(N∗
M
) is accounted by the following twisting factors in
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the integrals over M, considered as orbifold-theoretic GW-invariants:

td
(
−π∗i∗OZg

)∨
td (−π∗i∗OZ1)

∨
m−1∏

k=1

tdζk
(
−π∗(ev

∗ Cζk ⊗ i∗OZ1)
)∨
,

where Z1 stands for the unramified nodal locus, and Zg for the ramified
one. This twisting results in the change of polarizations. In the g-
ramified sector, the new polarization is determined from the expansion
of

1

1− e(ψ+z)/m
=

1

1− q1/mL1/m
.

Here the factor 1/m occurs because what was denoted L in the GW-
theory of X/Zm is the universal cotangent line at the ramification point
to the quotient curve, which is L1/m in our earlier notations of stem
spaces (where L stands for the universal cotangent line to the covering
curve). In the unramified sector, the new polarization is found from

z

u(z)
= td(L)

m−1∏

k=1

tdζk(Cζk ⊗ L) =
z

1− e−z

m−1∏

k=1

1

1− ζke−z
=

z

1− e−mz
,

and consequently the expansion of

1

1− emψ+mz
=

1

1− qmLm
.

We conclude that the negative space of polarizations in the ramified
and unramified sectors are spanned respectively by

Φaqk/m/(1−q1/m)k+1 and Φaqmk/(1−qm)k+1 = Φa Ψm
(
qk/(1− q)k+1

)
.

Remark. The occurrence of Adams’ operation Ψm here is not sur-
prising. The smoothing modes at m cyclically permuted copies on an
unramified node of the stem curve form an m-dimensional space car-
rying the regular representation of Zm. The trace Tr of the bundle
formed by these modes is, according to Lemma of the previous section,
Ψm(L− ⊗ L+) (in notation of Figure 2, the top picture).

It remains to apply the above results to those generating functions
of stem theory which occur in the virtual Kawasaki formula. Introduce
a generating function, δJ st

X/Zm
, of stem theory as the image under the

Chern character map ch : Kfake → H of

δt(q1/m) +
∑

a,n,d

Φa
Qd

n!

[
Φa

1− q1/mL1/m
, T (L), . . . , T (L), δt(L1/m)

]X,d

0,n+2

.

Replacing q1/m with ζq and Qd with Qmd, we would obtain the sum
of correlators of stem theory as they appeared in Section 7. On the
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Two types of stem nodes.

other hand, the interpretation of stem correlators as GW-invariants
of X/Zm twisted in three different ways (corresponding to parts (i),
(ii), (iii) of the tangent space), and the previous results on the effects
of these twistings, provide the following description of δJ stX/Zm in
terms of GW-theory of X.

Proposition 8. δJ st
X/Zm

(δt, T ) lies in �ζ�
−1TJ tw

X/Zm
�LHX , where the

input T is related to the application point J tw
X/Zm

by the projection [· · · ]+
along the negative space of the polarization of the unramified sector:

ch (1− qm + T (q)) =
[
J tw
X/Zm

]
+
.

Proof. According to Proposition 7, J tw
X/Zm

lies in the cone �LH ,

and δJ tw
X/Zm

lies in the space �ζ�
−1T , where T is the tangent space to

�LH at the point J tw
X/Zm

. It follows from the previous discussion that

δJ st
X/Zm

, being obtained from δJ tw
X/Zm

by changing dilaton shift and
polarizations only, lies in the same space. Changing the content of the

horn in the definition of δJ tw
X/Zm

from φ̃a/(−z−ψ) = φa/(−z/m−ψ/m)

to φa/(1 − ez/m+ψ/m) is equivalent to applying to the same space the
polarization associated with the g-ramified sector. However, the new
dilaton shift and polarization in the unramified sector both affect the
way the input T of δJ st

X/Zm
is computed in terms of J tw

X/Zm
. Namely,

ch(T ) = [J tw
X/Zm

]+ − (1− emz). �

To put the next proposition into context, let us recall that the stem
correlators of Section 7, in order to represent the expansion J (t)ζ of
the true K-theoretic J-function J at q = ζ−1, need to be computed at
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a specific input T , the leg, which is characterized in a rather complex
way. Namely, the expansion J (0)1 of the value of J at the input t = 0
lies in the cone Lfake of fake quantum K-theory of X (Proposition 1).

The contribution T̃ , i.e. the arm corresponding to t = 0, is obtained
as the input point of J (0)1, i.e. by applying the projection (. . . )+
along the negative space of polarization (described in Remark 2) and
the dilaton shift of fake quantum K-theory:

1− q + T̃ (q) = (J (0)1)+ .

According to Proposition 3, T = Ψm(T̃ ) (where Adams’ operation acts
also on q and Q).
On the other hand, Proposition 7 locates the stem generating func-

tion δJ st
X/Zm

in terms of the tangent space TJ tw
X/Zm

�LHX . Furthermore,

according to the Quantum HRR Theorem stated in Section 5, LHX =
△−1 ch

(
Lfake

)
, and hence the cone and its tangent space in question

are the images under �△−1 ch of Lfake and of a certain tangent space
to it. The following proposition implies that when the input T is the
leg, the requisite tangent space is exactly TJ (0)1L

fake.

Proposition 9. ch−1(�LHX) = Ψm(Lfake), where the Adams opera-
tion Ψm : Kfake → Kfake acts on q by Ψm(q) := qm.

Proof. From the QHRR theorem of Section 5 and Proposition 7,
we have:

△−1 ch(J fake
X ) = J H

X = �
−1J tw

X/Zm
.

We intentionally neglect to specify the arguments, since they are de-
termined by the argument, t, of J H

X , by polarizations, and by the
transformations △ and � themselves. The Adams operation Ψm acts
on cohomology classes via the Chern isomorphism:

ch
(
Ψm(ch−1 a)

)
= mdeg(a)/2a.

The J-function t 7→ J H
X (t) has degree 2 with respect to the grad-

ing, defined by the usual grading in cohomology, deg z = 2, degQd =
2
∫
d
c1(TX), and deg t = 2. The latter means that in the expression

t =
∑

k,α t
α
kφαz

k the variable tαk is assigned degree 2 − deg φα − 2k.

Therefore, writing J H
X /(−z) =

∑
d JdQ

d, and rescaling the variables

by t̃αk = m1−deg φα/2−ktαk , we find

m−1Ψm(J H
X (t)) =

∑

d

m− degQd

Jd(t̃)Q
d = e−(logm) c1(TX)/zJ H

X (t̃).
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The second equality is an instance of the genus-0 divisor equation (see
[6]). Thus, Proposition 9 would follow from the identity

� = m
1
2
dimCXΨm(△) e−(logm) c1(TX)/z.

To establish it, note that both △ and � are the Euler–Maclaurin
asymptotics of infinite products

∏

Chern roots x of TX

∞∏

r=1

S(x− rz),

where S is respectively

x

1− e−x
and

x

1− e−mx
= m−1 Ψm

(
x

1− e−x

)
.

The factor m−1 contributes into the asymptotics in the form
∏

Chern roots x of TX

e−(logm) x/zm1/2 = e−(logm) c1(TX)/zm
1
2
dimCX . �

Remark. Most steps of our arguments apply to the case of twisted
cohomological GW-invariants. The previous proof, however, employs
the grading in cohomology, and does not work therefore for twisted
GW-invariants unless the twisted virtual fundamental classes are ho-
mogeneous, and the degrees of Novikov’s variables are adusted accord-
ingly. Still, these assumptions are correct in the case of twisting by
(equivariant) Euler classes. This is why our main theorem applies to
such, Euler-twisted theories. We will use this fact in some applications
given in the last section.

Corollary. δJ st
X/Zm

(δt, T ) lies in the space �ζ△
−1TJ fake(T̃ )L

fake,

where T = Ψm(T̃ ).
Proof. According to Proposition 8, δJ st

X/Zm
lies in the space

�ζ�
−1TJ tw

X/Zm
�LH , where the input T of δJ st

X/Zm
is determined by

T = [J tw
X/Zm

]+ − (1 − qm). By Proposition 9, J tw
X/Zm

= Ψm(J fake),

and the input of J fake is determined as T̃ =
(
J fake

)
+
− (1 − q). Here

(· · · )+ refers to the projection to Kfake
+ along Kfake

− , i.e. the polarization
described in Remark 2, while the projection [· · · ]+ refers to the polar-
ization in the unramified sector. The latter polarization is obtained
from the former by the Adams operation: Ψm : Kfake → Kfake, and the
relation between dilaton shifts is the same: 1−qm = Ψm(1−q). There-

fore T = Ψm(T̃ ), and the tangent space TJ tw
X/Zm

�LH can be described

as �△−1TJ fake(T̃ )L
fake. �
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We note that

�ζ△
−1 ∼

∏

Chern roots x of TX

∞∏

r=1

1− qre−x

1− ζ−rqr/me−x
.

One obtain∇ζ by replacing in this formula q1/m with qζ and computing
the Euler–Maclaurin asymptotics of the result as qζ → 1.
According to Proposition 2, the expansion J (t)ζ near q = ζ−1 of the

true K-theoretic J-function is expressed in terms of correlators of stem
theory (as they appeared in Section 7), computed at the input T equal
to the leg contribution. More precisely, J (t)ζ is obtained from δJ st

X/Zm
,

defined as

δt(q1/m) +
∑

a,n,d

Φa
Qd

n!

[
Φa

1− q1/mL1/m
, T (L), . . . , T (L), δt(L1/m)

]X,d

0,n+2

,

by changing q1/m → qζ (including such change in δt) and Qd → Qmd

(excluding such a change in δt).
Combining these facts with Corollary, we conclude that ∇−1

ζ J (t)ζ ,

after the change q 7→ q/ζ, falls into the subspace T of Kfake which is
obtained from the tangent space TJ (0)1L

fake by the changes q1/m 7→ q
and Qd 7→ Qmd.

This completes the proof of the Hirzebruch–Riemann–Roch Theorem
in true quantum K-theory.

9. Floer’s S1-equivariant K-theory, and Dq-modules

In this section, we show that tangent spaces to the overruled La-
grangian cone L of quantum K-theory on X carry a natural structure
of modules over a certain algebra Dq of finite-difference operators with
respect to Novikov’s variables. This structure, although manifest in
some examples (see [14]) and predictable on heuristic grounds of S1-
equivariant Floer theory [8, 9], has been missing so far in the realm
of K-theoretic GW-invariants. We first recall the heuristics, and then
derive the Dq-invariance of the tangent spaces to L from the divisor
equation in quantum cohomology theory and our HRR Theorem in
quantum K-theory.

Let X be a compact symplectic (or Kähler) target space, which for
simplicity is assumed simply-connected in this preliminary discussion,
so that π2(X) = H2(X). Let k = rkH2(X), let d = (d1, . . . , dk) be
integer coordinates onH2(X,Q), and ω1, . . . , ωk be closed 2-forms onX
with integer periods, representing the corresponding basis of H2(X,R).
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On the space L0X of contractible parametrized loops S1 → X, as

well as on its universal cover L̃0X, one defines closed 2-forms Ωa, that
to two vector fields ξ and η along a given loop associates the value

Ωa(ξ, η) :=

∮
ωa(ξ(t), η(t)) dt.

A point γ ∈ L̃0X is a loop in X together with a homotopy type of a
disk u : D2 → X attached to it. One defines the action functionals

Ha : L̃0X → R by evaluating the 2-forms ωa on such disks:

Ha(γ) :=

∫

D2

u∗ωa.

Consider the action of S1 on L̃0X, defined by the rotation of loops,
and let V denote the velocity vector field of this action. It is well-known
that V is Ωa-hamiltonian with the Hamilton function Ha, i.e.:

iVΩa + dHa = 0, a = 1, . . . , k.

Denote by z the generator of the coefficient ring H∗(BS1) of S1-
equivariant cohomology theory. The S1-equivariant de Rham complex

(of L̃0X in our case) consists of S1-invariant differential forms with
coefficients in R[z], and is equipped with the differential D := d+ ziV .
Then

pa := Ωa + zHa, a = 1, . . . , k,

are degree-2 S1-equivariantly closed elements of the complex: Dpa =
0. This is a standard fact that usually accompanies the formula of
Duistermaat–Heckman.
Furthermore, the lattice π2(X) acts by deck transformations on the

universal covering L̃0X → L0X. Namely, an element d ∈ π2(X) acts on

γ ∈ L̃0X by replacing the homotopy type [u] of the disk with [u]+d. We

denote by Qd = Qd1
1 · · ·Qdk

k the operation of pulling-back differential
forms by this deck transformation. It is an observation from [8, 9] that
the operations Qa and the operations of exterior multiplication by pa
do not commute:

paQb −Qbpa = −zQaδab.

These are commutation relations between generators of the algebra of
differential operators on the k-dimensional torus:

[−z∂τa , e
τb ] = −zeτaδab.

Likewise, if Pa denotes the S1-equivariant line bundle on L̃0X whose
Chern character is e−pa , then tensoring vector bundles by Pa and pulling
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back vector bundles by Qa do not commute:

PaQb = qQaPbδab.

These are commutation relations in the algebra of finite-difference op-
erators, generated by multiplications and translations:

Qa 7→ eτa , Pa 7→ ez∂τa = q∂τa , where q = ez.

Thinking of these operations acting on S1-equivariant Floer theory of
the loop space, one arrives at the conclusion that S1-equivariant Floer
cohomology (K-theory) should carry the structure of a module over the
algebra of differential (respectively finite-difference) operators. Here is
how this heuristic prediction materializes in GW-theory.

Proposition 10. Let D denote the algebra of differential opera-
tors generated by pa, a = 1, . . . , k, and Qd, with d lying in the Mori
cone of X. Define a representation of D on the symplectic loop space
H = H∗(X,C[[Q]]) ⊗ C((z)) using the operators pa − zQa∂Qa (where
pa acts by multiplication in the classical cohomology algebra of X) and
Qd (acting by multiplication in the Novikov ring). Then tangent spaces
to the overruled Lagrangian cone LH ⊂ H of cohomological GW-theory
on X are D-invariant.

Proof. Invariance with respect to multiplication by Qd is tautologi-
cal since the Novikov ring Q[[Q]] (which contains the semigroup algebra
of the Mori cone: we assume that da =

∫
d
pa ≥ 0 for all a and all d in

the Mori cone) is considered as the ground ring of scalars. To prove
invariance with respect to operators pa− zQa∂Qa , recall from [13] that
tangent spaces to LH have the form S−1

τ H+, where H ∋ τ 7→ Sτ (z)
is a matrix power series in 1/z whose matrix entries are the following
cohomological GW-invariants:

Sba = δba +
∑

l,d

Qd

l!

∑

µ

〈φa, τ, . . . , τ,
φb

z − ψ
〉X,d0,n+2.

The matrix Sτ lies in the twisted loop group, i.e. S−1
τ (z) = S∗

τ (−z)
(where by “∗” we denote transposition with respect to the Poincaré
pairing). Let ∂τa denote the differentiation in τ in the direction of the
degree 2 cohomology class pa. According to the divisor equation,

zQa∂QaSτ (z) + Sτ (z)pa = z∂τaSτ (z).

In fact z∂τaS = pa •S, where • stands for quantum cup-product. (This
follows from the property of LH to be overruled.) Transposing, we get:

(pa − zQa∂Qa)S
−1
τ (z) = −z∂τaS

−1
τ (z) = S−1

τ (z)(pa•).
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Also, if τ =
∑

µ τµφµ ∈ H, then for any µ

z∂τµSτ (z) = (φµ•)Sτ (z), and hence − z∂τµS
−1
τ (z) = S−1

τ (φµ•).

Thus, if τ =
∑
τµ(Q)φµ and h ∈ H+, so that f(z,Q) = S−1

τ (z)h(z,Q)
lies in Tτ , then

(pa − zQa∂Qa)f = S−1
τ (z)

[
(pa•)− zQa∂Qa − z

∑

µ

(φµ•)Qa∂Qaτµ

]
h.

Since H+ is invariant under the operator in brackets, the result follows.
�

Remarks. (1) Each ruling space zTτ , and therefore the whole cone
LH , is D-invariant, too.
(2) Symbols of differential operators annihilating all columns of S

provide relations between operators pa• in the quantum cohomology
algebra of X (see [11]).

Corollary 1. Tangent and ruling spaces of Lfake are D-invariant.

Proof. In the QHRR formula ch(Lfake) = △LH of Section 5, the
operator △ commutes with D, since it does not involve Novikov’s vari-
ables, and since the operators (which do occur in △) of multiplication
in the classical cohomology algebra of X commute with pa. �

Lemma. The subspace T ⊂ Kfake obtained from TJ (0)1L
fake by the

change z 7→ mz,Q 7→ Qm, is D-invariant.

Proof. The tangent space in question is △(z)S−1
τ (0)(Q)

(z,Q)H+ for

some τ (0) =
∑

µ τ
(0)
µ φµ ∈ H. (Recall that H+ = H[[z]], and H =

H∗(X,C[[Q]]).) The space T is therefore △(mz)S−1
τ (0)(Qm)

(mz,Qm)H+,

where H+ is D-invariant, and △ commutes with D. Since zQa∂Qa =
mzQm

a ∂Qm
a
, we find that the divisor equation still holds in the form:

(pa − zQa∂Qa)S
−1
τ (mz,Qm) = S−1

τ (mz,Qm)(pa•(τ,Qm)),

where the last subscript indicates that the matrix elements of pa• de-
pend on τ and Qm. The result now follows as in Proposition 10. �

Corollary 2. Let ζ be a primitive mth root of unity. Then the

factor Lζ = ∇ζT
ζ of the adelic cone L̂ is D-invariant.

Proof. Recall that the space T ζ is related to T by the change
q = ζez, and the action of z in the operator pa − zQa∂Qa should be
understood in the sense of this identification. The result follows from
Lemma since ∇ζ commutes with D (like △, in Corollary 1). �
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Theorem. Let Dq denote the algebra of finite-difference operators,
generated by integer powers of Pa, a = 1, . . . , k, and Qd, with d lying
in the Mori cone of X. Define a representation of Dq on the sym-
plectic loop space K, using the operators Paq

Qa∂Qa (where Pa acts by
multiplication in K0(X) by the line bundle with the Chern character
e−pa) together with the operators of multiplication by Qd in the Novikov
ring. Then tangent (and ruling) spaces to the overruled Lagrangian
cone L ⊂ K of true quantum K-theory on X are Dq-invariant.

Proof. Thanks to the adelic characterization of the cone L and its
ruling spaces, given by Theorem of Section 6 and its Corollary, this is
an immediate consequence of the following Lemma.

Lemma. The adelic cone L̂ is Dq-invariant.

Proof. It is obvious that the factors Lζ are D-invariant for ζ other
than roots of unity, since in this case Lζ = Kfake

+ . For ζ = 1, it fol-

lows from Corollary 1 that the family of operators eǫ(zQa∂Qa−pa) pre-
serves Lfake, and so does the operator with ǫ = 1, which coincides with
Paq

Qa∂Qa . When ζ 6= 1 is a primitive mth root of unity, the family of
operators eǫ(zQa∂Qa−pa) preserves Lζ by Corollary 2. However, at ǫ = 1,
the operator of the family differs from Paq

Qa∂Qa (because q = ζez) by
the factor ζQa∂Qa , which acts as Qa 7→ Qaζ. It is essential that this
extra factor commutes with S−1

τ (0)(Qm)
(mz,Qm) (due to ζm = 1). Since

it also preserves H+, the result follows. �

Example. It is known9 [14] that for X = CP n−1,

J (0) = (1− q)
∞∑

d=0

Qd

(1− Pq)n · · · (1− Pqd)n
,

where P ∈ K0(Cn−1) represents the Hopf line bundle. It follows (from
the string equation) that (J (0)/(1−q) lies in the tangent space TJ (0)L.
Applying powers T r of the translation operator T := PqQ∂Q , we con-
clude that, for all integer r, the same tangent space contains

P r

∞∑

d=0

Qdqrd

(1− Pq)n · · · (1− Pqd)n
.

In fact, J (0) satisfies the nth order finite-difference equationDnJ (0) =
QJ (0), where D := 1 − T . Therefore the Dq-module generated by
J (0)/(1− q) is spanned over the Novikov ring by T rJ (0)/(1− q) with

9This result is derived from birational isomorphisms between some genus-0 mod-
uli spaces of stable maps to CPn−1 ×CP 1 and toric compactifications of spaces of
maps CP 1 → CPn−1.



HRR IN TRUE QUANTUM K-THEORY 41

r = 0, . . . , n− 1. The projections of these elements to K+ are P r, r =
0, . . . , n − 1, which span the ring K0(CP n−1) = Z[P, P−1]/(1 − P )n.
The K-theoretic Poincaré pairing on this ring is given by the residue
formula:

(Φ(P ),Φ′(P )) = −ResP=1
Φ(P )Φ′(P )

(1− P )n
dP

P
.

By computing the pairings with the above series we actually evaluate
K-theoretic GW-invariants:

(Φ(P ), T rJ (0)/(1− q)) =
∑

d

Qd〈
Φ(P )

1− qL
, P r〉X,d0,2 , r = 0, . . . , n− 1.

Thus, we started with known values of all 〈ΦLk, 1〉X,d0,2 and computed all

〈ΦLk,Φ′〉X,d0,2 (and hence, by virtue of general properties of genus-0 GW-

invariants, all 〈ΦLk,Φ′Ll〉X,d0,2 ) using the Dq-module structure alone.

10. Quantum K-theory of projective complete

intersections

Theorem. Let X be a complete intersection in the projective space
CP n−1, n > 4, given by k(≥ 0) equations of degrees l1, . . . , lk > 1, such
that l21 + · · · + l2k ≤ n. Then the following series represents a point in
the overruled Lagrangian cone of true quantum K-theory of X:

IX := (1− q)
∑

d≥0

∏k
j=1

∏ljd
r=0(1− P ljqr)

∏d
r=1(1− Pqr)n

Qd.

More precisely, IX = ν∗JX(0), where ν∗ : K
0(X) → K0(CP n−1) is the

K-theoretic push-forward induced by the embedding ν : X → CP n−1,
and JX(0) is the value of the J-function of true quantum K-theory of
X at the input t = 0.

Remarks. (1) To clarify this formulation, we remind that P repre-
sents the Hopf line bundle in K0(CP n−1). By Lefschetz’ hyperplane
section theorem, the inclusion X ⊂ CP n−1 induces an isomorphism
H2(X,Q) → H2(CP

n−1,Q), whenever 2 ≤ n− k − 2. The latter holds
true under our numerical restrictions on lj and n. Consequently, the
degrees of holomorphic curves in X are represented in IX by their de-
grees d in the ambient projective space.
(2) When

∑
l2j ≤ n, we also have

∑
lj < n−2 (strictly, unless k = 1,

l1 = 2, while n = 4). Since we assumed n > 4, we have for each d > 0:

1 +
∑ ljd(ljd+ 1)

2
< n

d(d+ 1)

2
.
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This means that the coefficient of IX at Qd is a reduced rational func-
tion of q. Thus, the projection of IX to K+ is 1−q, i.e. IX corresponds
to the input value t = 0.
(3) Note that the example n = 4, k = 1, l1 = 2 of the conic CP 1 ×

CP 1 ⊂ CP 3 is exceptional in the sense of both previous remarks. It
would be interesting to analyze the role of the series IX in quantum
K-theory of the conic.

Corollary. For all s ∈ Z

∑

d

Qd〈
ν∗Φ(P )

1− qL
, ν∗P s〉X,d0,2 = (Φ(P ), T sIX/(1− q)),

where (·, ·) is the K-theoretic Poincaré pairing on K0(CP n−1), and

T sIX/(1− q) = P s
∑

d≥0

∏k
j=1

∏ljd
r=0(1− P ljqr)

∏d
r=1(1− Pqr)n

Qdqsd.

When k = 0, it is known from [14], that the formula for IX represents
the value J (0) of the K-theoretic J-function of the projective space. We
will begin our proof of the theorem, however, with re-deriving this fact
(and without the restriction n > 4, of course) from the main theorem
of this paper. After that we explain how to adjust the argument to the
case of projective complete intersections.

To prove the theorem for X = CP n−1, we will show that expansions
of the series I near q = ζ−1 pass the tests required by the Quantum
HRR Theorem of Section 6.
The technique we use goes back to the method developed in [6] for

the proof of the “Quantum Lefschetz Principle.” Let us first outline
the method in its generalized form introduced in [5].
Suppose we are given a point (e.g. J H

X (0)) on an overruled La-
grangian cone (such as LHX , for instance). Consider a pseudo-differential
operator in the Novikov’s variables in the form

exp

{
Φ−1(zQ∂Q)

z
+
∑

k≥0

Φk(zQ∂Q)z
k

}
.

Here zQi∂Qi
is supposed to act (as in the previous section) by −pi +

zQi∂/∂Qi, where pi is the degree 2 class corresponding to Qi∂Qi
. It fol-

lows from Lemma in [6] (in the proof of the quantum Lefschetz theorem)
that by applying the operator to a point on the overruled Lagrangian
cone one obtains a point also lying on the cone. More precisely, as we
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already know from the previous section, ruling spaces to the cone areD-
modules with respect to Novikov’s variables. Therefore the terms of the
exponent with k ≥ 0 are only capable of adding to a point on the cone
a vector from the same ruling space. However, the action of the term
Φ−1, generally speaking, moves the point to another ruling space. For
example, the action exp{z−1

∑
i zτiQi∂Qi

} changes a point J =
∑
JdQ

d

to J(τ) = e−pτ/z
∑
Jde

dτQd, which lies on the same cone due to the
divisor equation. Furthermore, the action of exp{Φ−1(zQ∂Q)/z} is
equivalent to that of exp{Φ−1(z∂/∂τ)/z}, which in its turn, modulo
relations in the D-module generated by the J-function, and modulo
higher order terms in z, is equavalent to the translation in the space H
of parameters of ruling spaces (by the vector, expressible under some
simplifying assumptions as Φ−1(p•), i.e. the value of the function Φ−1

computed in the quantum cohomology algebra).
Next, given a point J on an overruled Lagrangian cone L, one con-

structs a point on the rotated cone e−Φ(−p,z)/zL, where eΦ(−p,z)/z is the
Euler-Maclaurin asymptotics of an infinite product

∏0
r=−∞ S(−p+ rz)

as follows. We have S(zQ∂Q+ rz)Q
d = S(−p+p(d)z+ rz), where p(d)

denotes the value
∫
d
p on d of the degree 2 class p. Therefore

eΦ(zQ∂Q,z)/zQd = eΦ(−p,z)/zQd

∏0
r=−∞ S(−p+ rz)
∏p(d)

r=−∞ S(−p+ rz)
.

The fraction on the right is known as the modifying factorMd. Rewrit-
ing J =

∑
d JdQ

d, we conclude that since eΦ(zQ∂Q,z)/zJ lies in the cone
L, the modified series

∑
d JdQ

dMd lies on the rotataed cone e−Φ(−p,z)/zL.
Returning now to our problem for X = CP n−1), we befing with a

point on the cone LHX (see [9]; we will tend to omit the subscript X in
this example):

J H(0) = −z
∑

d≥0

Qd

∏d
r=1(p− rz)n

.

Here p is the hyperplane class in H2(CP n−1. We employ the above
method to construct a point on Lfake. Recall from Section 5 that
Lfake = ch−1 △LH , where

log△ ∼
∞∑

r=1

∑

x

s(x− rz), s(u) := log
u

1− e−u
,

and x runs Chern roots of TCPn−1 . We claim that in fact

log△ ∼
∞∑

r=1

(n s(p− rz)− s(−rz)) .
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Indeed, TCPn−1 = nP−1−1, and the construction of the operator log△
from (Chern roots of) a bundle is additive. Note that the last summand
does not affect the way △ acts on LH , since, being overruled, the cone
LH is invariant under multiplication by functions of z.
As the method requires, replacing p in log△ with −zQ∂Q and ap-

plying the resulting operator to Qd, we find the modifying factor

Md =
d∏

r=1

en s(p−rz) =
d∏

r=1

(p− rz)n

(1− e−p+rz)n
.

Thus

I fake := −z
∑

d≥0

Qd

∏d
r=1(1− e−p+rz)n

lies in Lfake, the overruled Lagrangian cone of fake quantum K-theory
of CP n−1. Multiplying this by (1− ez)/(−z) (which is a scalar z-series
and thus preserves the overruled cone), and replacing e−p = ch(P ) with
P , and ez with q, we obtain the same expression as IX from Theorem
for X = CP n−1:

I = (1− q)
∑

d≥0

Qd

(1− Pq)n(1− Pq2)n · · · (1− Pqd)n
.

We have proved therefore, that the expansion of I near q = 1 lies in
Lfake as required.

To analyze the expansion of I near q = ζ−1 where ζ is an m-th
root of 1, we begin again with the point J H(0) in LH and generate a
point I tw on the cone LtwX/Zm

and a tangent vector δI tw to this cone at
this point, applying the above method to the twisting operators � and
�ζ from Proposition 7. Again, the description of the tangent bundle
TCP n−1 = nP−1−1 allows us to replace Chern roots of in the definition
of � and �ζ with n copies of p:

� ∼
∞∏

r=1

(p− rz)n

(1− e−mp+mrz)n
, �ζ ∼

∞∏

r=1

(p− rz)n

(1− ζ−re−p+rz/m)n
.

Replacing p with −zQ∂Q and applying the operators to Qd we find the
modifying factors (alternatively one can read them off the formulation
in [5] of the orbifold Qauntum Lefschetz Theorem specialized to the
case of X/Zm and the sectors g0 and g−1) and respectively

I tw = −z
∑

d≥0

Qd

∏d
r=1(1− e−mp+mrz)n

,
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δI tw =
∑

d≥0

Qd

∏md
r=1(1− ζ−re−p+rz/m)n

.

Multiplying I tw with (1−emz)/(−z) (which leaves it on the cone LtwX/Zm)

and replacing e−p with P , ez with q, and Qd with Qmd, we obtain

(1− qm)
∑

d≥0

Qmd

(1− Pmqm)n(1− Pmq2m)n · · · (1− Pmqmd)n
,

which is exactly Ψm(I). This provides the compatibility check: the
series I considered as a point in the loop space K of true K-theory,
projects to K+ to 1− q, i.e. corresponds to the input T = 0. Thus the
application point I tw of the tangent vector δI tw would pass the test for
zero input. What is left is to check that the expansion of I at q = ζ−1

lies in the tangent space to the cone Ltw at this point.
To this end, we perform in δI tw the appropriate change of notation:

ez/m = ζq, e−p = P , Q 7→ Qd, and obtain

Ĩζ :=
∑

d≥0

Qmd

(1− Pq)n(1− Pq2)n · · · (1− Pqmd)n
.

This should be understood as a Laurent series expansion near q = ζ−1

and compared with such expansion Iζ for

I =
∑

d≥0

Qd

(1− Pq)n(1− Pq2)n · · · (1− Pqd)n
.

We see that Qd-terms with d multiple to m agree, but all other terms

present in Iζ are missing in Ĩζ . Nevertheless we deduce from this that

Iζ lies in the same tangent space to Ltw as Ĩζ (i.e. in ∇ζT ). namely,
introduce the operator

D :=
m−1∑

δ=0

Qδ 1
∏δ

r=1(1− qQ∂Qqr)n
.

It should be understood as an expansion near q = ζ−1, and it is impor-
tant that within the given range 0 < r ≤ δ < m of the indices δ and
r the denominators have no zeroes at q = ζ−1, and thus D is a power
series in zQ∂Q (z = log q). Since tangent spaces to Ltw are D-modules

in Novikov’s variables, we conclude that DĨζ lies in the same tangent

space as Ĩζ . It remains to note that DĨζ coincides with Iζ .

What we have established about the series I means that the decom-
position of it into elementary fractions obeys the recursion relations
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of Section 7, with the leg contribution obtained by Adams’ opera-
tion Ψm from the arm contribution, corresponding to the input point
t(q) = [I]+ − (1 − q). Since the projection [. . . ]+ of I to K+ is 1 − q,
we find that t = 0 as required, and hence I = J (0). �

Remark. With the exception of the last property [I]+ = 1 − q, this
seemingly sophisticated argument is in fact general enough to work for
q-hypergeometric series IX that can be associated to any symplectic
toric manifoldX as follows. LetX be obtained by symplectic reduction
X = Cn//T k by the action of the subtorus T k ⊂ T n of the maximal
torus, the embedding being determined (in some basis of π1(T

k)) by
the integer matrix (mij), i = 1, . . . , k, j = 1, . . . , n (see [8, 12] for more

details). Let Qd = Qd1
1 · · ·Qdk

k represent a point in the Mori cone of X
in coordinates (d1, . . . , dk) on H2(X) corresponding to the chosen basis
of π1(T

k), and P−1
i , i = 1, . . . , k, denote the line bundles over X whose

1st Chern classes form the dual basis of H2(X). In this notation:

IX =
∑

d

Qd

n∏

j=1

∏0
r=−∞(1− qr

∏k
i=1 P

mij

i )
∏∑

i dimij

r=−∞ (1− qr
∏k

i=1 P
mij

i )
.

The property [IX ]+ = 1 − q, however, does not hold unless X is a
product of complex projective spaces. It would be interesting to find
out if nevertheless IX ∈ LX .

The above computation will also work for the series IX corresponding
to projective complete intersection described in the theorem. However,
there is a catch here, related to the fact that cohomology and K-theory
of X may not be entirely describable in terms of the ambient projec-
tive space, and thus the information gained about IX won’t yet allow
to make a legitimate application of our Quantum HRR Theorem. More
specifically, our computation would only be concerned with the prop-
erties of ν∗(IX) expressed in terms of ν∗(I

fake), and the latter may not
even lie on Lfake.
In order to bypass the difficulty, we introduce a model of quantum

K-theory of a supermanifold ΠE, interpolating between those of X
and CP n−1. Let E be the total space of the sum of the line bundles
over CP n−1 of degrees l1, . . . , lk, while Π indicates the fiberwise parity
change. By definition, genus-0 moduli spaces of stable maps to ΠE are
the same as to CP n−1, but the virtual structure sheaf is changed, by
tensoring the structure sheaf Ovir

0,r,d with the S1-equivariant K-theoretic
Euler class of the bundle E0,r,d (i.e. the Koszul complex of the dual,
E∗

0,r,d). Here E0,r,d stands for the bundle π∗ ev
∗E whose fiber over a

stable map f : Σ → CP n−1 is H0(Σ, f ∗E). The circle S1 is made
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to act by multiplication by unitary scalars fiberwise on E, and hence
on E0,r,d. Respectively, correlators of quantum K-theory of ΠE take
values in the representation ring C[S1] = C[Λ,Λ−1]. Their algebraic-
geometrical meaning (instead of holomorphic Euler characteristics of a
sheaf) is the trace of S1 on the sheaf cohomology. The ring K0(ΠE)
coincides withK0(CP n−1)⊗C[S1], and is equipped with the K-theoretic
Poincaré pairing

(Φ,Φ′)ΠE = −ResP=1Φ(P )Φ
′(P )

∏k
j=1(1− P ljΛ)

(1− P )n
dP

P
.

This pairing becomes non-degenerate if division by 1 − Λ is allowed.
After this localization, the resulting quantum K-theory of the super-
manifold ΠE satisfies all the axioms of genus-0 quantum K-theory.
Furthermore, the Quantum HRR Theorem of Section 6 and its proof

given in Sections 7 and 8 work verbatim for true quantum K-theory of
ΠE.10

Thus, applying the same technology as in the case of X = CP n−1, we
establish that under the numerical assumptions of Theorem, we have
JΠE(0) = IΠE, where

IΠE := (1− q)
∑

d≥0

Qd

∏k
j=1

∏ljd
r=1(1− P ljΛqr)

∏d
r=1(1− Pqr)n

.

Here are a few formulas that elucidate this claim:

J H
ΠE(0) = −z

∑

d≥0

Qd

∏k
j=1

∏ljd
r=1(λ+ ljp− rz)

∏d
r=1(p− rz)n

,

where λ is the 1st Chern class of the universal S1-bundle Λ−1 (i.e.
ch(Λ) = e−λ);

Ĩζ :=
∑

d≥0

Qmd

∏k
j=1

∏mljd
r=1 (1− ΛP ljqr)

∏md
r=1(1− Pqr)n

;

D :=
m−1∑

δ=0

Qδ

∏k
j=1

∏ljδ
r=1(1− ΛqljQ∂Qqr)

∏δ
r=1(1− qQ∂Qqr)n

.

Once the equality JΠE(0) = IΠE is proved, to establish the equality
ν∗JX(0) = IX , it remains to notice that for all s ∈ Z

(ν∗P s,JX(0))X = (P s,JΠE(0))ΠE |Λ=1.

10Note that we are not using any geometric fixed point localization with respect
to S1, so that all moduli spaces, Kawasaki strata, etc. remain the same, and only
the meaning and values of the correlators are modified appropriately.
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Indeed, when X is given in CP n−1 by a section of E, the moduli space
X0,r,d is given in (CP n−1)0,r,d by the corresponding section of the bundle
E0,r,d, and (according to [21, 22]) the virtual structure sheaf of X0,r,d is
described in K0((CP n−1)0,r,d) by tensoring the virtual structure sheaf
of (CP n−1)0,r,d with the K-theoretic Euler class of E0,r,d, albeit, the
non-equivariant one, and hence the specialization to Λ = 1.
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