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Foreword

To the student:

The present text consists of 130 pages of lecture notes, including numerous
pictures and exercises, for a one-semester course in Linear Algebra and Differential
Equations. The notes are reasonably self-contained. In particular, prior knowledge
of Multivariable Calculus is not required. Calculators are of little use. Intelligent,
hands-on reading is expected instead.

A typical page of the text contains several definitions. Wherever you see a word
typeset in the font Sans Serif, it is a new term and the sentence is the definition.

A large portion of the text represents Examples. However, numerical illus-
trations or sample solutions to homework problems are rare among them. The
examples are there because they are part of the theory, and familiarity with each
one of them is crucial for understanding the material. Should you feel the need to
see numbers instead of letters, you are welcome to substitute your favorite ones.

The notes are written in a concise, economical style, so do not be misled by
the total size of the text: you can find there more material than you can think of.
If you notice that reading a typical page takes less than an hour, it is a clear sign
that your reading skills may need further polishing. Ask your instructor to give
you some hints. Perhaps they will sound like this:

“Have you found out how the first sentence in a section implies the next one,
the third one — follows from the second one, and so on?.. Have you checked that
the statement of the theorem does not contradict the examples you keep in mind?..
Having done with this, try exercises ... Do not give up a problem before you are
sure you know exact meaning of all technical terms it involves ... To make sure,
write down their definitions in complete sentences ... ”

If nothing helps, you are probably reading the wrong half of this Foreword.

To the instructor:

The lecture notes correspond to the course “Linear Algebra and Differential
Equations” taught to sophomore students at UC Berkeley. We accept the currently
acting syllabus as an outer constraint and borrow from the official textbooks two
examples, 1 but otherwise we stay rather far from conventional routes.

In particular, at least half of the time (Chapters 1 and 2) is spent to present the
entire agenda of linear algebra and its applications in the 2D environment; Gaussian
elimination occupies a visible but supporting position (section 3.4); abstract vector

1“Competing species” from Boyce – DiPrima’s Elementary Differential Equations and

Boundary Value Problems and “Error-correcting codes” from Elementary Linear Algebra with

Applications by R. Hill
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viii FOREWORD

spaces intervene only in the review section 3.7. Our eye is constantly kept on why?,
and very few facts 2 are stated and discussed without proof.

The notes were conceived with somewhat greater esteem for the subject, the
teacher and the student than is traditionally anticipated. We hope that mathemat-
ics, when it bears some content, can be appreciated and eventually understood. We
wish the reader to find some evidence in favor of this conjecture.

2The fundamental theorem of algebra, the uniqueness and existence theorem for solutions
of ordinary differential equations, the Fourier convergence theorem and the higher-dimensional

Jordan normal form theorem.



CHAPTER 1

Geometry on the Plane
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2 1. GEOMETRY ON THE PLANE

1.1. Vectors

Vectors is a mathematical abstraction for quantities, such as forces and veloci-
ties in physics, which are characterized by their magnitude and direction.

1.1.1. Definitions. A directed segment ~AB on the plane is specified by an

ordered pair of points — the tail A and the head B. Two directed segments ~AB

and ~CD are said to represent the same vector if they are obtained from one another
by translation. In other words, the lines AB and CD must be parallel, the lengths
|AB| and |CD| must be equal, and the segments must point out the same of the
two possible directions.

A trip from A to B followed by a trip from B to C results in a trip from A to C.
This observation motivates the following definition of the vector sum w = v + u of

two vectors v and u: if ~AB represents v and ~BC represents u then ~AC represents
their sum w.

The vector 3v = v + v + v has the same direction as v but is 3 times longer.
Generalizing this example one arrives at the following definition of the multiplication
of a vector by a scalar: given a vector v and a real number α, the result of their
multiplication is a vector, denoted αv, which has the same direction as v but is α
times longer. The last phrase calls for comments since it is literally true only for
α > 1. If 0 < α < 1, being “α times longer” actually means “shorter”. If α < 0,
the direction of α is in fact opposite to the direction of v. Finally, 0v = 0 is the

zero vector represented by directed segments ~AA of zero length.
Combining the operations of vector addition and multiplication by scalars we

can form expressions αu + βv + ... + γw which are called linear combinations of
vectors u,v, ...,w with coefficients α, β, ..., γ. Linear combinations will regularly
occur throughout the course.

1.1.2. Inner product. Metric concepts of elementary Euclidean geometry,
such as lengths and angles, can be conveniently encoded by the operation of inner
product of vectors (also known as scalar product or dot-product). Given two vectors
u and v of lengths |u| and |v| and making the angle θ to each other, their inner
product is a number defined by the formula:

〈u,v〉 = |u| |v| cos θ.

It is clear from the definition that
(a) the inner product is symmetric: 〈u,v〉 = 〈v,u〉,
(b) non-zero vectors have positive inner squares 〈u,u〉 = |u|2
(c) the angle θ is recovered form the inner products via

cos θ =
〈u,v〉

〈u,u〉1/2〈v,v〉1/2
.

We will see soon that (even though it is not obvious from the definition) the
inner product also has the following nice algebraic properties called bilinearity:

〈αu + βv,w〉 = α〈u,w〉+ β〈v,w〉
〈w, αu + βv〉 = α〈w,u〉+ β〈w,v〉.
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Exercises 1.1.1.

(a) A mass m rests on an reclined plane
making the angle π/6 to the horizontal direc-

tion. Find the forces of friction and reaction by
which the surface acts on the mass.

(b) A ferry capable of making 5 mph shut-
tles across a river of width 0.2 mi with a strong

current of 3 mph. How long does each round
trip take?

(c) Let ABCD be a parallelogram. Prove

the vector equality ~AC = ~AB + ~AD and derive

the commutativity of the vector sum: u + v =
v + u.

(d) Examine the picture that looks like the
projection of a 3D-cube to the plane and prove

associativity of the vector sum: (u + v) + w =
u + (v + w).

(e) Three medians of a triangle ABC in-
tersect at one point M called the barycenter of

the triangle. Let O be any point on the plane.
Prove the vector equality

~OM =
1

3
( ~OA+ ~OB + ~OC).

(f) Three points A, B,C revolve clockwise
with the same angular velocity along three cir-

cles (of possibly different radii) centered at there
different points OA,OB,OC . Show that the tra-

jectory of the barycenter of the triangleABC is
a circle and find its center.

(g) Given a triangle ABC, we construct a
new triangle A′B′C′ in such a way that A′ is

centrally symmetric to A with respect to the
center B, B′ — symmetric to B with respect

to C, C′ — symmetric to C with respect to
A, and then erase the original triangle. Recon-

struct ABC from A′B′C′ by straightedge and
compass.

Exercises 1.1.2.
(a) Prove the Cauchy – Schwartz inequal-

ity 〈u,v〉2 ≤ 〈u,u〉〈v,v〉. In which cases does
the inequality turn into equality? Deduce the

triangle inequality

|u + v| ≤ |u| + |v|.
(b) Compute the inner product 〈 ~AB, ~BC〉

if ABC is a regular triangle inscribed into a unit

circle.

(c) Express the inner product 〈u,v〉 in

terms of the lengths |u|, |v|, |u + v| of the two

vectors and of their sum.
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Example. Given a triangle ABC, let us denote by u and v the vectors repre-

sented by the directed segments ~AB and ~AC and use properties of the inner product

in order to compute the length |BC|. Notice that the segment ~BC represents v−u.
We have:

|BC|2 = 〈v − u,v− u〉 = 〈v,v〉 + 〈u,u〉 − 2〈u,v〉
= |AC|2 + |AB|2 − 2|AB| |AC| cos θ.

This is the famous “cosine theorem” from trigonometry. If the vectors u and v are
perpendicular, that is θ = π/2, then 〈u,v〉 = 0, and the cosine formula turns into
the Pythagorean theorem.

Vectors with the inner product 〈u,v〉 = 0 are called orthogonal. Orthogonality
of vectors means that either the angle between the vectors is π/2 or at least one of
the vectors is zero (in which case the angle is not defined).

1.1.3. Coordinates. One introduces a Cartesian coordinate system on the
Euclidean plane by choosing the origin O and specifying directions of two perpen-

dicular coordinate axes. A point U on the plane determines the vector ~OU called
the radius-vector of the point with respect to the origin. Vice versa, any vector u

on the plane can be represented by a directed segment ~OU with the tail O. Thus
u is unambiguously specified by the coordinates (u1, u2) of the head U which are
called the coordinates of the vector. According to a convention that has become
standard in mathematics (and is very awkward for typesetting), vectors are writ-

ten by columns of their coordinates: u =

[

u1

u2

]

. Notice that the same vector may

have different coordinates in a different coordinate system.
The operations of vector sum, multiplication by scalars and the inner product

have the following simple coordinate expressions:

u + v =

[

u1 + v1
u2 + v2

]

, αu =

[

αu1

αu2

]

, 〈u,v〉 = u1v1 + u2v2.

The first formula means that coordinates of the vertex W of the parallelogram
OUWV are sums of the corresponding coordinates of U and V . This should be
clear from congruence of the triangles OUU ′ and VWW ′ on the picture. The
second formula follows from similarity of the triangles OUU ′ and OV V ′. In order
to prove the coordinate formula for the inner product, we denote by φ and ψ the
angles the vectors u and v make with the positive direction of the 1-st axis and use
u1 = |u| cosφ, u2 = |u| sinφ, v1 = |v| cosψ, v2 = |v| sinψ. We find

u1v1 + u2v2 = |u| |v|(cosφ cosψ + sinφ sinψ) = |u| |v| cos(φ− ψ)

due to the addition formula in trigonometry. It remains to notice that the angle θ
between v and u equals φ− ψ.
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Now we are ready to check the bilinearity property of the inner product by a
straightforward computation:

〈αu,w〉 = (αu1)w1 + (αu2)w2 = α(u1w1 + u2w2) = α〈u,w〉,

〈u + v,w〉 = (u1 + v1)w1 + (u2 + v2)w2 = (u1w1 + u2w2) + (v1w1 + v2w2)

= 〈u,w〉+ 〈v,w〉.

The unit coordinate vectors e1 =

[

1
0

]

, e2 =

[

0
1

]

are said to form an or-

thonormal basis of the plane. The term “orthonormal” refers to the orthogonality
of the vectors (〈e1, e2〉 = 0) and their unit length (〈e1, e1〉 = 〈e2, e2〉 = 1) while
“basis” refers to the following property: any vector u is uniquely written as a linear
combination of e1, e2,

u = u1e1 + u2e2 = u1

[

1
0

]

+ u2

[

0
1

]

=

[

u1

u2

]

.

f

f

2

1

u

More general coordinate systems on the plane are obtained by picking any two
non-proportional vectors f1, f2 on the role of a basis. Given such f1, f2, any vector
u is uniquely written as a linear combination u = u1f1 + u2f2 (the picture shows

how). The column

[

u1

u2

]

is taken on the role of coordinates of u in the basis

f1, f2. Addition of vectors and multiplication by scalars is described by the same
component-wise formulas as before (say, w = u+v = (u1f1+u2f2)+(v1f1+v2f2) =
(u1 + v1)f1 + (u2 + v2)f2 which means that w1 = u1 + v1, w2 = u2 + v2). However,
the inner product formula takes on a more general form:

〈u,v〉 = au1v1 + bu1v2 + bu2v1 + cu2v2,

where a = 〈f1, f1〉, b = 〈f1, f2〉, c = 〈f2, f2〉.
Exercises 1.1.3.
(a) Check the formula for the inner product in a general basis f1, f2.

(b) Let A1A2A3A4A5A6 be the regular hexagon inscribed into the unit circle centered at the

origin O and such that ~OA1 = e1. Find coordinates of all vertices of the hexagon. Take f1 = ~OA2

and f2 = ~OA6 on the role of a new basis and compute coordinates of all the vertices with respect

to this basis. Find the coordinate formula for the inner product in the basis f1, f2.
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(c) Let

»

a
b

–

and

»

c
d

–

be Cartesian coordinates of A and B. Prove that the area of the

triangle OAB equals the absolute value of (ad− bc)/2.

1.2. Analytical geometry

Multivariable Calculus of functions in two variables relies on basic properties of
linear and quadratic functions studied in Analytical Geometry and Linear Algebra.

1.2.1. Linear functions and straight lines. The trajectory of a point mov-
ing with a constant velocity v is a straight line. The radius-vector of the point at
the moment t is x(t) = x(0) + tv where x(0) specifies the initial position of the
point at t = 0. This is the vector form of the following parametric equations of the
line:

x1(t) = x1(0) + v1t
x2(t) = x2(0) + v2t

.

Eliminating t from these formulas we arrive at a (non-parametric) equation of the
line which has the form

a1x1 + a2x2 = b

where at least one of the coefficients a1, a2 is non-zero. The left hand side of this
equation is a linear function ( or linear form) of the two variables (x1, x2):

y = a1x1 + a2x2.

The graph of a function f in two variables is the surface in the 3-space given by the
equation y = f(x1 , x2). The graph of a linear form is a plane passing through the
origin (x1, x2, y) = (0, 0, 0). The curves on the plane where a given function of two
variables is constant, are called levels or level curves of the function. The zero level
of the linear form is the line a1x1 + a2x2 = 0 passing through the origin, and the
other levels are lines parallel to it.

Exercises 1.2.1.

(a) Recall the definition of parallel lines and prove the last statement of 1.2.1.
(b) Find all equations of the form a1x1 +a2x2 = b which describe a line passing through the

origin.
(c) Which equations of the form a1x1 + a2x2 = b describe the same lines?

(d) Prove that the lines ax1 + bx2 = e and cx1 + dx2 = f intersect at one point if and only
if ad− bc 6= 0.

(e) Two ships cruising in the ocean with velocity vectors (8,6) and (−6, 8) are located at the
points (0,0) and (100,0) at the moment t = 0. Find the intersection point of their trajectories.

Will the ships collide?
(f) A friend of mine working as a manager in a leading company in Silicon Valley claims that

he is the only person around him who knows how to write an equations of the line passing through
two points with given coordinates. Prove that you deserve a manager position in Silicon Valley:

derive the damn thing!
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1.2.2. Conic sections. According to Kepler’s law of planetary motion, plan-
ets, asteroids and comets revolve along elliptic orbits with the Sun at one of the
foci. Ellipses are examples of conic sections — plane curves introduced by ancient
Greeks as intersections of the plane with a circular conic surface in the 3-space.
The picture shows how to locate the two foci of the ellipse: place into the conic
“cup” two balls of such sizes that they touch the cutting plane from opposite sides.
Then the tangency points of the balls with the plane are the foci of the ellipse. This
picture also demonstrates the ancient proof of the fact that the ellipse consists of
all points on the plane with a fixed sum of distances to the foci.

F

F

F -  foci of the conical section are the

    tangency points of the secting 

    plane with the balls

From the viewpoint of Descartes’ analytical geometry conic sections are plane
curves given by quadratic equations

ax2
1 + 2bx1x2 + cx2

2 + dx1 + ex2 + f = 0.

Indeed, the circular cone in the 3 space can be described by the equation x2
1 +x2

2 =
x2

3. Substituting the equation x3 = α1x1 +α2x2 +β of the cutting plane we obtain
a quadratic relation among x1 and x2 (which in fact describes the projection of the
conic section to the horizontal plane). We list model examples of quadratic curves.

Examples. (a) x2
1 + x2

2 = 1 is the unit circle centered at the origin.
(b) The normal ellipse with semiaxes a1 > a2 > 0 is described by the equation

x2
1

a2
1

+
x2

2

a2
2

= 1.

The ellipse intersects the coordinate axes at the points (±a1, 0) and (0,±a2) and
is obtained from the unit circle by stretching a1 times in the direction of x1 and
a2 times in the direction of x2. The coordinate lines are the symmetry axes of the
normal ellipse and are often called its principal axes.
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Exercises 1.2.2.

(a) Sketch the ellipses

x2
1 + 4x2

2 = 1,

x2
1 + x2

2/4 = 1,

x2
1 + x2

2/4 = 4

“to scale”.
(b) Sketch the level curves

4x2
1 − x2

2 = 1, 0, −1.

(c) Find the area enclosed by the ellipse
with semi-axes a and b.

(d) Using the fact that all tangent seg-
ments from a given point to a sphere have equal

lengths, prove that an elliptic conic section con-
sists of points on the intersecting plane with a

constant sum of distances to the foci.

(e) Figure out which sections of the circu-
lar cone are hyperbolas and parabolas. Prove

that the hyperbolas consist of points on the in-
tersecting plane with a constant difference of

distances to the foci.
(f) Prove that the parabola y = x2/4a con-

sists of points equidistant to the focus (x, y) =
(0, a) and to the line y = −a called the directrix.

(g) Compute coordinates of the foci for the
normal ellipses and hyperbolas.

(h) Quadratic curves have special “optical”
properties. Show that the light rays originating

from a focus of an ellipse and reflected in the
ellipse as in the mirror will focus at the other fo-

cus. Formulate and prove corresponding prop-
erties of hyperbolas and parabolas.
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(c) The curve xy = 1 is the graph of the function y = 1/x and is called a hyper-
bola. Changing the coordinates by x = (x1 − x2), y = (x1 + x2) we transform the
equation to x2

1 − x2
2 = 1. Stretching in the directions of x1 and x2 with coefficients

a1 and a2 produce the normal hyperbola with “semiaxes a1, a2”:

x2
1

a2
1

− x2
2

a2
2

= 1.

It is symmetric with respect to the coordinate axes.
(d) The normal parabolas are given by the equations x2 = x2

1/4a.
(e) Some quadratic equations are degenerate and describe two straight lines

(intersecting, parallel or even coinciding), or a point, or the whole plane, or the
empty set.

We will show that any non-degenerate quadratic curve is either an ellipse, or
hyperbola, or parabola and is given by one of the normal equations in a suitable
Cartesian coordinate system on the plane.

1.2.3. Quadratic forms. The quadratic function on the left hand side of the
quadratic equation is the sum of a constant, a linear form and a quadratic form,
ax2

1 +2bx1x2 + cx2
2. The classification of quadratic curves is based on the following

theorem about quadratic forms. A line through the origin is called a principal axis
of a given quadratic form, if the quadratic form is symmetric with respect to this
line, that is takes on the same values at any two symmetric points. For example,
changes of signs of x1 or x2 do not change the quadratic form ax2

1 + cx2
2, which

shows that the coordinate axes are principal for this quadratic form. The inner
square 〈x,x〉 = x2

1 + x2
2 is symmetric about any line through the origin and thus

has infinitely many principal axes.

Principal  axes
and level curves

Theorem (Principal Axis Theorem).
Any quadratic form in two variables has two perpendicular principal axes.

As we have just seen, the theorem follows from

Theorem ′ (Orthogonal Diagonalization Theorem).
Any quadratic form in a suitable Cartesian coordinate system takes on AX2

1 +
CX2

2 .



1.2. ANALYTICAL GEOMETRY 11

In its turn Orthogonal Diagonalization Theorem follows from Principal Axis
Theorem so that they are actually equivalent. Indeed, choose an orthonormal basis
f1, f2 in such a way that f1 has a principal direction for the quadratic form in
question. Written in the new coordinate system as AX2

1 + 2BX1X2 + CX2
2 , the

quadratic form is symmetric with respect to the changeX1 7→ −X1 by the definition
of a principal axis. Thus B = 0.

By the way, this argument shows that the axis perpendicular to a principal one
is principal automatically.

Examples. (a) The quadratic form xy is symmetric about the line x = y. Take

f1 = (1/
√

2, 1/
√

2) and the perpendicular unit vector f2 = (1/
√

2,−1/
√

2) on the

role of the new orthonormal basis. In the new coordinates X1 = (x + y)/
√

2 and

X2 = (x− y)/
√

2 the quadratic form xy reads X2
1/2 −X2

2/2.
The next two examples show how to bring equations of quadratic curves to

one of the normal forms assuming that the quadratic part of the equation has been
already transformed to principal axes by a rotation of the coordinate axes and is
therefore equal to ax2

1 + cx2
2.

(b) If both coefficients a, c in the equation ax2
1 + cx2

2 + dx1 + ex2 + f = 0
are zeroes, the equation is not really quadratic and determines a straight line. If,
say, c = 0 but a 6= 0, we can transform the equation to aX2

1 + ex2 + F = 0 by
“completing the square” a(x1 + d/2a)2 − d2/4a + ex2 + f and shifting the origin:
X1 = x1 + d/2a. If e = 0, the resulting equation defines a degenerate curve —
two parallel lines ( when a and F have opposite signs), or the empty set (when the
sign is the same), or a double line (when F = 0). If e 6= 0, we arrive at one of the
normal equations X2 = −aX2

1/e for parabolas by putting X2 = x2 + F/e.
(c) If both a, c are non-zero, we transform the equation to the form aX2

1 +
cX2

2 +F = 0 by completing squares in each of the variables. If F = 0 the equation
defines one point (when a and c have the same sign) or a pair of lines meeting at
the origin (when the signs are opposite). If F 6= 0, the curve is either one of the
normal ellipses and hyperbolas, depending on the signs of a and c, or it is empty
(when a, c, F > 0).

We see that transformations of quadratic equations to the normal forms involve
rotations of coordinate systems, shift of the origin and division of the equation
by a non-zero constant. It remains unclear at this point how to find the rotated
coordinate system in which a given quadratic form takes on AX2

1 +CX2
2 . A routine

procedure for doing this is contained in the proof of the Orthogonal Diagonalization
Theorem which we postpone till 1.5.2. Meanwhile we give another application of
the theorem: by rescaling the coordinates X1, X2 we make the coefficients A,C
equal to +1,−1 or 0 and arrive at the following classification of quadratic forms up
to change of variables:

Corollary. Any quadratic form in a suitable (not necessarily Cartesian) coor-
dinate system assumes one of the normal forms:

X2
1 +X2

2 , X
2
1 −X2

2 , −X2
1 −X2

2 , X2
1 , −X2

2 , 0.
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Exercises 1.2.3.

(a) Using the symmetry of the following quadratic forms about the line x = y, transform
them to principal axes and find semiaxes of the corresponding curve Q(x, y) = 1 if the curve is an

ellipse or hyperbola:

Q = x2 − xy + y2, Q = x2 − 2xy + y2, Q = x2 − 4xy + y2.

(b) Find the place of the quadratic curve x2
1 − 4x2

2 = x1 − 4x2 in the classification.

(c) Sketch the graphs of the functions (x2
1 + x2

2) (paraboloid) and x2
1 − x2

2 (saddle).

(d) Study the sign of the quadratic form ax2
1 + 2bx1x2 + cx2

2 restricted to the lines x2 = kx1

through the origin. Show that the quadratic form has the minimum at the origin if ac − b2 > 0

and a, c > 0, the maximum — if ac − b2 > 0 and a, c < 0, and has no minimum/maximum if
ac− b2 < 0. What happens if ac− b2 = 0? Deduce that the sign of ac− b2 does not depend on

the choice of the coordinate system.
(e) Which of the following curves are ellipses and which are hyperbolas?

x2
1 + 4x1x2 = 1, x2

1 + 2x1x2 + 4x2
2 = 1, x2

1 + 4x1x2 + 4x2
2 = 1, x2

1 + 6x1x2 + 4x2
2 = 1

1.3. Linear transformations and matrices

Reflections about a point, about a line, stretching along coordinate axes we
encountered recently are examples of linear transformations on the plane.

1.3.1. Linearity. The definition of linear transformations fits the abstract
concept of a function from a setX to a set Y : a function is a rule that to each element
of the set X associates exactly one element of the set Y . A linear transformation
T on the plane is a rule that to each vector x associates the vector Tx on the
same plane in such a way that linear combinations of any vectors x,y with any
coefficients α, β are transformed to linear combinations with the same coefficients:

T (αx + βy) = αTx + βTy.

This property is called linearity and means geometrically that proportional vectors
are transformed to proportional vectors (in particular, the origin is preserved: T0 =
0), and parallelograms are transformed to parallelograms.

Example. (a) The rotation about the origin is a linear transformation since
it transforms parallelograms to parallelograms and proportional vectors — to pro-
portional ones. Similarly, the simultaneous reflection of all vectors about a line
passing through the origin is a linear transformation too. Notice that these linear
transformations preserve lengths of all vectors and angles between them and thus
preserve the inner product:

〈Tx, Ty〉 = 〈x,y〉 for all x,y.

Linear transformations which preserve inner products of all vectors are called or-
thogonal transformations. We will see soon that any orthogonal transformation on
the plane is either a rotation about the origin or the reflection about a line through
the origin. Notice that reflections reverse the clockwise direction of the unit circle
to the counterclockwise direction, while rotations preserve the directions.
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Any linear transformation is uniquely determined by the way it acts on a basis.
Indeed, if f1, f2 is a basis, and the vectors T f1, T f2 are given, the vector Tx =
T (x1f1 + x2f2) = x1T f1 + x2T f2 is determined by the coordinates (x1, x2) of the
vector x. Vice versa, if f1, f2 is a basis, we can pick any two vectors v1,v2 on
the role of T f1 and T f2 and then extend the rule T to all vectors by the formula
Tx = x1v1 + x2v2. It is not hard to check (do it!) that the transformation T
defined by this rule satisfies the linearity condition.

In coordinates, the linear transformation is given by two linear forms:

x′1 = ax1 + bx2

x′2 = cx1 + dx2
.

The columns

[

a
c

]

and

[

b
d

]

here represent the vectors T f1 and T f2 in the basis

f1, f2, and

[

x′1
x′2

]

are the coordinates of x′ = Tx. A standard notational con-

vention suggests to combine the columns into a single 2 × 2-matrix of the linear
transformation T with respect to the basis:

T =

[

a b
c d

]

.

We will usually denote the matrix of a linear transformation by the same capital
letter as the linear transformation itself. (This notation assumes however that
it is clear from the context what basis we have in mind, since the same linear
transformation may have different matrices in different bases.)

Examples. (b) The rotation Tθ through the angle θ (counted counterclock-
wise) transforms the orthonormal basis e1, e2 to (cos θ)e1 + (sin θ)e2, −(sin θ)e1 +
(cos θ)e2 . Thus the matrix of the rotation is

Tθ =

[

cos θ − sin θ
sin θ cos θ

]

.

(c) A similar computation shows that the reflection Rθ about the axis making
the angle θ/2 with the positive direction of the x1-axis has the matrix

Rθ =

[

cos θ sin θ
sin θ − cos θ

]

.

(d) Any orthogonal transformation T transforms the orthonormal basis e1, e2

to the basis Te1, Te2 which must be orthonormal too. A unit vector Te1 is written
as (cos θ)e1 + (sin θ)e2 for a suitable θ. The choice of Te1 leaves two (opposite)
choices for the unit vector Te2 perpendicular to Te1: ±((sin θ)e1 − (cos θ)e2). One
of the choices gives rise to the reflection matrix, the other — to the rotation matrix.
Thus, any orthogonal transformation on the plane is either rotation or reflection.

1.3.2. Composition. Composition of abstract functions g : X → Y and f :
Y → Z is defined as a function h : X → Z by consecutive application of the two
rules: h(x) = f(g(x)). Composition of two linear transformations from the plane
to itself is a linear transformation too:

A(B(αx + βy)) = A(αB(x) + βB(y)) = αA(B(x)) + βA(B(y)).
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Exercises 1.3.1.

(a) Is SID a function? and SSN?
(b) Describe geometrically the linear trans-

formations defined by the 8 matrices
»

±1 0
0 ±1

–

,

»

0 ±1
±1 0

–

.

(c) Find the matrix of a linear transforma-

tion which transforms the hyperbola x1x2 = 1
to x2

1 − x2
2 = 1.

(d) Find matrices of all linear transforma-
tion which transform the unit square

0 ≤ x1, x2 ≤ 1

to the parallelogram

0 ≤ x1 + x2, x2 ≤ 1.

(e) Find 6 linear transformations which
preserve the equilateral triangle ABC centered

at the origin and with ~OA = e1. Find matri-
ces of these linear transformations in the basis

e1,e2 and in the basis ~OB, ~OC.
(f) Which of the transformations from Ex-

ercises (a – d) are orthogonal? rotations? re-
flections?

(g) Prove that any linear transformation
which preserves length of all vectors also pre-

serves angles between any vectors and is there-
fore orthogonal.
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Example. (a) The composition of two different reflections is a rotation. Indeed,
it preserves inner products (since each reflection does) and restores the direction
of the unit circle (since each reflection reverses it). Compositions of two rotations
are rotations, and reflections composed with rotations in any order give rise to
reflections (why?)

Composing linear transformations

x′′1 = a11x
′
1 + a12x

′
2

x′′2 = a21x
′
1 + a22x

′
2
,
x′1 = b11x1 + b12x2

x′2 = b21x1 + b22x2

we arrive, after a straightforward computation, to a linear transformation with the
matrix

[

c11 c12

c21 c22

]

=

[

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]

.

The matrix C is called the matrix product of the matrices A and B and is denoted
AB. In order to discover a pattern in the above formulas, let us introduce the

product of a row [a1, a2] with a column

[

b1
b2

]

to be a number defined as a1b1 +a2b2.

The subscripts of the matrix entries cij of a matrix C specify the row i and the
column j where the entry is located. In these notations the entry cij of the product
matrix C = AB equals the product of the i-th row of A with the j-th column of B.

Example. (b) The product DA (respectively AD) of the diagonal matrix D =
[

d1 0
0 d2

]

with A =

[

a11 a12

a21 a22

]

is obtained by multiplication by d1 and d2 of

the rows of A (respectively — of the columns of A). In particular, DA = AD only
if either the matrix A is diagonal too, or D is a scalar matrix (that is d1 = d2).

We see that matrix multiplication is not commutative: it can happen that AB 6=
BA. Now — the good news: matrix multiplication is associative: (AB)C = A(BC).
This follows, without any further computations, from associativity of composition
of abstract functions: given h : W → X, g : X → Y, f : Y → Z, composing f with
the result of composition of g and h yields exactly the same rule as composing the
result of composition of f and g with h: z = f(g(h(w))).

W X Y Z
h g f

g h

f g

Exercises 1.3.2.
(a) Carry out the straightforward computation which yields the component-wise formulas for

composition of linear transformations.
(b) Work out the details of Example (b).

(c) Show that TθR0 = Rθ and R0Tθ = R−θ by a matrix computation and by a geometrical
argument.

(d) Find the point on the coordinate plane which is obtained from the point (x1, x2) = (1,2)
by clockwise rotation about the origin through π/3 followed by the reflection about the line x1 = 0.

(e) Compute the matrix product TφTψ and derive the addition formulas for cos(φ+ ψ) and
sin(φ+ ψ).

(f) Show that RφRψ = Tφ−ψ.
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1.3.3. Inverses. Two functions, g : X → Y and f : Y → X, are called inverse
to each other if f(g(x)) = x and g(f(y)) = y for any x and y. In other words, each
of them “undoes” what the other one does. For instance, the rotation through −θ
is inverse to the rotation through θ, a reflection is its own inverse.

X Y
g

f

If the inverse to a linear transformation x′ = Ax exists, then A is called in-
vertible, and the inverse transformation is denoted x = A−1x′ and is also lin-
ear (why?) By the very definition the relationship between A and A−1 reads:
AA−1x = x = A−1Ax for any vector x. The identity linear transformation x′ = x
has the same matrix in any basis which is called the identity matrix:

I =

[

1 0
0 1

]

.

Thus, in matrix terms we have AA−1 = I = A−1A. It is easy to check the following
explicit formula for inverse 2 × 2-matrices:

A =

[

a b
c d

]

, A−1 =
1

ad− bc

[

d −b
−c a

]

.

Thus, the matrix A is invertible if ad−bc 6= 0. If ad−bc = 0 then A is not invertible.
Indeed, according to Exercise 1.1.3(c) if ad = bc then the vectors Ae1 and Ae2 are
proportional, while the vectors e1, e2 are not! Since linear transformations send
proportional vectors to proportional they cannot undo the “damage” done by A.

Remark. The concept of invertible linear transformations is very similar to that
of changes of coordinates. Indeed, let

x1 = ax′1 + bx′2
x2 = cx′1 + dx′2

be the expression of coordinates x1, x2 in the basis e1, e2 as linear functions of

new coordinates x′1, x
′
2 in a basis f1, f2. The matrix

[

a b
c d

]

here is called the

transition matrix from the old coordinate system to the new one. The vectors f1, f2

have coordinates

[

x′1
x′2

]

=

[

1
0

]

and

[

0
1

]

in the basis f1, f2. We see therefore

that the columns

[

a
c

]

,

[

b
d

]

of the transition matrix represent the vectors f1, f2

in the old basis e1, e2.
1 Respectively, the new coordinates x′1, x

′
2 of a vector x are

expressed via the old coordinates x1, x2 by means of the inverse transition matrix.
Here we are talking about the same vectors expressed by different coordinates

in different coordinate systems. On the other hand, we can use the same matrix
[

a b
c d

]

in order to define a linear transformation which transforms the vector

with coordinates x1, x2 to a new vector with coordinates ax1 + bx2, cx1 + dx2 in
the same coordinate system.

We illustrate the use of both languages in the following example.

1In particular, f1, f2 form a basis (and therefore the formulas x1 = ax′1 +bx′2, x2 = cx′1 +dx′2
define a change of coordinates) if and only if ad− bc 6= 0.
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Examples. (a) According to the Orthogonal Diagonalization Theorem an ellipse
with the equation ax2

1 + 2bx1x2 + cx2
2 = 1 is given by one of the normal equations

X2
1/a

2
1 +X2

2 /a
2
2 = 1 in a rotated coordinate system. We could rephrase it this way:

any ellipse centered at the origin is obtained from a normal one by a rotation.
(b) Any invertible linear transformation A on the plane can be represented as

the composition ST : an orthogonal transformation T followed by stretching S in
the directions of two perpendicular axes (with possibly different coefficients a1, a2).
Indeed, A transforms the unit circle to an ellipse which in its turn can obtained
from the unit circle by stretching S in the directions of the principal axes. Thus,
the composition T = S−1A preserves the unit circle and hence — lengths of all
vectors. Due to Exercise 1.1.2(c) it preserves inner products of all vectors. Thus T
is an orthogonal transformation.

Exercises 1.3.3.
(a) Verify the formula for inverse matrices. Check that the formula applied to Tθ and Rθ

yields T−θ and respectively Rθ.
(b) Find a non-invertible matrix (such matrices are called singular) whose all entries are

non-zero. Find the range of the linear transformation defined by your matrix.
(c) For invertible A and B, prove that (AB)−1 = B−1A−1.

(d) For any integer n and invertible A put An = A...A (n times) if n is positive, An =
A−1...A−1 (|n| times) if n is negative and A0 = I. Prove that for any m,n we have AmAn =

Am+n.
(e) Compute the powers An for those n for which the power is defined, if A is diagonal,

A =

»

0 1

0 0

–

,

»

1 0

0 0

–

,

»

1 1

0 1

–

.

(f) Rotate the normal ellipse with semiaxes 2, 1 through π/4 counter-clockwise about the

origin.
(g) Prove that any invertible linear transformation can be represented as the composition

TS: stretching (possibly with different coefficients) in the directions of two perpendicular lines
followed by an orthogonal transformation.

1.3.4. Matrix Zoo. I. It is convenient to consider rows and columns as 1×2-
and 2× 1 matrices representing linear forms and, respectively, vectors. The matrix

product ax of the row [a1, a2] with the column

[

x1

x2

]

is then the “1 × 1-matrix”

a1x1 + a2x2, that is a number equal to the value of the linear form a on the vector
x. Also, the action of a linear transformation T on the vector x is described in
coordinates as the matrix product x′ = Tx of a 2 × 2-matrix T with the 2 × 1-
matrix x.

II. Matriices and matrix operations come handy in various situations not always
directly connected to linear transformations.

Linear systems.
A system of 2 linear equations in 2 unknowns can be rewritten as a single

matrix equation Ax = b:

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

⇔
[

a11 a12

a21 a22

] [

x1

x2

]

=

[

b1
b2

]

.

Coordinate transformations.
A change of coordinates x = Ax′ (where A is the transition matrix) acts on a

linear form ax as a(Ax′) = (aA)x′ (associativity of matrix multiplication!) Thus
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the matrix product formula aA of the 1 × 2-matrix with the 2 × 2-matrix shows
how the change of coordinates affects the coefficients of the linear form.

Similarly, if T is the matrix of a linear transformation y = Tx, and x =
Ax′, y = Ay′ is the transformation of both vectors to a new coordinate system,
then y′ = A−1TAx′. The rule T 7→ A−1TA shows therefore how the change
of coordinates affects matrices of linear transformation. The transformations of
matrices by T 7→ A−1TA are called similarity transformations, and the matrices T
and A−1TA are called similar.

Quadratic forms.
A quadratic form ax2

1 + 2bx1x2 + cx2
2 can be written in terms of the inner

product and the matrix product as 〈x, Qx〉 where Q is the square matrix

[

a b
b c

]

symmetric about the principal diagonal.
More generally, let A be a linear transformation. The function of two vectors

〈u, Av〉 = a11u1v1 + a12u1v2 + a21u2v1 + a22u2v2

is called a bilinear form for it has the same bilinearity property as the inner product.
Indeed, due to linearity of A and bilinearity of the inner product, we have

〈u, A(αv + βw)〉 = 〈u, αAv + βAw〉 = α〈u, Av〉 + β〈u, Aw〉,
and the other identity is even easier (check it!)

Interchanging the roles of u and v we conclude that

〈v, Au〉 = 〈Au,v〉 = 〈u, Atv〉, where At =

[

a11 a21

a12 a22

]

.

The matrix At is called transposed to A and is obtained from A by reflection about
the diagonal. We see that the bilinear form is symmetric if and only if the matrix
A is symmetric: At = A.

III. Several formulas involving transposition.
(a) (AB)t = BtAt. Indeed,

〈(AB)tu,v〉 = 〈u, ABv〉 = 〈Atu, Bv〉 = 〈BtAtu,v〉
for any u,v. This is possible only if (AB)t and BtAt is the same matrix. If this
(correct!) proof does not convince you, check the formula by a direct computation.

(b) The definition of an orthogonal transformation U means that 〈x,y〉 =
〈Ux, Uy〉 = 〈x, U tUy〉 for any x,y. Thus matrices of orthogonal transformations
in an orthonormal basis are characterized by the property U tU = I or, equivalently,
U−1 = U t. Matrices with this property are called orthogonal matrices.

(c) The change of coordinates x = Ax′ transforms the quadratic form 〈x, Qx〉 to
〈Ax′, QAx′〉 = 〈x′, AtQAx′〉. The transformation rule Q 7→ AtQA shows therefore
how the coefficients of quadratic forms are affected by changes of coordinates.

(d) We see from above examples that symmetric matrices and transposition
occur in connection with quadratic or bilinear forms written in terms of inner
products. Finally, the inner product itself can be expressed as the matrix product
〈u,v〉 = utv if the transposition ut of the column u is understood as the corre-
sponding row: ut = [u1, u2].

IV. We give several reformulations of the Orthogonal Diagonalization Theorem
(yet to be proved!) Due to III (c) it has the following matrix formulation:
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The symmetric matrix Q of a quadratic form can be transformed into the di-

agonal matrix

[

A 0
0 C

]

by the transformation Q 7→ U tQU where U is a suitable

orthogonal matrix.
Notice that U tQU = U−1QU since the matrix U is orthogonal. Thus symmetric

matrices of quadratic forms are transformed by changes of Cartesian coordinates in
the same way as matrices of linear transformations. We can rephrase the Orthogonal
Diagonalization Theorem this way:

If a linear transformation has a symmetric matrix Q in an orthonormal basis,
then it has a diagonal matrix in a suitable new orthonormal basis.

A diagonal matrix defines the linear transformation of stretching (with possibly
different coefficients) in the directions of the coordinate axes. 2 Therefore we have
one more reformulation of the Orthogonal Diagonalization Theorem:

A linear transformation defined by a symmetric matrix is a stretch in the di-
rections of two perpendicular lines.

V. Matrix arithmetics.
Sums of vectors are vectors. Sums of linear functions are linear functions. Sums

of quadratic forms are quadratic forms. Sums of linear transformations, defined by
the formula (A + B)x = Ax + Bx, are linear transformations (check it!) Matrix
expressions for these operations give rise to component-wise addition of matrices of
the same format — columns with columns, rows with rows, square matrices with
square matrices:

[

a11 a12

a21 a22

]

+

[

b11 b12

b21 b22

]

=

[

a11 + b11 a12 + b12

a21 + b21 a22 + b22

]

.

The arithmetics of matrix addition and multiplication is similar to that of numbers:
the distributive laws (A + B)C = AC + BC, C(A + B) = CA + CB hold true
(whenever formats of the matrices allow to form the expressions). What is not true
in general, is that AB = BA. For instance, (A−B)(A+B) = A2 +AB−BA−B2 ,
but it is equal to the usual A2 −B2 only if the matrices A and B commute.

Exercises. 1.3.4.
(a) Rotate the line x1 + 2x2 = 3 through π/4 counter-clockwise about the origin.

(b) Find the matrix of the reflection R0 in the rotated basis f1 = Tθe1, f2 = Tθe2.
(c) Which of the following are bilinear forms? symmetric bilinear forms?

(u1 + u2)(v1 − v2), (u1 + v1)(u2 + v2), (u1 + u2)(v1 + v2)

(d) Prove that (At)t = A.

(e) Compress the ellipse 5x2
1+6x1x2+5x2

2 = 2 two times in the direction of the line x1+x2 = 0.

(f) Check that T tθ = T−1
θ , Rtθ = R−1

θ .
(g) Which diagonal matrices are similar to each other?

(h) Represent the linear transformations defined by the following symmetric matrices as
stretching in the directions of two perpendicular lines:

»

1 0
0 0

–

,

»

1 0
0 −1

–

,

»

0 1
1 0

–

,

»

1 1
1 1

–

.

(i) Let P (x) be a polynomial in one variable. For similar matrices A and B, prove that P (A)
and P (B) are also similar.

2Of course, this description is literally true only if the stretching coefficients are greater than
1. “Stretching k times” involves also a flip when k is negative, is actually shrinking if |k| < 1, and

for k = 0 makes the plane collapse to a line. We use the word stretch in this generalized sense.
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1.4. Complex numbers

The quadratic equation x2 − 1 = 0 in one unknown has two solutions x = ±1.
The equation x2+1 = 0 has no solutions at all. For the sake of justice one introduces
a new number i, the imaginary unit, such that i2 = −1, and thus x = ±i become
two solutions to the equation.

1.4.1. Definitions and geometrical interpretations. Complex numbers
are defined as ordered pairs of real numbers written in the form z = a + bi. The
real numbers a and b are called the real part and imaginary part of the complex
number z and denoted a = Re z and b = Im z. The sum of two complex numbers z
and w = c+ di is defined by z +w = (a + c) + (b + d)i while the definition of the
product is to comply with the relation i2 = −1:

zw = ac+ bdi2 + adi+ bci = (ac− bd) + (ad+ bc)i.

Operations of addition and multiplication of complex numbers enjoy the same prop-
erties as those of real numbers. In particular, the product is commutative and
associative.

The complex number z̄ = a− bi is called complex conjugate to z = a+ bi. The
formula z +w = z̄ + w̄ is obvious, and zw = z̄w̄ is due to the fact that ī = −i has
exactly the same property as i: (−i)2 = −1.

The product zz̄ = a2 + b2 (check this formula!) is real and positive unless
z = 0 + 0i = 0. This shows that

1

z
=

z̄

zz̄
=

a

a2 + b2
− b

a2 + b2
i,

and hence the division by z is well-defined for any non-zero complex number z.
The non-negative real number |z| =

√
zz̄ =

√
a2 + b2 is called the absolute value

of z. The absolute value function has the same multiplicative property as in the case
of real numbers: |zw| =

√
zwzw =

√
zz̄ww̄ = |z| · |w|. It actually coincides with

the absolute value of real numbers when applied to complex numbers with zero
imaginary part: |a+ 0i| = |a|.

To a complex number z = a+bi, we can associate the radius-vector z = ae1+be2

on the coordinate plane. The unit coordinate vectors e1 and e2 represent therefore
the complex numbers 1 and i. The coordinate axes are called respectively the real
and imaginary axes of the plane. Addition of complex numbers coincides with the
operation of vector sum.

The absolute value function has the geometrical meaning of the distance to
the origin: |z| = 〈z, z〉1/2, while zz̄ is the inner square. In particular, the triangle
inequality |z + w| ≤ |z| + |w| holds true. Complex numbers of unit absolute value
|z| = 1 form the unit circle centered at the origin.

The operation of complex conjugation acts on the vectors z as the reflection
about the real axis.

In order to describe a geometrical meaning of complex multiplication, let us
write the vector representing a non-zero complex number z in the polar (or trigono-
metric) form z = ru where r = |z| is a positive real number, and u = z/|z| =
cos θ + i sin θ has the absolute value 1. Here θ = arg z, called the argument of the
complex number z, is the angle that the vector z makes with the positive direction
of the real axis.
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Consider the linear transformation on the plane defined as multiplication of
all complex numbers by a given complex number z. It is the composition of the
multiplication by r and by u. The geometrical meaning of multiplication by r is
clear: it makes all vectors r times longer. The multiplication by u is described by
the following formulas

Re [(cos θ+ i sin θ)(x1 + ix2)] = (cos θ)x1 − (sin θ)x2

Im [(cos θ + i sin θ)(x1 + ix2)] = (sin θ)x1 + (cos θ)x2
.

This is a linear transformation with the matrix

[

cos θ − sin θ
sin θ cos θ

]

. The multiplica-

tion by u is therefore the rotation through the angle θ. Thus the multiplication by
z is the composition of the dilation by |z| and rotation through arg z.

In other words, the product operation of complex numbers sums their argu-
ments and multiplies absolute values:

|zw| = |z| · |w|, arg zw = arg z + argw modulo 2π.

1.4.2. The exponential function. Consider the series

1 + z +
z2

2
+
z3

6
+ ...+

zn

n!
+ ...

Applying the ratio test for convergence of infinite series,

|z
n(n− 1)!

n!zn−1
| =

|z|
n

→ 0 < 1 as n → ∞,

we conclude that the series converges absolutely for any complex number z. The
sum of the series is a complex number denoted exp z, and the rule z 7→ exp z defines
the exponential function of the complex variable z.

The exponential function transforms sums to products:

exp(z + w) = (exp z)(expw) for any complex z and w.

Indeed, due to the binomial formula, we have

(z + w)n =

n
∑

k=0

(

n

k

)

zkwn−k = n!
∑

k+l=n

zk

k!

wl

l!
.

Rearranging the sum over all n as a double sum over k and l we get
∞

∑

n=0

(z +w)n

n!
=

∞
∑

k=0

∞
∑

l=0

zk

k!

wl

l!
= (

∞
∑

k=0

zk

k!
)(

∞
∑

l=0

wl

l!
).

The exponentials of complex conjugated numbers are conjugated:

exp z̄ =
∑ z̄n

n!
=

∑ zn

n!
= exp z.

In particular, on the real axis the exponential function is real and coincides with the
usual real exponential function expx = ex where e = 1+1/2+1/6+ ...+1/n!+ ...=
exp(1). Extending this notation to complex numbers we can rewrite the above
properties of ez = exp z as ez+w = ezew, ez̄ = ez .

On the imaginary axis, w = eiy satisfies ww̄ = e0 = 1 and hence |eiy| = 1. The
way the imaginary axis is mapped by the exponential function to the unit circle is
described by the following Euler’s formula:

eiθ = cos θ+ i sin θ.
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1

-i

i z

z

z
-1

z

w

zw

10

0

π

0

2π
z - plane

w = exp (z)

w - plane

e x

x0

1

Exercises 1.4.1.

(a) Compute (1 + i)/(3− 2i),
(cosπ/3 + i sin π/3)−1.

(b) Show that z−1 is a real proportional to
z̄ and find the proportionality coefficient.

(c) Find all z satisfying |z−1| = |z−2| = 1.
(d) Sketch the solution set to the follow-

ing system of inequalities: |z + 1| ≤ 1, |z| ≤
1, Re(iz) ≤ 0.

(e) Compute (
√

3+i
2

)100.

(f) Prove that the linear transformationde-

fined by the matrix

»

a −b
b a

–

is the composi-

tion of multiplication by
√
a2 + b2 and a rota-

tion.
(g) Let z1, ..., z5 form a regular pentagon

inscribed into the unit circle |z| = 1. Prove
that z1 + ...+ z5 = 0.

Exercises 1.4.2.
(a) Prove the “Fundamental Formula of

Mathematics”: eπi + 1 = 0.
(b) Represent 1−i and 1−

√
3i in the polar

form reiθ .
(c) Show that cos θ = (eiθ + e−iθ)/2 and

sin θ = (eiθ − e−iθ)/2i.
(d) Compute the real and imaginary part

of the product eiφeiψ using the Euler formula
and deduce the addition formulas for cos(φ+ψ)

and sin(φ+ ψ).
(e) Express Re e3iθ , Im e3iθ in terms of

Re eiθ and Im eiθ and deduce the triple argu-
ment formulas for cos 3θ and sin 3θ.

(f) Prove the binomial formula:

(z +w)n =
n

X

k=0

“n

k

”

zkwn−k ,

where
`n
k

´

= n!/k!(n− k)!.
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It is proved by comparison of eiθ =
∑

(iθ)n/n! with Taylor series for cos θ and sin θ:

Re eiθ = 1 − θ2

2
+ θ4

24
− ... =

∑

(−1)k θ2k

(2k)!
= cos θ

Im eiθ = θ− θ3

6 + θ5

120 − ... =
∑

(−1)k θ2k+1

(2k+1)! = sin θ
.

Thus θ 7→ eiθ is the usual parameterization of the unit circle by the angular co-
ordinate θ. In particular, e2πi = 1 and therefore the exponential function is 2πi-
periodic: ez+2πi = eze2πi = ez . Using Euler’s formula we can rewrite the polar
form of a non-zero complex number w as

w = |w|ei arg w.

1.4.3. The Fundamental Theorem of Algebra. A quadratic polynomial
z2 + pz + q has two roots

z± =
−p ±

√

p2 − 4q

2
regardless of the sign of the discriminant p2−4q, if we allow the roots to be complex
and take in account multiplicity. Namely, if p2 − 4q = 0, z2 + pz + q = (z + p/2)2

and therefore the single root z = −p/2 has multiplicity two. If p2 − 4q < 0 the

roots are complex conjugated with Re z± = −p/2, Im z± = ±
√

|p2 − 4q|/2. The
Fundamental Theorem of Algebra shows that not only the justice has been restored,
but that any degree n polynomial has n complex roots, possibly — multiple.

Theorem. A degree n polynomial P (z) = zn + a1z
n−1 + ...+ an−1z + an with

complex coefficients a1, ..., an factors as

P (z) = (z − z1)
m1 ...(z − zr)

mr .

Here z1, ..., zr are complex roots of P (z) of multiplicities m1, ..., mr, and m1 + ...+
mr = n.

This is one of a few theorems we intend to use in this course without proof.
We illustrate it with the following examples.

Examples. (a) The equation z2 = w, where w = reiθ is a complex number
written in the polar form, has two solutions±√

w = ±√
reiθ/2. Thus the formula for

roots of quadratic polynomials makes sense even if the coefficients p, q are complex.
(b) The complex numbers 1, i,−1,−i are the roots of the polynomial z4 − 1 =

(z2 − 1)(z2 + 1) = (z − 1)(z + 1)(z − i)(z + i).
(c) There are n complex n-th roots of unity. Namely, if z = reiθ satisfies zn = 1

then rneinθ = 1 and therefore r = 1 and nθ = 2πk, k = 0,±1,±2, .... Thus

z = e2πik/n = cos
2πk

n
+ i sin

2πk

n
, k = 0, 1, 2, ..., n− 1.

For instance, if n = 3, the roots are 1 and

e±2πi/3 = cos
2π

3
± i sin

2π

3
= −1

2
± i

√
3

2
.

As illustrated by the previous two examples, if the coefficients a1, ..., an of the
polynomial P (z) are real numbers, that is āi = ai, yet the roots can be non-real,
but then they come in complex conjugated pairs. This follows from equality of two

factorizations for P (z̄) = zn + ā1z
n−1 + ...+ ān = P (z):

(z − z̄1)
m1 ...(z − z̄r)

mr = (z − z1)
m1 ...(z − zr)

mr .
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These equal products can differ only by the order of the factors, and thus for
each non-real root of P (z) the complex conjugate is also a root and of the same
multiplicity.

Expanding the product

(z − z1)...(z − zn) = zn − (z1 + ...+ zn)zn−1 + ...+ (−1)nz1...zn

we can express coefficients a1, ..., an of the polynomial via the roots z1, ..., zn (here
multiple roots should be repeated according to their multiplicities). In particular,
the sum and the product of roots are

z1 + ...+ zn = −a1, z1...zn = (−1)nan.

These formulas generalize the Vieta theorem for roots of quadratic polynomials:
z+ + z− = −p, z+z− = q.

Exercises 1.4.3.
(a) Solve the quadratic equations:

z2 − 6z + 5 = 0, z2 − iz + 1 = 0, z2 − 2(1 + i)z + 2i = 0, z2 − 2z +
√

3i = 0.

(b) Solve the equations

z3 + 8 = 0, z3 + i = 0, z4 + 4z2 + 4 = 0, z4 − 2z2 + 4 = 0, z6 + 1 = 0.

(c) Prove that for any n > 1 the sum of all n-th roots of unity equals zero.

(d) Prove that any polynomial with real coefficients factors into a product of linear and
quadratic polynomials with real coefficients.

5-th roots of unity

e

e

e e

1

2π
4π

−4π −2πi/5

i/5

i/5

i/5



26 1. GEOMETRY ON THE PLANE

1.5. Eigenvalues

In this section, after some preparation, we prove the Orthogonal Diagonaliza-
tion Theorem and classify linear transformations on the plane up to changes of
coordinates.

1.5.1. Linear systems. Consider the system of two linear equations in two
unknowns:

a11z1 + a12z2 = b1
a21z1 + a22z2 = b2

.

In order to solve it, let us multiply the 1-st equation by a22 and subtract the 2-nd
equation multiplied by a12. We get

(a11a22 − a12a21) z1 = b1a22 − b2a12.

Similarly, subtracting the 1-st equation multiplied by a21 from the 2-nd equation
multiplied by a11 we find

(a11a22 − a12a21) z2 = a11b2 − a21b1.

We conclude that if a11a22 − a12a21 6= 0, the system has a unique solution

z1 =
b1a22 − b2a12

a11a22 − a12a21
, z2 =

a11b2 − a21b1
a11a22 − a12a21

.

In the next section we will point out a better way to comprehend these formulas
than just by memorizing the order of subscripts. Meanwhile our point is that
the computation and the final formulas make sense even if the coefficients aij, bj
are complex numbers. In this case the solution (z1, z2) also consists of complex
numbers.

What happens when a11a22 − a12a21 = 0? If it is the case, then the lin-
ear functions a11z1 + a12z2 and a21z1 + a22z2 on the left hand side are propor-
tional. Indeed, the 2-nd function is proportional to the 1-st one with the coefficient
k = a21/a11 = a22/a12 (unless a11 = a12 = 0 in which case the 1-st function is pro-
portional to the 2-nd one with the coefficient 0). 3 The coefficient k is a complex
number if coefficients of the system are complex.

The answer to the question depends now on the right hand side: the system can
be inconsistent (if b1 and b2 are not in the same proportion) or have infinitely many
solutions. Leaving the analysis of all possible situations to the reader, we formulate
the answer in the special case of systems with zero right hand sides b1 = b2 = 0.
Such systems are called homogeneous and are always consistent since they have the
trivial solution (z1, z2) = (0, 0).

If a11a22−a12a21 6= 0, the homogeneous system has only the the trivial solution.
If a11a22−a12a21 = 0, then the homogeneous system has a non-trivial solution, and
any other solution is proportional to it, unless all the 4 coefficients are equal to
zero in which case any (z1, z2) is a solution. The proportionality coefficient here is
generally speaking a complex number too.

Systems of linear equations will arise throughout the course mainly as a tool
for solving various problems of linear algebra and carrying out coordinate compu-
tations.

3Notice that if only one of the coefficients a11, a12 vanishes, say a12 = 0, but a11 6= 0,
then the equality a11a22 = a12a21 = 0 shows that a22 = 0 and thus the 2-nd equation is still

proportional to the 1-st one with the coefficient k = a21/a11.
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Examples. (a) We have mentioned in Exercises 1.2.1 that solving a system
of two linear equations in two unknowns is interpreted geometrically as finding
common points of two lines on the plane.

(b) Another interpretation: representing a vector b =

[

b1
b2

]

as a linear combi-

nation b = z1a1 + z2a2 of the vectors a1 =

[

a11

a21

]

and a2 =

[

a12

a22

]

is equivalent

to finding a solution to the above system.
(c) Problem: Given a linear transformation A on the plane, find all non-zero

vectors v 6= 0 which are transformed to vectors proportional to them: Av = λv.
Such vectors are called eigenvectors of A and the proportionality coefficient λ is
called the corresponding eigenvalue. In the matrix form, we are looking for a number
λ such that the homogeneous system (λI −A)v = 0 of two linear equations in two
unknowns — the coordinates of v — has a non-trivial solution. As we know from
the above analysis, such a solution exists only if

(λ − a11)(λ− a22) − a12a21 = 0.

This equation in λ is called the characteristic equation of the matrix A. Thus we
first have to find the roots of the quadratic characteristic polynomial and then for
each root λ — to solve the homogeneous linear system (λI −A)v = 0.

(d) Let us carry out this plan for the reflection matrix Rθ. The characteristic
polynomial in question

(λ− cos θ)(λ + cos θ) − sin2 θ = λ2 − 1

has the roots λ± = ±1. For λ = 1 the homogeneous linear system reads

(1 − cos θ)v1 − (sin θ)v2 = 0
−(sin θ)v1 + (1 + cos θ)v2 = 0

.

Since 1 − cos θ = 2 sin2 θ
2
, 1 + cos θ = 2 cos2 θ

2
, sin θ = 2 sin θ

2
cos θ

2
, both equations

are actually proportional to (sin θ
2
)v1−(cos θ

2
)v2 = 0. We find v2 = (tan θ

2
)v1 where

v1 is arbitrary. Thus (v1, v2) = (1, tan θ
2
) is a non-trivial solution, and any other

solution is proportional to it. The result is not surprising: the symmetry line of
the reflection Rθ has the slope tan θ

2 and consists of vectors v satisfying Rθv = v,
that is — of eigenvectors with the eigenvalue λ = 1. The perpendicular line with
the slope tan(π

2
+ θ

2
) consists of the eigenvectors corresponding to λ = −1.

(e) In the case of the rotation Tθ the characteristic polynomial is

(λ − cos θ)2 + sin2 θ = λ2 − 2(cos θ)λ + 1.

The roots

λ± = cos θ ±
√

cos2 θ − 1 = cos θ ± i sin θ = e±iθ

are non-real if we assume that θ 6= πn. Thus rotations have no eigenvectors. This
is not surprising since rotations rotate directions of vectors. However we can solve
the homogeneous systems (λ± − Tθ)v = 0 for complex solutions:

(e±iθ − cos θ)v1 + (sin θ)v2 = 0 with sin θ 6= 0

yields v1 = ±iv2 since e±iθ − cos θ = ±i sin θ. The other equation −(sin θ)v1 +
(e±iθ − cos θ)v2 = 0 yields the same result since it is actually proportional to the
first one. We conclude that all rotations Tθ have the same complex eigenvectors
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— complex multiples of (v1, v2) = (i, 1) and (−i, 1) corresponding to the complex
eigenvalues eiθ and e−iθ respectively.

The last example suggests that in real geometry it might be useful, or even
necessary, to consider vectors with complex coordinates, matrices with complex
entries, etc. Even though such complex objects may have little pictorial sense,
the properties of algebraic operations with them — linear combinations of vectors,
products of matrices, etc. — are exactly the same as those for real objects. The
advantage of this point of view is due to the unifying power of the Fundamental
Theorem of Algebra. Example: Any square matrix A has complex eigenvectors.
Indeed, the characteristic polynomial has a complex root λ, hence the homogeneous
linear system (λI − A)v = 0 has a non-trivial solution v 6= 0, hence Av = λv.

Exercises 1.5.1.
Find eigenvalues and eigenvectors of the following matrices:

»

±1 0

0 ±1

–

,

»

0 ±1

±1 0

–

,

»

0 1

0 0

–

,

»

1 0

1 1

–

,

»

0 1

1 1

–

,

»

1 2

2 −2

–

,

»

1 1

4 −2

–

,

»

1 −1

−4 −1

–

,

»

0 1

−q −p

–

,

»

a b

0 c

–

.

1.5.2. Determinants. Definition. The number detA = a11a22 − a12a21 is
called the determinant of the square matrix A with the entries aij .

There following equality of numbers exhibits three styles of notation for deter-
minants:

detA = det

[

a11 a12

a21 a22

]

=

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

.

We have encountered determinants several times in various situations.

Examples. (a) Proportionality criterion for two vectors

[

a
c

]

and

[

b
d

]

or for

two linear forms ax1 + bx2 and cx1 + dx2 reads ad− bc = 0.
(b) A square matrix A is invertible if and only if detA 6= 0.
(c) Typical level curves of a quadratic form ax2

1 + 2bx1x2 + cx2
2 are ellipses if

the determinant

∣

∣

∣

∣

a b
b c

∣

∣

∣

∣

= ac− b2 is positive and are hyperbolas if it is negative

(see Exercise 1.2.3(d)).
(d) The formulas in 1.5.1 for solutions to linear systems can be rewritten in

terms of determinants as

z1 =

∣

∣

∣

∣

b1 a12

b2 a22

∣

∣

∣

∣

/

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

, z2 =

∣

∣

∣

∣

a11 b1
a21 b2

∣

∣

∣

∣

/

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

.

(e) The characteristic polynomial of a square matrix A has been defined in 1.5.1
as

det(λI −A) =

∣

∣

∣

∣

λ− a11 −a12

−a21 λ − a22

∣

∣

∣

∣

= λ2 − (trA)λ + detA,

where the trace trA = a11 + a22 of A is the notation for the sum of the diagonal
entries.

(f) According to Exercise 1.1.3(c) the determinant

∣

∣

∣

∣

u1 v1
u2 v2

∣

∣

∣

∣

equals the signed

area of the parallelogram with the vertices 0,u,u + v,v.

The most important property of determinants is their multiplicativity:
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The determinant of the product of two square matrices equals the product of
their determinants: detAB = (detA)(detB).

Is not hard to check the property by a straightforward computation with the
product of 2 × 2-matrices. We leave this computation as an exercise. When it is
done, many important corollaries follow immediately.

Examples. (g) detA−1 = (detA)−1. Indeed I = AA−1 implies 1 = det I =
(detA)(detA−1). In particular invertible matrices must have non-zero determi-
nants. The converse statement that matrices with non-zero determinants are in-
vertible is assured by the explicit formula for A−1 (given in 1.3.3) since the formula
makes sense whenever detA 6= 0.

(h) Similar matrices have the same characteristic polynomials. Indeed,

det(λI − A−1TA) = det(A−1(λI − T )A) = (detA−1) det(λI − T )(detA)
= det(λI − T )

.

This shows that the characteristic polynomial of T is not affected by changes of
coordinates and thus depends only on the linear transformation defined by T .

(i) In particular the trace and determinant of the matrix of a linear trans-
formation do not depend on the choice of the basis (while the matrix does). For
determinants, this invariance can be explained by the following coordinateless in-
terpretation: the number det T shows how the linear transformation affects signed
areas of parallelograms. Indeed, if columns of V represent two vectors u,v, then
columns of TV represent the vectors Tu, Tv. The signed area of the transformed
parallelogram is therefore proportional to the signed area of the original parallelo-
gram with the coefficient detT : det TV = (detT )(det V ).

(j) detTθ = 1, detRθ = −1. The fact that orthogonal transformations U have
detU = ±1 means geometrically that rotations and reflections preserve (unsigned)
areas. It also follows algebraically from U tU = I since transposed matrices obvi-
ously have equal determinants and therefore (detU)2 = 1.

(k) A change of coordinates x = Ax′ in a quadratic form transforms the sym-
metric matrix Q of the quadratic form to AtQA and therefore does not change
the sign of the determinant: detAtQA = (detAt)(detQ)(detA) = (detQ)(detA)2.
This explains why the sign of detQ distinguishes elliptic, hyperbolic and degenerate
cases of level curves: according to the Corollary in 1.2.3 any quadratic form can be
transformed to one the normal forms (elliptic: ±(x2

1 + x2
2), hyperbolic: x2

1 − x2
2, or

degenerate: x2
1, −x2

2, 0 ) whose matrices have respectively positive, negative and
zero determinants.

(l) Orthogonal changes of coordinates x = Ux′ affect the symmetric matrix
Q of a quadratic form by similarity transformations U tQU = U−1QU and hence
preserve the characteristic polynomial of Q. According to Orthogonal Diagonaliza-
tion Theorem the quadratic form can be transformed by such changes of coordi-
nates to one of the normal forms AX2

1 + CX2
2 with the characteristic polynomial

(λ − A)(λ − C). Thus the coefficients A,C in the normal form are roots of the
characteristic polynomial

∣

∣

∣

∣

λ − a −b
−b λ− c

∣

∣

∣

∣

= λ2 − (a + c)λ + (ac− b2).
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We complete this section with a proof of Orthogonal Diagonalization Theorem.
It has several reformulations (see Principal Axes Theorem in 1.2.2, Example 1.3.3(a)
and Section 1.3.4(IV )) equivalent to the following one:

For any symmetric matrix Q there exists an orthogonal matrix U such that
U−1QU is diagonal.

Proof. The discriminant of the characteristic polynomial of Q equals

(a + c)2 − 4(ac− b2) = a2 + 2ac+ c2 − 4ac+ 4b2 = (a− c)2 + 4b2

and is non-negative. This means that the characteristic polynomial of a symmetric
matrix has a real root λ1 and hence — a real eigenvector, a non-trivial solution to
the homogeneous linear system Qv1 = λ1v1. Let v2 be a non-zero vector orthogonal
to v1. Then

〈Qv2,v1〉 = 〈v2, Qv1〉 = 〈v2, λ1v1〉 = λ1〈v2,v1〉 = 0.

Thus Qv2 is also orthogonal to v1 and is therefore proportional to v2: Qv2 = λ2v2

with some real coefficient λ2. Normalizing the perpendicular eigenvectors v1 and
v2 to the unit length we get an orthonormal basis u1 = v1/|v1|, u2 = v2/|v2| of
eigenvectors. Let U denote the matrix whose columns represent u1 and u2. It is
orthogonal since

U tU =

[

ut
1u1 ut

1u2

ut
2u1 ut

2u2

]

=

[

1 0
0 1

]

.

The columns of QU represent λ1u1 and λ2u2. Thus QU = UΛ, where Λ =
[

λ1 0
0 λ2

]

is the diagonal matrix of eigenvalues, and hence U−1QU = Λ.

Exercises 1.5.2.

(a) Verify the multiplicative property of determinants.
(b) Give an example of two matrices which are not similar but have the same characteristic

polynomial.
(c) Show that tr(A+ B) = trA+ trB, tr(AB −BA) = 0.

(d) Find the intersection point of the lines 3x1 + 2x2 = 1 and x1 + 2x2 = 3. Find the
coordinates of the intersection point in the basis f1 = (1,3), f2 = (3,1).

(e) Find out which of the following quadratic curves is an ellipse and which is a hyperbola
and compute their semiaxes (that is the coefficients a1, a2 in the normal forms x2

1/a
2
1±x2

2/a
2
2 = 1):

2x2
1 + 3x1x2 + x2

2 = 1, 3x2
1 − 3x1x2 + x2

2 = 1.

(f) Following the procedure in the proof of the Orthogonal Diagonalization Theorem find

orthogonal matrices U which diagonalize the symmetric matrices
»

1 −1

−1 1

–

,

»

0 1

1 1

–

.

(g) Find a rotation that transforms the hyperbola x2
1 +4x1x2 −2x2

2 = 1 to one of the normal

ones.
(h) Show that the following ellipses are congruent and find a rotation which transforms the

first one to the other:

8x2
1 − 4x1x2 + 5x2

2 = 1, 6x2
1 + 2

√
6x1x2 + 7x2

2 = 1.

(i) Prove that symmetric matrices with the same characteristic polynomial are similar.
(j) Show that the surface given by the equation ac = b2 is a quadratic cone and divides the

a, b, c-space into 3 regions. Sketch the surface and point out the regions corresponding to the
quadratic forms ax2

1 +2bx1x2 + cx2
2 which have a minimum, a maximum, a saddle. Which points

in the picture correspond to the quadratic forms

x2
1 + x2

2, x2
1 − x2

2, −x2
1 − x2

2, x2
1, −x2

2, 0 ?
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1.5.3. Normal forms. A linear transformation on the line is a dilation x 7→
λx with some coefficient λ. In this sense a linear transformation T on the plane acts
on its eigenvectors in a one-dimensional fashion: Tv = λv. We study eigenvectors
of T in a hope to describe the action of T in one-dimensional terms.

Let λ+, λ− be the roots of the characteristic polynomial λ2 − (trT )λ + det T .

Case 1: λ+ and λ− are real and distinct. Then each of the homogeneous
linear systems (λ±I − T )v = 0 has a non-trivial real solution v±. The non-zero
eigenvectors v+ and v− are non-proportional to one another (since λ+ 6= λ−), hence
form a basis. Writing arbitrary vectors x as linear combination x = x+v+ + x−v−
we see that Tx = x+Tv+ + x−Tv− = λ+x+v+ + λ−x−v−. Thus the matrix of T

in the basis of the eigenvectors is

[

λ+ 0
0 λ−

]

, and the linear transformation acts

on the plane by stretching with coefficients λ± in the directions of the eigenvectors.

Case 2: λ± is a pair of complex conjugated numbers λ and λ̄. In particular
λ± are distinct. Let v 6= 0 be a complex eigenvector of the matrix T : Tv = λv.
Replacing all numbers in this equality by their complex conjugates we obtain Tv =
λ̄v. Since the matrix T is real we find that v is the eigenvector of T = T with the
eigenvalue λ̄. Thus T acts on vectors with complex coordinates in the basis v, v̄ of
complex conjugated eigenvectors as coordinate-wise multiplication by λ and λ̄.

Let us see what it means in purely real terms. Let v± be two real vectors
obtained as the real and imaginary parts of v: v+ = (v+v̄)/2, v− = (v−v̄)/2i. The
vectors v± are non-proportional to each other since v = v++iv− and v̄ = v+−iv−
are non-proportional as complex vectors. Let λ = a + ib = r(cos θ + i sin θ). We
have

Tv+ =
1

2
(λv + λ̄v̄) =

λ+ λ̄

2
v+ + i

λ − λ̄

2
v− = r cos θ v+ + r sin θ v−,

and similarly Tv− = −r sin θ v+ + r cos θ v−. The matrix of T in the basis v+,v−
is rTθ and thus the action of T in the corresponding coordinate system looks like
the complex multiplication by λ: composition of the rotation through argλ and the
dilation |λ| times.

Case 3: multiple root λ. The root is real (why?) If the homogeneous system
(λI − T )v = 0 is satisfied by any vector v then T = λI is the scalar matrix, and
T acts as the multiplication by λ. This sub-case fits the answer in Case 1 with the
only difference that the stretching coefficients λ± are equal.

Otherwise — all eigenvectors of T are proportional to one of them which we
denote v+. We have Tv+ = λv+ where v+ 6= 0. We claim that there exists a
vector v− non-proportional to v+ such that Tv− = λv− + v+.

Let us examine first the subcase λ = 0. The entire line containing v+ is then
transformed by T to 0. Since T 6= 0, the range of T is some line on the plane.
This line consists of eigenvectors of T , and therefore the must coincide with the
line containing v+. Thus v+ is in the range of T , and we can take on the role of
v− any vector such that Tv− = v+. In the basis v+,v− the linear transformation

acts as the coordinate shift v− 7→ v+ 7→ 0 and has the matrix

[

0 1
0 0

]

.

Let us consider now the general case. The characteristic polynomial of the
non-zero matrix T − λI has the double root 0. Constructing the basis v+,v− as
in the previous subcase we see that T − λI acts on v+,v− as the coordinate shift,
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and therefore T transforms v− to λv− + v+ and v+ — to λv+. Thus in this basis

T has the matrix

[

λ 1
0 λ

]

which is called the Jordan cell.

Examples. (a) When λ = 1 the matrix transforms rectangles aligned with
coordinate axes to parallelograms of the same altitude. This transformation T is
called shear.

(b) The transformation T with λ 6= 0 in the modified basis v1 = v+, v2 =

λv− has the matrix λ

[

1 1
0 1

]

which describes the composition of the shear with

multiplication by λ.

Let us summarize our results in both matrix and geometrical and forms.

Theorem (Similarity classification of matrices).
Any real 2 × 2-matrix is similar to exactly one of the following normal forms

[

λ+ 0
0 λ−

]

,

[

a −b
b a

]

,

[

λ 1
0 λ

]

,

with respectively real eigenvalues λ+ ≥ λ−, complex conjugate eigenvalues a±bi, b >
0, and a single real eigenvalue λ.

Theorem ′ (Classification of linear transformations).
Any linear transformation on the plane in a suitable coordinate system is a

coordinate-wise stretch (possibly with different coefficients) or a complex multipli-
cation by a + bi = reiθ, or the composition of multiplication by a real λ 6= 0 with
the shear, or the coordinate shift.

Remark. Generally speaking the basis vectors v± of the coordinate system
in question have no reason to be orthogonal. In particular, the directions of the
eigenvectors in Case 1 and the rotation angle θ in Case 2 may have little in common
with those in our description of invertible linear transformations as compositions
of stretching and rotation given in Example 1.3.3(b).

Examples. (c) The Hamilton – Cayley identity: any square matrix A satisfies its
characteristic equation, A2 − (trA)A+ (detA)I = 0.

Indeed, if A = Λ =

[

λ1 0
0 λ2

]

is diagonal, then the characteristic polynomia

equals (λ− λ1)(λ− λ2), and it is easy to check that (Λ − λ1I)(Λ − λ2I) = 0. This
equality remains true even if Λ is the Jordan cell with the eigenvalue λ1 = λ2.

In general A is similar to a (complex) diagonal matrix or a Jordan cell: A =
CΛC−1. For any polynomial P (λ) we have P (A) = CP (Λ)C−1 since Ak =
CΛC−1CΛC−1...ΛC−1 = CΛkC−1. In particular (A − λ1I)(A − λ2I) = C(Λ −
λ1I)(Λ − λ2I)C

−1 = 0. The Hamilton – Cayley identity follows now from the fact
that similar matrices A and Λ have the same characteristic polynomial.

(d) The matrix A =

[

1 −3
1 1

]

has the characteristic polynomial

λ2 − 2λ + 4. Thus A2 = 2A− 4I, A3 = 2A2 − 4A = −8I, and
A1999 = (−8)666A = 21998A.

(e) Linear recursive sequences and dynamical systems.
The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, ... is defined recursively by the rule

that each next term equals the sum of the previous two terms. More generally, a
sequence of numbers s0, s1, ..., sn, ... is called a linear recursive sequence (of order
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2, with coefficients p, q) if it satisfies sn+1 = psn + qsn−1 starting from n = 1.
Given two consecutive terms (sn−1, sn) of the sequence, the recursion relation allows
to find the next pair of consecutive terms (sn , sn+1) = (sn , qsn−1 + psn), then
— by the same formulas — the next pair, etc. We may think of the recursion
relation as a dynamical system: at each discrete count of time n = 1, 2, 3, ... the

current state of the system described by the vector xn−1 =

[

sn−1

sn

]

jumps to

xn =

[

sn

sn+1

]

. All possible states of the system (that is all possible pairs of

consecutive terms) form the plane called the phase plane of the dynamical system.
The dynamical system is linear in the sense that the new position is obtained
from the old one by the linear transformation xn = Axn−1 with the matrix A =
[

0 1
q p

]

. Trajectories (x0,x1, ...,xn, ...) of the dynamical system on the phase

plane are uniquely determined by the initial positions x0 since xn = Anx0 and,
if the matrix A is invertible, the “past history” is unambiguously recovered from
the current state too: x−n = A−nx0. Linear dynamical systems more general
than those corresponding to recursive sequences can be constructed by picking an
arbitrary invertible matrix on the role of A.

2 3 5 8 13-1-3

-1

-3

-8

2

3

5

8

13

21

-8

x

x

x

x

x

4

3

5

6

7

x-3

x-4

x
-5

x-6

x-7

Fibonacci
dynamical
system

Normal forms of linear transformations allow one to analyze the behavior of
trajectories in terms of eigenvectors and eigenvalues. The characteristic polynomial
of the matrix A equals λ2 − pλ− q. Suppose that the roots λ± of the characteristic
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polynomial are distinct, and v± are corresponding eigenvectors (real or complex).
Then the trajectory with the initial condition x0 = α+v+ +α−v− can be computed
as xn = Anx0 = α+λ

n
+v+ + α−λn

−v−. For instance, if the eigenvalues are real the
formula describes the behavior of the discrete trajectories on the phase plane as
superposition of stretching with the rate λ+ in the direction of the first eigenvector
and with the rate λ− in the direction of the second eigenvector.

By picking the first row in the above vector equality we obtain a “general
formula” for terms of the recursive sequence sn = a+λ

n
+ + a−λn

− where the co-
efficients a± are to be found from the initial condition (s0, s1). For example,
the Fibonacci sequence corresponds to the characteristic polynomial λ2 − λ − 1
with the roots λ± = (1 ±

√
5)/2. For n = 0, 1 we have a+ + a− = s0 =

0, a+λ+ + a−λ− = s1 = 1 and therefore a± = ±1/
√

5. Thus the n-th Fibonacci

number sn =
√

5
−1

2−n[(1 +
√

5)n − (1 −
√

5)n].

Exercises 1.5.3.

(a) Find the place of the linear transformation

»

2 −4

1 −2

–

in the classification.

(b) Show that the following matrices are similar:
»

1 1

4 −2

–

,

»

3 3

−2 −4

–

.

(c) Compute

»

3 −7
1 −2

–99

.

(d) Diagonalize the following matrices by real or complex similarity transformations:
»

1 0
1 −1

–

,

»

1 −1
2 −1

–

.

(e) For the following recursive sequences, (i) sketch the first 7 points on the phase plane and

(ii) find the general formula:

s0 = 0, s1 = 1, sn+1 = sn − sn−1, n > 1,

s0 = 0, s1 = 1, 2sn+1 = 3sn + 2sn−1, n > 1.

(f) Is there a 2 × 2-matrix A such that A 6= 0, but A2 = 0? A2 6= 0 but A3 = 0?
(g) Prove that any 2 × 2 matrices A,B,C satisfy the identity

(AB −BA)2C = C(AB − BA)2.

(h) Consider linear transformations defined by traceless matrices

»

a b

c −a

–

. In the a, b, c-

space, draw the sets formed by linear transformations with only one real eigenvalue, no real

eigenvalues, two real eigenvalues. Describe the partition of the a, b, c-space into similarity classes

of traceless matrices.

SAMPLE MIDTERM EXAM

1. Formulate the definition of an orthogonal transformation and prove that a
linear transformation preserving lengths of all vectors is orthogonal.

2. Find directions of principal axes of the quadratic form Q(x1, x2) = 5x2
1 +

12x1x2 + 10x2
2 and scketch the curve Q(x1, x2) = 13.

3. Is A similar to A1999, if

A =

[

2 −1
3 −2

]

, A =

[

2 −1
3 −1

]

, A =

[

3 −2
2 −1

]

?
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2.1. ODE

Ordinary Differential Equations are mathematical models of various processes
in astronomy, physics, chemistry, biology, ecology, etc. Similarly to the last example
of the previous chapter, ODEs can be considered as dynamical systems, but with
continuous time variable in contrast with the example where the time was discrete.

2.1.1. Existence and uniqueness of solutions. The equation of the form
ẋ = F (t, x) is called the first order ordinary differential equation. A solution to
this equation is a function x(t) on some interval of the time variable t which is
differentiable and satisfies dx(t)/dt = F (t, x(t)). In geometrical terms, the graph of
the solution x(t) on the plane with coordinates (t, x) should everywhere have the
slope prescribed by the given function F (t, x).

Examples. (a) The Fundamental Theorem of Calculus says that solutions to the
differential equation ẋ = f(t) where f is a given continuous function are obtained
by integration:

x(t) = C +

∫ t

t0

f(τ )dτ.

Substituting t = t0 we find that C = x(t0) has the meaning of the initial value of
the solution at the moment t0. The graphs of the solutions are obtained from each
other by vertical shifts and thus fill in the (t, x)-plane without intersections.

(b) Populational dynamics. We can interpret the differential equation ẋ = λx as
the following reproduction law for the amount x(t) of, say, some bacteria: the rate
of grows ẋ(t) is proportional to the current amount of bacteria with the coefficient
λ, the reproduction rate. The solutions to this equation have the form x(t) = Ceλt,
where C = x(0) is the initial population.

(c) Separable equations have the form dx/dt = f(t)/g(x) and are called so
because they are solved by the following separation of variables:

∫ x

x0

g(ξ)dξ =

∫ t

t0

f(τ )dτ.

For instance, the linear 1-st order homogeneous equation ẋ = λ(t)x with the varying
“reproduction rate” is separable:

∫ t

t0

λ(τ )dτ =

∫ x

x0

dξ

ξ
= ln |x(t)| − ln |x0|,

hence the solution with the initial value x(t0) = x0 is

x(t) = x0e
R

t

t0
λ(τ)dτ

.

(d) Populational explosion. The equation ẋ = x2 describes reproduction in the
population with the growth rate proportional to the number of pairs. Separating
the variables, we find

∫ t

dτ =

∫ x dξ

ξ2
= −1

x
+ const,

or x(t) = 1/(const−t). We conclude that any initial population x(0) = 1/const > 0
with this reproduction law explodes to infinity after a finite time interval.
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The previous example shows that even if the right hand side of the differential
equation is well-defined for all t, solutions do not have to exist on the entire time
interval. However, in all the above examples a solution with the initial value x(t0) =
x0 exists in some neighborhood of t0 and is unambiguously determined in this
neighborhood by this initial value. Geometrically this means that the domain of
F (t, x) is entirely filled in by the graphs of solutions without intersections. In fact
the examples illustrate a general theorem that guarantees existence and uniqueness
of solutions for systems of 1-st order ODEs

ẋ1 = F1(t, x1, ..., xn)
...

ẋn = Fn(t, x1, ..., xn)

under some mild hypotheses about the functions F1, ..., Fn.

Theorem. Suppose that the functions F1, ..., Fn have continuous derivatives
in each of the variables t, x1, ..., xn. Then a solution x(t) = (x1(t), ..., xn(t)) to the
ODE system with the initial value x(t0) = (x0

1, ..., x
0
n) exists on some time interval

containing t0, and any two solutions with the same initial values coincide (on the
common interval of their existence).

Remark. A precise meaning of the differentiability hypothesis for functions in
several variables will become more clear when we introduce partial derivatives. The
hypothesis is actually stronger than necessary and can be relaxed. However it is
not redundant, as the following counter-example shows.

Examples. (e) The differential equation ẋ3 = x2 has a solution x(t) = t3/27
satisfying the same initial condition x(0) = 0 as the identically zero solution x(t) =
0. In fact the equation has infinitely many solutions (find them!) with the same
initial value x(0) = 0. Of course, this does not contradict the theorem since the
equation does not have the form ẋ = F (t, x). However we can resolve it with respect
to ẋ and get the new equation ẋ = (x2)1/3 which has the required form and has
infinitely many solutions with the same initial value. Yet this does not contradict
the theorem since the function x2/3 is not differentiable at x = 0.

(f) A 2-nd order ODE ẍ = G(t, x, ẋ) can be transformed to a system of two 1-st
order ODEs by the following standard trick. Put x1 = x, x2 = ẋ. Then the system
ẋ1 = x2, ẋ2 = G(t, x1, x2) is equivalent to the original equation. Indeed, given a
solution x(t), the functions x1 = x(t), x2 = dx(t)/dt satisfy the system, and vice
versa, if (x1(t), x2(t)) is a solution to the system, then x = x1(t) satisfies the 2-nd
order equation. The existence and uniqueness theorem applies to the system and
says that if the function G(t, x1, x2) has continuous derivatives then a solution is
uniquely determined by the initial conditions (t0, x1(t0), x2(t0)) = (t0, x(t0), ẋ(t0)).
In particular, we see that in order to specify a solution of a 2-nd order equation it
is not sufficient to know the value x(t0) of the solution at the moment t0 but it is
also necessary to specify the velocity ẋ(t0) at this moment.

(g) Consider a pendulum of mass m suspended on a weightless rod of length
l and swinging without friction under the influence of the gravity force. Denote
by x(t) the angle the rod makes with the downward direction of the vertical axis
at the moment t. The component of the gravity force in the radial direction is
compensated by the tension of the rod, while the component of the gravity vector
in the tangential direction causes the pendulum to move along the circle of radius
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l. The motion obeys the Newton equation

mass × acceleration = force.

Accelerations are the 2-nd time derivatives of positions, and therefore the Newton
equation gives rise to 2-nd order ODEs whenever the force can be described as a
function of positions and/or velocities. In our situation it yields the equation of the
mathematical pendulum

mlẍ = −mg sinx , or ẍ = −g
l

sinx,

where g ≈ 9.8 m/sec2 is the gravitational acceleration. According to the existence
and uniqueness theorem the angular position x(0) and angular velocity ẋ(0) at
the moment t = 0 uniquely determine the future and the past motion x(t) of the
pendulum.

Assuming that the pendulum experiences air resistance proportional to the
angular velocity we arrive to the equation of the damped pendulum

ẍ = −kẋ− g

l
sinx.

t

x

x   = x
. 3

x l

m g

2

(h) Phase portraits. The equations of damped and undamped penduli have
the form ẍ = G(x, ẋ) with the right hand side independent on the time variable.
Such equations are called time independent or autonomous. If x(t) is a solution of an
autonomous equation (satisfying some initial condition at t = 0) then x(t−t0) is also
a solution of the same equation (satisfying the same initial condition at t = t0). Such
invariance to the time shift makes it convenient to represent solutions of autonomous
equations graphically on the phase plane with coordinates (x1, x2) = (x, ẋ). The
same applies to an autonomous system ẋ1 = F1(x1, x2), ẋ2 = F2(x1, x2). Namely,
at each point of the plane with the radius-vector x = (x1, x2) the right hand
side of the system specifies a vector F(x) with coordinates F1, F2. A solution
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x(t) = (x1(t), x2(t)) describes a point moving in the plane in such a way that the
velocity vector ẋ(t) at each moment coincides with the prescribed vector F(x):
ẋ(t) = F(x(t)). The solutions x(t) and x(t − t0), obtained from one another by
a time shift, describe the same trajectories on the plane. The uniqueness and
existence theorem guarantees that the trajectories described by solutions fill in
the plane entirely and that any two trajectories having a common point actually
coincide in which case the corresponding solutions differ only by a time shift. The
trajectories are called phase curves.

(i) A time dependent equation ẋ = F (t, x) can be always rewritten as a time-
independent system using the following simple (and almost useless) trick: put
x1 = t, x2 = x; then the system ẋ1 = 1, ẋ2 = F (x1, x2) is equivalent to the
original equation. In particular, the graphs of solutions in Examples (a,b,d,e) can
be considered as phase curves of the corresponding system.

Remark. We are not going to prove the existence and uniqueness theorem and
will seldom refer to it. It is useful however to have the theorem in mind and to
understand its fundamental role. The existence statement of the theorem is usu-
ally intuitively obvious in applications of ODEs to ecology, astronomy, physics,
etc. since it simply says that the process described by the differential equation
goes (populations change, planets revolve, penduli swing, water flows). Thus the
mathematical theorem here confirms our intuition and shows that the models based
on ODEs have a chance to describe real phenomena adequately. The uniqueness
statement of the theorem shows however that ODEs can describe only deterministic
phenomena, that is only those processes where the future and the past is unambigu-
ously determined by the current state of the system. For each particular system it
also tells us how many quantities is needed in order to specify a current state.

2.1.2. Linear ODE systems. It happens suspiciously often that empirical
“laws of nature” assume the form of linear proportionality. The Ohm Law says that
the electric current through a resistor is proportional to the voltage. According to
the Hooke Law, the length increment ∆l of an elastic rod or spring caused by a
stretching force is proportional to the force. The thermal expansion coefficient of
a given material describes dimensional variations caused by (and proportional to)
variations of temperature.

On the other hand, you can find in physics handbooks graphical representations
of thermal expansion coefficients as functions of the temperature (meaning that the
thermal expansion is not really proportional to the temperature variations). A re-
alistic dependence of the stretching force σ as a function of elongation ∆l up to
the breaking point of the rod is shown on the picture and is highly non-linear too.
The most of real phenomena is actually non-linear. However many of them can be
described by differentiable functions. The amazing persistence of linear proportion-
ality laws in fundamental sciences is probably due to the fact that differentiable
functions can be approximated by linear ones on sufficiently small intervals. Linear
differential equations usually arise as a result of such approximation.
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2

A phase curve of  x = F ( x )
.

σ

∆ l

’’ The Hooke Law  ’’

Exercises 2.1.1.

(a) Solve the following differential equa-
tions, sketch graphs of a few solutions for each

of them and find the solutions satisfying given
initial values:

ẋ+ tx = 0, x(0) = 1;

tẋ+ 4x = 0, x(1) = 1;

(t2 − 1)ẋ+ 2tx2 = 0, x(0) = 1;

ẋ cot t + x = 2, x(0) = −1;

ẋ = 3(x2)1/3, x(2) = 0;

tẋ+ x = x2, x(1) = 0.5.

(b) Consider the differential equation ẋ =

x(k − x), k > 0, as a model of reproduction
of salmon with the reproduction rate λ = k− x

decreasing as a function of the population x due
to limited food supply. Describe evolution of

the population x in time if the initial value 0 <
x(0) < k, x(0) = k, x(0) > k.

(c) The population of salmon from Prob-
lem (b) is now subject to harvesting with a

constant quota c. Study the populational dy-
namics described by the differential equation

ẋ = x(k − x) − c. Find the limit of the pop-
ulation x(t) when t → ∞. For which values c of

the harvest quota the population will extinct?
survive? Find the quota c which maximizes the

harvest in a long-term fishery?
(d) For the pendulum equation ẍ+sinx =

0, prove the energy conservation law: if x(t) is a

solution, then

E =
ẋ2

2
− cosx(t)

does not depend on t. For solutions with the
energy E = −1,−1/2,0,1/2,1,2, find the max-

imal magnitude x of oscillations and the velocity
ẋ at the moment when the pendulum passes the

position x = 0. Sketch the phase curves on the
phase plane with coordinatesx, ẋ corresponding

to solutions with these energies. Which of the
solutions are periodic?
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Example. (a) Using the approximation sinx ≈ x valid for small |x| we ar-
rive to the equation of the harmonic oscillator describing small oscillations of the
mathematical pendulum near the equilibrium x = 0:

ẍ = −ω2x, where ω2 = g/l.

In fact all elementary oscillatory systems, such as mass – spring systems or LC-
circuits, are described by this ODE. It can be rewritten as a system of two 1-st
order ODEs ẋ1 = ωx2, ẋ2 = −ωx1.

In general, a system of two 1-st order linear ODEs

ẋ1 = a11x1 + a12x2

ẋ2 = a21x1 + a22x2

is determined by the matrix A of its coefficients and can be rewritten in matrix
notations as ẋ = Ax.

Linear combinations of solutions to a linear system are solutions too:

If x(1)(t) and x(2)(t) are two solutions to the system then x(t) = c1x
(1)(t) +

c2x
(2)(t) satisfies ẋ = c1ẋ

(1)+c2ẋ
(2) = c1Ax(1)+c2Ax(2) = A(c1x

(1)+c2x
(2)) = Ax.

This conclusion remains true even if the matrix entries aij (but not c1, c2!) depend
on t.

Example. (b) The functions cosωt and sinωt satisfy the harmonic oscillator
equation ẍ = −ω2x. Thus x(t) = c1 cosωt + c2 sinωt also satisfy it. On the
phase plane with the coordinates x1 = x, x2 = ẋ/ω the arbitrary coefficients
c1 = x1(0), c2 = x2(0) represent the initial value of the solution at t = 0. According
to the existence and uniqueness theorem all solutions to the harmonic oscillator
equation are therefore the linear combinations of cosωt and sinωt.

We will assume further on that the linear ODE system ẋ = Ax is time indepen-
dent so that the matrix A has constant coefficients. A linear change of coordinates
x = Cy on the phase plane transforms the system to ẏ = C−1ẋ = C−1Ax =
C−1ACy with the coefficient matrix C−1AC similar to A. We will apply our clas-
sification of matrices up to similarity transformations in order to simplify constant
coefficient linear systems, solve them and describe their phase portraits.

Case 1: Distinct real eigenvalues λ1, λ2. The matrixA is similar to the diagonal
matrix. The ODE system in the diagonalizing coordinates has the form ẏ1 =
λ1y1, ẏ2 = λ2y2 of two independent 1-st order equations which is easy to solve:

y1(t) = eλ1ty1(0), y2(t) = eλ2ty2(0).

Since y(0) = C−1x(0), we have

x(t) = Cy(t) = C

[

eλ1t 0
0 eλ2t

]

C−1x(0),

where C is the matrix of eigenvectors of A. In order to sketch the phase curves
in the coordinate system (y1, y2) we eliminate t from the solution formulas: λ1t =

lny1 + const and hence y2 = Const · yλ2/λ1

1 . Thus the phase curves are graphs of
the power functions. The possible phase portraits with λ1, λ2 6= 0 are shown on
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the picture and have the names: nodal sink for 0 > λ1 > λ2, saddle for λ1 > 0 > λ2

and nodal source for λ1 > λ2 > 0. 1
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Case 2: Complex conjugate eigenvalues. Diagonalizing the matrix A by a
complex similarity transformation we arrive to the same formulas as in the first case
where however λ1 = ρ+ iω, λ2 = ρ− iω and c1 = a + ib, c2 = a − ib are complex
numbers, and columns of the matrix C represent complex conjugate eigenvectors.
Purely real formulas for solutions can be extracted from these complex formulas by
taking the real part. For instance, in the real coordinates (u1, u2) = (Re y1, Im y1)
on the phase plane the solutions to the ODE system read:

u1 = Re[e(ρ+iω)t(a+ ib)] = eρt(a cosωt− b sinωt)

u2 = Im[e(ρ+iω)t(a + ib)] = eρt(a sinωt + b cosωt).

1The phase pictures on the (x1, x2)-plane are obtained from these by invertible linear trans-
formations. As we know, such a transformation is a composition of a rotation with stretching in

two perpendicular directions (which may have nothing to do with the directions of the eigenvec-
tors). Thus typical phase portraits of linear systems with distinct non-zero real eigenvalues are

“disturbed” nodal sources, saddles and nodal sinks.
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Thus in the vector form u(t) = eρtTωtu(0) where Tωt are rotation matrices and the
initial condition u(0) = (a, b). We conclude that the motion on the phase plane
is described as the simultaneous rotation with the angular velocity ω and dilation
with the rate ρ. The phase portraits corresponding to ρ < 0, ρ = 0 and ρ > 0 are
called respectively spiral sink, center and spiral source.

Case 3: Multiple eigenvalue. When the matrix A is scalar, the ODE system
has the form ẋ1 = λx1, ẋ2 = λx2, the solutions x1(t) = x1(0)eλt, x2(t) = x2(0)eλt

and the phase curves x2 = Const · x1. The phase portraits with λ > 0 and
λ < 0 are special examples of the nodal source and sink described in Case 1.
Excluding the possibility that A is scalar, we transform the ODE system to the
form ẏ1 = λy1 + y2, ẏ2 = λy2 corresponding to C−1AC being the Jordan cell. If
λ = 0 the system is equivalent to the Newton equation ÿ = 0 of a free particle
(which according to the Galilean Inertia Law moves with a constant velocity) and
is easy to solve: y2(t) = y2(0), y1(t) = y2(0)t + y1(0). The phase portrait of the
free particle is shown on the picture. When λ 6= 0, the solutions are modified by
the dilation with the rate λ:

y1(t) = eλt(y1(0) + ty2(0)), y2(t) = eλty2(0).

The phase portraits with λ > 0 (degenerate source) and λ < 0 (degenerate sink)
are modified accordingly. Solutions of the original ODE system are given by the
formula

x(t) = eλtC

[

1 t
0 1

]

C−1x(0) .

Examples. We will study the behavior of the damped pendulum described near
the lower equilibrium by the linear equation ẍ = −kẋ−gx/l. The coefficient matrix
of the corresponding linear system

ẋ1 = x2

ẋ2 = −g
l x1 −kx2

has the characteristic polynomial λ2 + kλ+ g/l with the roots

λ± = −k
2
±

√

k2

4
− g

l
.

Properties of solutions change when the damping coefficient k grows, and we will
analyze several cases and — at the same time — illustrate several practical tech-
niques for solving linear ODE systems. 2

(c) If k = 0, the eigenvalues λ± = ±iω, ω2 = g/l, are purely imaginary. It is
the case of the harmonic oscillator. The phase portrait is a center, and the solutions

2These techniques can be briefly described as follows: in the example (e) we write down
two particular solutions corresponding to two real eigenvectors and describe the general solution

as their linear combination with arbitrary real coefficients; in the example (d) we take arbitrary
linear combinations of the real and imaginary parts of a single complex solution corresponding to

a complex eigenvector; in the example (f) we look for solutions in the form of linear combinations
of suitable functions and extract the actual solutions by plugging the functions into the differential

equations. We advise the reader to try this approach in the previous examples too.
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x1 = x1(0) cosωt+ ω−1x2(0) sinωt, x2 = −ωx1(0) sinωt+ωx2(0) cosωt are 2π/ω-
periodic. Notice that the period of oscillations does not depend on the magnitude
of oscillations of the pendulum. 3

(d) If 0 < k <
√

4g/l, the eigenvalues λ± = ρ± iω are complex conjugate and
have the negative real part ρ = −k/2. The phase portrait is a spiral sink. In order
to find the solutions, we first find a complex eigenvector v with the eigenvalue,
say, λ+: v = (1, λ+), then notice that z(t) = eλ+tv is a complex solution to the
system and conclude that the real and imaginary parts of this solution are two real
solutions to the system:

x
(1)
1 = eρt cosωt

x
(1)
2 = eρt(ρ cosωt− ω sinωt)

x
(2)
1 = eρt sinωt

x
(2)
2 = eρt(ρ sinωt + ω cosωt)

.

The general solution is a linear combination of these two particular solutions with
arbitrary coefficients: x(t) = c1x

(1)(t) + c2x
(2). In particular oscillations of the

angular coordinate x = x1 of the damped pendulum are described by x(t) =
eρt(c1 cosωt + c2 sinωt) = x(t0)e

−kt/2 cos(ω(t − t0)). The cosine factor exhibits

the oscillatory character of the motion, but the frequency ω =
√

g/l− k2/4 is
smaller than in the case of undamped pendulum. The exponential factor indicates
that the magnitude of oscillations decreases with time.

x

.

t

xx / ω

k = 0

x

x
 .

t

x

smallk

t

x

x

x
.

k large

3This observation used to serve as a mathematical foundation for designing the pendulum

clock invented by Galileo Galilei (1564 – 1642).
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(e) If k >
√

4g/l, the eigenvalues λ± are real, negative and distinct. The real

eigenvectors v± = (1,±λ) correspond to two particular solutions x±(t) = eλ±tv±,
and the general solution is their linear combination

x1(t) = c+e
λ+t + c−eλ−t

x2(t) = c+λ+e
λ+t + c−λ−eλ−t .

The phase portrait is a nodal sink, and the direction of the eigenlines on the phase
plane are specified by the vectors v±. We conclude that in the case of strong
damping all solutions are aperiodic and decay exponentially with time. Moreover,
the pendulum passes the vertical position at most once (since each phase curve on
the portrait crosses the line x1 = 0 no more than once).

(f) In the borderline case k =
√

4g/l the eigenvalue λ = −k/2 is multiple and
negative. The matrix of the system is similar to the Jordan cell (since the matrix is
not scalar). The two eigenlines of the previous example merge to a single one with
the slope −k/2. This explains the phase portrait shown on the picture. In order
to find explicit solution formulas, let us notice that in the Jordan cell case both
components of solutions are linear combinations of functions eλt and teλt. Thus the
solution has the form x1 = eλt(c1 + c2t), x2 = eλt(c3 + c4t). This leaves 4 arbitrary
constants (instead of 2). Substituting the formulas into the differential equations
we will therefore find two relations among c1, ..., c4. The equation ẋ1 = x2 yields
λc1 + c2 = c3 and λc2 = c4. Thus the general solution to the system is

x1(t) = e−kt/2(c1 + c2t), x2(t) = e−kt/2(c2 −
k

2
c1 −

k

2
c2t).

x

x
.

k    = 4 g l
2

Remark. The damped harmonic oscillator equation we have just studied is an
example of 2-nd order constant coefficient ODEs ẍ+ pẋ+ qx = 0. In order to find

solutions to such an equation it suffices to notice that the matrix

[

0 1
−q −p

]

of

the corresponding system has the characteristic polynomial λ2 + pλ+ q. Solutions
to the equation will therefore have the form x(t) = c1e

λ1t + c2e
λ2t if the roots of

the polynomial are real and distinct, x(t) = eρt(c1 cosωt + c2 sinωt) if the roots
λ± = ρ± ω are complex conjugate, and x(t) = eλt(c1 + c2t) in the case of multiple
roots.
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Exercises 2.1.2.

(a) Solve the following linear ODE systems, sketch the phase portraits on the phase plane
with coordinates (x1, x2), find the solutions with the initial values x1(0) = 1, x2(0) = 0 and

sketch the graphs of x1(t) and x2(t):

ẋ1 = 3x1

ẋ2 = 2x1 + x2
,

ẋ1 = x1 + 2x2

ẋ2 = 5x2 − 2x1
,

ẋ1 = x1 + 3x2

ẋ2 = −6x1 − 5x2
,

ẋ1 = x1

ẋ2 = 2x1 − x2
,

ẋ1 = −2x1 − 5x2

ẋ2 = 2x1 + 2x2
,

ẋ1 = 3x1 + x2

ẋ2 = x2 − x1
,

ẋ1 = 3x1 − 2x2

ẋ2 = 4x2 − 6x1
,

ẋ1 = x2 − 2x1

ẋ2 = 2x2 − 4x1
.

(b) Sketch the graphs of solutions x(t) to the damped pendulum equation with k = 2
p

g/l

corresponding to the 5 phase curves shown on the phase portrait.
(c) Find the linear 2-nd order ODE describing the behavior of the undamped pendulum near

the upper equilibrium (x ≈ π ) and sketch the phase portrait of the equation on the phase plane

with coordinates (x, ẋ). Find those solutions x(t) to the equation which tend to the equilibrium
when t→ ∞. Which motions of the non-linear pendulum are approximated by these solutions?

(d) Consider periodic solutions of the non-linear undamped pendulum equation ẍ+sin x = 0.
Does the period of oscillations depend on the magnitude?

2.2. Stability

Linear ODE systems usually arise as approximations to non-linear systems near
equilibria. The linear approximations are often sufficient in order to judge whether
a small deviation from the equilibrium will cause solutions to drift far away from
it or the equilibrium will be reestablished automatically. In practical applications
this issue translates into the crucial question: will, say, a chemical reactor blow
up or work steadily near the intended regime? Before explaining how to analyze
stability of equilibria we have to discuss linear approximations of functions.

2.2.1. Partial derivatives. Let y = f(x) be a function of two variables x =
(x1, x2).

The function is called continuous at a point a = (a1, a2) if it can be approx-
imated by a constant function with an error smaller than any constant function
in a sufficiently small neighborhood of a. The phrase “smaller than any constant
function” sounds ambiguous and needs explanations. In order to make the error
at x = a smaller than any constant we must take the value f(a) on the role of the
approximating constant. Then the error function f(x) − f(a) vanishes at x = a.
We say that “the error is smaller than any constant” if for any positive constant ε
the error function becomes smaller than ε in a sufficiently small disk around a. In
other words, f is continuous at a if limx→a |error(x)| = 0.

The function f is called differentiable at a if it can be approximated by a
linear function with an error smaller than any linear function in a sufficiently small
neighborhood of a. Since linear functions grow in some directions proportionally
to the distance |x−a|, the previous sentence should be interpreted in the following
way: for some α, β the error f(x) − f(a) − [α(x1 − a1) + β(x2 − a2)] of the linear

approximation satisfies limx→a

|error(x)|
|x−a| = 0.

The function f is called two times differentiable at a if it can be approximated
by a quadratic function with the error smaller than any quadratic function. More
precisely, this means that for some α, β, a, b, c the error

f(x) − f(a) − [α(∆x1) + β(∆x2)] −
1

2
[a(∆x1)

2 + 2b(∆x1)(∆x2) + c(∆x2)
2]

of the quadratic approximation satisfies limx→a

|error(x)|
|x−a|2 = 0.
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This chain of definitions is easy to continue.

Suppose now that f is differentiable at a and thus can be approximated by
f(a)+α∆x1+β∆x2 with the required precision. Then the graph of the approximat-
ing function is the plane in the (x1, x2, y)-space tangent to the graph y = f(x1, x2)
of the function f at the point (x1, x2, y) = (a1, a2, f(a1, a2)). The coefficients α, β
are the slopes of the plane in the directions of the coordinate axes x1, x2. This
shows how to find the coefficients. Restrict the function f to the line x2 = a2

(respectively x1 = a1). We get the function f(x1 , a2) (respectively f(a1, x2)) in one
variable. The derivative of this function at the point x1 = a1 (respectively x2 = a2)
equals α (respectively β):

α = lim
δ→0

f(a1 + δ, a2) − f(a1, a2)

δ
, β = lim

δ→0

f(a1 , a2 + δ) − f(a1, a2)

δ
.

These derivatives are called partial derivatives of f and are denoted by ∂f/∂x1 and
∂f/∂x2 or, more concisely, fx1

and fx2
. Thus

α = fx1
(a1, a2) =

∂f

∂x1
(a1, a2), β = fx2

(a1, a2) =
∂f

∂x2
(a1, a2).

Examples. (a) The derivative of eλt equals λeλt. In fact f = eλt is a function
of two variables, t and λ. Computing its time derivative we just think of λ as being
constant and therefore compute the partial derivative ft. The partial derivative
fλ = teλt.

(b) Let f(t, x) = e−at cosωx, g(t, x) = e−at sinωx. Then ft = −af, gt =
−ag, fx = −ωg, gx = ωf . We will come back to this example soon.

(c) Let f(x1, x2) = (ax2
1 + 2bx1x2 + cx2

2)/2. Then fx1
= ax1 + bx2, fx2

=
bx1 + cx2. In particular, fx1

(0, 0) = fx2
(0, 0) = 0.

Functions in the above examples have partial derivatives at any point and
therefore the partial derivatives are functions too. We can introduce 2-nd partial
derivatives of a function y = f(x1 , x2) as partial derivatives of its partial derivatives:

∂2f

∂x2
1

= (fx1
)x1
,

∂2f

∂x1∂x2
= (fx1

)x2
,

∂2f

∂x2∂x1
= (fx2

)x1
,
∂2f

∂x2
2

= (fx2
)x2
.

Examples. (d) The 2-nd partial derivatives fxx, gxx of the functions from Exam-
ple (b) are proportional to the functions themselves, fxx = −ωgx = −ω2f, gxx =
ωfx = −ω2g, and are therefore proportional to their time derivatives ft and gt. We
will use this fact in our study of the heat equation.

(e) The 2-nd partial derivatives of the quadratic form f = (ax2
1+2bx1x2+cx

2
2)/2

are constant:
fx1x1

= a, fx1x2
= b, fx2x1

= b, fx2x2
= c.

Suppose now that a function y = f(x) is two times differentiable at the point
a and therefore can be approximated by a quadratic function

f(a) + α∆x1 + β∆x2 + [a(∆x1)
2 + 2b(∆x1)(∆x2) + c(∆x2)

2]/2

with the required precision. The last example shows how to compute the coefficients
a, b, c:

a = fx1x1
(a), b = fx1x2

(a) = fx2x1
(a), c = fx2x2

(a).

In particular, two of the four 2-nd partial derivatives are equal, fx1x2
= fx2x1

,
provided that the function is two times differentiable.
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Warning. The last reservation is not redundant. In fact it is easy to find an
example of a function which has all 2-nd partial derivatives at a given point but can
not be approximated by a quadratic function with the required precision and hence
is not two times differentiable at this point. The mixed partial derivatives of such
functions may differ. The same applies to 1-st partial derivatives: the condition
that f is differentiable at a is stronger than the condition that fx1

, fx2
exist at a.

However, if all partial derivatives (up to order k) exist in some neighborhood of a
and are continuous at a then the function is differentiable (k times) at a. In the
most of applications we will deal with functions which have all partial derivatives
of any order, hence differentiable infinitely many times. Thus the subtle distinction
between differentiability and existence of partial derivatives should not scare us.

Exercises 2.2.1.
(a) Compute 1-st and 2-nd partial derivatives of the functions:

sin(x+ y), sin(xy), xy(x− y),
p

x2 + y2.

(b) Prove that the function u(t, x) = t−1/2e−x
2/4t, t > 0, satisfies ut = uxx .

(c) Sketch the graph of u as a function of x for small and large t > 0. Show that the integral
Z ∞

−∞
u(t, x)dx

does not depend on t.

For those who have studied multivariable calculus: show that the integral equals
√

4π.
(d) Prove that a differentiable function u(x1, x2) at a point a = (a1, a2) of local maximum

or minimum satisfies

ux1 (a1, a2) = 0 = ux2 (a1, a2).

2.2.2. Linearization. Consider a time-independent system ẋ = F(x) of two
1-st order ODEs given by two functions F1(x1, x2), F2(x1, x2).

A point a on the phase plane of the system is called a singular point (or an
equilibrium) if F(a) = 0. If a is an equilibrium, then the constant functions x(t) = a
form a solution to the ODE system, and vice versa.

An equilibrium a is called asymptotically stable if any solution x(t) with the
initial value x(0) in a sufficiently small neighborhood of a approaches a when t
approaches infinity: limt→∞ x(t) = a. The equilibrium is called asymptotically
unstable otherwise, that is if in any neighborhood of a there exists a point x(0)
whose phase curve does not tend to a.

Examples. (a) The origin x = 0 is the equilibrium for any linear system ẋ =
Ax. It is asymptotically stable if both roots of the characteristic polynomial have
negative real parts (sinks) and is asymptotically unstable otherwise. This should
be clear from the phase portraits, or from the fact that eigenvectors v generate the
solutions eλtv which tend to 0 only if the real part of the eigenvalue λ is negative.

(b) In the case of purely imaginary eigenvalues (center) the equilibrium is
asymptotically unstable, but it is stable in another, somewhat weaker sense since
the phase curves which start in a neighborhood of the origin do not leave this
neighborhood. This is the borderline case between spiral sinks and sources.

Let us assume now that the right hand side of the system ẋ = F(x) is given by
functions differentiable as many times as we wish in a neighborhood of an equi-
librium a. For simplicity of notations we will assume that a is the origin on
the phase plane. Replacing the functions F1, F2 by their approximations a11x1 +
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a12x2, a21x1 + a22x2 near the equilibrium we obtain the system ẋ = Ax of linear
ODEs called linearization of the system at a.

Theorem (Stability Criterion).
If all eigenvalues of the linearized system have negative real parts then the

equilibrium of the non-linear system is asymptotically stable.

Remark. In fact if at least one of the eigenvalues has positive real part then the
equilibrium of the non-linear system is asymptotically unstable (and is not stable
even in the sense mentioned in Example (b)). If however the eigenvalues are on
the imaginary axis, the linearization does not allow to judge about stability in the
non-linear system (see Exercises).

Sketch of the proof. The idea is to show that in some coordinate system (y1, y2)
near the equilibrium all phase curves of the non-linear system cross the concentric
circles y2

1 + y2
2 = const inward and to deduce from this that the phase curves

inevitably approach the origin y = 0 when t → ∞. Although we can not compute
the phase curves (and do not even specify the functions F1, F2) we know that the
velocity vectors of the phase curves are well approximated by those of the linearized
system in a vicinity of the origin. Thus if the phase curves of the linearized system
cross the circles inward the same will be true for the non-linear system. According to
the similarity classification of matrices given in 1.5.3 the linear system ẋ = Ax after
a suitable change of coordinates takes on one of the three normal forms described
2.1.2. If the eigenvalues have negative real parts, the linear system is a spiral, nodal
or degenerate sink. We can examine the three standard ODE systems and their
solutions in order to figure out whether the phase curves have the desired property.

In fact the property to cross the circles y2
1 + y2

2 = const inward is obvious in
the case of the spiral sink since the motion of the phase points is described in this
case as a simultaneous rotation and contraction on the (y1, y2)-plane. In the case
of the nodal sink ẏ1 = λy1, ẏ2 = λy2 the property is also easy to check since the
squared distance to the origin y1(t)

2 + y2(t)
2 = y2

1(0)e2λ1t + y2
2(0)e2λ2t decreases

monotonously with time when both λ1, λ2 are negative. In the case of the Jordan
cell ẏ1 = λy1 + y2, ẏ2 = λy2 we first rescale the coordinate y2 to εy2 in order to
bring the system to the form ẏ1 = λy1 + εy2, ẏ2 = λy2. Now the time derivative of
y2
1(t) + y2

2(t) equals

2y1ẏ1 + 2y2ẏ2 = 2y1(λy1 + εy2) + 2λy2
2 = 2λy2

1 + 2εy1y2 + 2λy2
2 .

This is a quadratic form with the matrix

[

2λ ε
ε 2λ

]

. The determinant 4λ2−ε2 of

the matrix is positive if ε has been chosen smaller than |2λ|. Since λ is negative, the
quadratic form is negative for any y 6= 0 according to our classification of quadratic
forms and Example 1.5.2(k). This means that the distance to the origin decreases
along the phase curves in this case too. �

In the next section we will try the stability criterion in action in the study of
an ecological model.

Exercises 2.2.2.
(a) Is the lower (upper) equilibrium of the undamped pendulum asymptotically stable?

(b) Find out how asymptotical stability of the upper and lower equilibria of the damped
pendulum depends on the damping coefficient k. Sketch the phase portraits of the non-linear

system on the phase plane with coordinates (x, ẋ).
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(c) Consider the ODE ẍ = −kẋ3 − sinx of the pendulum in the presence of damping

depending cubically on the angular velocity. Show that linearization of the equation near the
equilibrium (x, ẋ) = (0,0) has imaginary eigenvalues.

(d) Let x(t) be a non-constant solution to the ODE of Problem (c). Show that the energy

E(t) =
ẋ2(t)

2
− cosx(t)

is a decreasing function of t if k > 0 and an increasing function of t if k < 0. Deduce from this that

the equilibrium (x, ẋ) = (0,0) is asymptotically stable when k > 0 and asymptotically unstable
when k < 0.

2.2.3. Competing species. According to Example 2.1.1(b) the equations
ẋ1 = λ1x1, ẋ2 = λ2x2 describe reproduction of two species provided that the
food supply is unlimited. If however the species have to compete for food with each
other and with their own kind, the reproduction coefficients λ1, λ2 will no longer
remain constant, but will depend on the amounts x1, x2. Accepting the simplest
model where the reproduction coefficients decrease linearly when x1 and x2 grow,
we arrive at the system of ODEs

ẋ1 = x1(k1 − a1x1 − b1x2)
ẋ2 = x2(k2 − a2x1 − b2x2)

.

We assume that the reproduction rates k1, k2 and the competition factors a1, b1, a2,
b2 are all positive.

The system has four equilibria (which are found by equating the right hand
sides to zero).

• x1 = x2 = 0. It is the origin on the phase plane. Linearizing the system
at this point we find ẋ1 = k1x1, ẋ2 = k2x2 which is a nodal source. Thus
the equilibrium is unstable. This means that when the amounts x1, x2

of the species are small compared to the food supply, the species do not
really compete and both populations grow exponentially.

• x1 = 0, x2 = k2/b2. It is the intersection point of the line a2x1+b2x2 = k2

(we denote it L2) with the x2-axis. The first species is extinct, the second
one achieves an equilibrium with the food supply being just enough in
order to keep the population.

• x2 = 0, x1 = k1/a1. It is the intersection point of the line L1 : a1x1 +
b1x2 = k2 with the x1-axis. The second species is extinct, the first one is
in the equilibrium with the food supply.

The stability question about these two equilibria is whether a small
amount of the other species injected to the system will extinct.

• (x1, x2) is the intersection point of the lines L1 and L2. This equilibrium
makes “ecological” sense only if x1, x2 > 0, that is if the lines intersect
in the 1-st quadrant of the phase plane. If this happens, the equilibrium
corresponds to coexistence of both species in the system. However, such
coexistence of species can not be achieved in the real system unless the
equilibrium is stable. (In fact in our model, if this equilibrium is unstable,
small random deviations from it — which inevitably occur in real systems
— will eventually drive one of the species to extinction.)
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The result of stability analysis of the four equilibria in the system turns out to
depend on the mutual position of the lines L1, L2 in the 1-st quadrant and can be
described graphically as it is shown on the picture. In the case I (L1 is above L2)
the coexistence equilibrium is not present, and only the equilibrium with extinct
first species is stable. In the case II (L2 is above L1) the situation is the same,
but the species switch their roles. In the case III the coexistence equilibrium is
unstable, and the other two are both stable. Thus, only one of the species survives,
but which one — depends on the initial amounts x1(0), x2(0). In the case IV
the coexistence equilibrium is the only stable one. This case is singled out by the
inequality a1/a2 > k1/k2 > b1/b2. We can interpret the result this way: coexistence
of species in our model is possible only if competition of both species with their
own kind is tougher than competition with the other species.

x

x
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x

x

x
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x
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We will carry out the stability analysis for the coexistence equilibrium and leave
the analysis of the remaining two equilibria as an exercise.

In order to simplify computations it is convenient to rescale the variables x1, x2

and t in such a way that the ODE system assumes the form

dX1/dτ = X1(k − aX1 − bX2)
dX2/dτ = X2(1 −X1 −X2)

,

where τ = k2t, X1 = a2x1/k2, X2 = b2x2/k2 and k = k1/k2, a = a1/a2, b = b1/b2.
The intersection point of the lines L1, L2 has coordinates A1 = (k−b)/(a−b), A2 =
(k−a)/(b−a). The intersection point is in the 1-st quadrant only if k−b, a−k and
a−b have the same sign. Partial derivatives of the functions F = X1(k−aX1−bX2)
and G = X2(1 − X1 − X2) evaluated at the intersection point form the matrix of
the linearized ODE system:

A =

[

FX1
(A1, A2) FX2

(A1, A2)
GX1

(A1, A2) GX2
(A1, A2)

]

=

[

−aA1 −bA1

−A2 −A2

]

.

The discriminant of the characteristic equation equals

(trA)2 − 4 detA = (aA1 + A2)
2 − 4(a− b)A1A2 = (aA1 −A2)

2 + 4bA1A2

and is positive under our hypothesis that the coordinates A1, A2 of the equilibrium
are positive. The roots of the characteristic equation are real and given by the
formula

−(aA1 +A2) ±
√

(aA1 + A2)2 − 4(a− b)A1A2

2
.

They are both negative if and only if a− b > 0. Thus the coexistence equilibrium is
both in the 1-st quadrant and asymptotically stable when k− b > 0 and a− k > 0,
that is when a > k > b.

Exercises 2.2.3.
(a) Linearize the competing species system near the equilibria (x1, x2) = (0, k2/b2) and

(x1, x2) = (k1/a1, 0), and examine stability of the equilibria.
(b) Study linearizations of all equilibria in the cases I – IV in order to find their place in the

classification and sketch their phase portraits. Pay attention to positions of eigenlines.
(c) Sketch plausible phase portraits of the non-linear system in the cases I – IV in the 1-st

quadrant of the phase plane.
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2.3. PDE

Partial Differential Equations are called so because they relate partial deriva-
tives of unknown functions. We will study here only one example, namely the
PDE describing the heat conduction phenomenon. It also can be considered as a
dynamical system, but in contrast with ODEs the phase space here has infinite
dimension.

2.3.1. The heat equation. In the beginning of XIX-th century, when Joseph
Fourier introduced the heat equation, heat was thought of as some invisible fluid
that can leak from one part of a body to another. Although the microscopic nature
of heat turned out to be different, the heat equation remains an adequate mathe-
matical model of the phenomenon because it is derived from very basic macroscopic
hypotheses.

Let u(t, x, y, z) denote the temperature at the moment t at the point with coor-
dinates x, y, z in a 3-dimensional homogeneous medium. Consider the temperature
u(t+ ∆t, x, y, z) at the same point at a moment close to t. The temperature incre-
ment ∆u = u(t+ ∆t, x)− u(t, x) is caused by some additional amount of heat ∆H
accumulated in the volume ∆x∆y∆z near the point. The amount ∆H is propor-
tional to the volume and to the temperature increment ∆u with the proportionality
coefficient c characterizing the material and called thermal capacity. This propor-
tionality law agrees well with experimental data if temperature variations are not
too large. Thus

∆H

∆t∆x∆y∆z
≈ c

∆u

∆t
.

The additional amount of heat ∆H received by the volume ∆x∆y∆z during the
time interval ∆t is caused by the heat flow through the walls of the volume. One
assumes that the flow across the wall x = const from left to right is proportional
to the time interval ∆t, to the surface area ∆y∆z and to minus the slope ∂u/∂x of
the temperature profile in the x-direction. This proportionality law is the simplest
hypothesis which agrees with our experience that heat leaks from warmer parts to
cooler parts of the body and that the heat flow vanishes if the parts have the same
temperature. The proportionality coefficient k > 0 called thermal conductivity is
another characteristic of the material.

For the sake of simplicity we will assume further on that the temperature is
constant along each plane x = const and thus depends only on t and x. In particular
the derivatives uy and uz and respectively the heat flows in y- and z-directions
vanish. We conclude that the amount of heat ∆H is due to the difference of the
heat flow across the walls x and x+ ∆x:

∆H

∆t∆x∆y∆z
≈ k

ux(t, x+ ∆x) − ux(t, x)

∆x
.

Equating the two expressions for ∆H and passing to the limit ∆t → 0, ∆x → 0
we obtain the heat equation

c
∂u

∂t
(t, x) = k

∂2u

∂x2
(t, x).

It can be rewritten as

ut = α2uxx, where α2 = k/c > 0

is the ratio of thermal conductivity and capacity called thermal diffusivity coefficient.
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Exercises 2.3.1.

(a) Suppose that the bar is not homoge-
neous so that the thermal capacity c and the

thermal conductivity k depend on x. Show that
the heat conduction in the non-homogeneous

bar is described by the equation

c(x)ut = (k(x)ux)x.

(b) Assuming that the temperature
u(t, x, y, z) in a homogeneous medium may de-

pend on all the 3 space coordinates derive the
3D heat equation

ut = α2(uxx + uyy + uzz ).

(c) A drop of ink in a glass of water even-

tually “dissolves” (even without mixing) due to
the diffusion phenomenon. (It is caused by ran-

dom microscopic motion of ink particles called
Brownian motion). Let u(t, x, y, z) denote con-

centration of ink in water. Let us assume that
the diffusion flow is proportional to minus the

gradient of concentration. (The proportional-
ity coefficient α2 called the diffusion coefficient

of ink in water.) Show that the concentration
function satisfies the diffusion equation

ut = α2(uxx + uyy + uzz)

identical to the heat equation.

(d) Suppose that at the moment t = 0

the ink drop of mass m is concentrated at the
point x = 0 of an infinite 1-dimensional “glass”

(tube). Assuming that the diffusion coefficient
of ink in water equals 1, show that the mass

distribution at the moment t > 0 is described
by the formula

m√
4πt

e−x
2/4t.
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Remark. In is tempting in a mathematical study of the heat equation with one
space variable to talk about heat conduction in a homogeneous bar of length L with
thermal diffusivity α2. We are not going to resist this temptation and will assume
that the left end of the bar is positioned at x = 0 and the right end — at x = L.
It is worth mentioning however that the heat equation ut = α2uxx applies to a real
bar only if the side surface of the bar is well insulated against heat leakage. In real
life this condition is seldom satisfied. A real phenomenon described well by the
heat equation is heat conduction in a 3D-layer of width L to be small compared
to the y- and z-dimensions of the layer. In this case the heat leakage through the
side surface will alter the temperature in the interior of the layer very little for the
surface is small compared to the area of the faces x = 0 and x = L.

2.3.2. Boundary value problems. The heat equation is to describe time
evolution of temperature distribution in a solid homogeneous bar. We may expect
that the the process depends on the initial temperature distribution u(0, x). How-
ever it is easy to see that the initial distribution alone is not sufficient in order
to determine the solution unambiguously since the process also depends on the
conditions maintained at the extremities of the bar.

Example. (a) A time-independent function satisfies the heat equation if and
only if it is a polynomial of degree ≤ 1: u(t, x) = ax+b. What is the physical mean-
ing of such solutions? If the bar is completely insulated, and the initial temperature
along the bar is constant then no heat flow will ever arise and the temperature will
remain constant. However our experience suggests that if the initial temperature
is not constant, then it will evolve toward the constant distribution. In particular,
the function u = ax+ b with a 6= 0, although satisfies the heat equation, does not
describe the process correctly. In fact this solution describes a steady heat flow
−kux = −ka along the bar and assumes that the heat is supplied at one end of the
bar and carried away at the other end. In particular, the bar is not insulated, but
instead the temperatures at the ends are maintained constant and equal to T0 = b
at x = 0 and TL = aL + b at x = L.

We will consider two physically meaningful types of boundary conditions: (i) no
heat flow through the boundaries (which means that the bar is completely insulated)
and (ii) given constant temperatures to be maintained at the ends of the bar. The
boundary conditions are expressed mathematically as

(i) ux(t, 0) = 0 = ux(t, L) and (ii) u(t, 0) = T0, u(t, L) = TL

for all t > 0.

Example. (b) Suppose that we want to find temperature evolution u(t, x) in
a bar with the ends maintained at the temperatures T0 and TL provided that the
initial temperature distribution u(0, x) = φ(x) is given. The function T0 + (TL −
T0)x/L satisfies the heat equation and the boundary conditions. Put v(t, x) =
u(t, x) − T0 − (TL − T0)x/L. If u satisfies the heat equation ut = α2uxx then v
satisfies the same equation. It satisfies the zero temperature boundary conditions
v(t, 0) = 0 = v(t, L) and the initial condition v(0, x) = ψ(x) with ψ(x) = φ(x)−T0−
(TL −T0)x/L. Thus if we knew how to solve the heat equation for arbitrary initial
temperature distributions and zero temperature boundary conditions we would be
able to find the solution with constant temperature boundary conditions.
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Exercises 2.3.2.

(a) A homogeneous solid bar of length L
has zero temperature at t = 0, and for t > 0

the extremities of the bar are maintained at the
constant temperature T0. Write down the ini-

tial/boundary value problem for the tempera-
ture function u and reduce it to the problem

with zero-temperature boundary conditions.
(b) The initial temperature distribution in

a homogeneous solid bar of length π and of ther-
mal diffusivity α2 = 1 is given by the function

u(0, x) = sin2 x for 0 < x < π, and the extrem-
ities of the bar are completely insulated. Find

the temperature distribution u(t, x).
(c) The initial temperature distribution in

the bar of length π and of thermal diffusivity
α2 is u(0, x) = sin3 x for 0 < x < π, and the

extremities of the bar are maintained at zero
temperatures. Find the temperature distribu-

tion u(t, x).
(d) The temperature of the left end x = 0

of the bar is maintained at the zero level, and
the right end x = L is insulated. Find the tem-

perature distribution u(t, x) in the bar if the
initial temperature distribution equals

sin
πx

2L
, sin

3πx

2L
, sin

5πx

2L
, ...

(e) Let u(t, x) be a solution to the heat

equation ut = uxx in the region 0 ≤ x ≤ π, 0 <
t < ∞ satisfying the zero-temperature (no-flow)

boundary condition. Show that

v(t, x) = u(
α2π2t

L2
,
πx

L
)

satisfies the heat equation vt = α2vxx in the

region 0 ≤ x ≤ L, 0 < t < ∞ and the corre-
sponding boundary conditions.
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We may therefore concentrate our efforts on the following two initial / boundary
value problems for the heat equation:

• find a function u(t, x) satisfying the heat equation ut = α2uxx in the semi-
infinite strip t ≥ 0, 0 ≤ x ≤ L, the no–flow boundary conditions ux(t, 0) = 0 =
ux(t, L) for t > 0 and the initial condition u(0, x) = φ(x) for 0 < x < L;

• find a function v(t, x) satisfying the heat equation vt = α2vxx for t ≥ 0, 0 ≤
x ≤ L, the zero–temperature boundary conditions v(t, 0) = 0 = v(t, L) for t > 0
and the initial condition v(0, x) = ψ(x).

u
t

= u
xx

u
x

=0 u
x

=0

u= (x)

t

0 L

x

φ

α 2
u

t
= u

xx

u =0 u =0

u= (x)

t

0 L

x

α 2

ψ

Examples. (c) The function u(t, x) = e−at cosωx satisfies the equation ut =
α2uxx if a = α2ω2. It satisfies the boundary condition ux(t, L) = 0 if ω =
πn/L, n = 0, 1, 2, ... (and ux(t, 0) = 0 for any ω). Thus the functions

un(t, x) = e−α2π2n2t/L2

cos
πnx

L
, n = 0, 1, 2, ...,

are particular solutions to the no–flow boundary value problem with the initial
condition φ(x) = cos πnx

L .
(d) Similarly, the functions

vn(t, x) = e−α2π2n2t/L2

sin
πnx

L
, n = 1, 2, ...,

are particular solution to the zero–temperature boundary value problem with the
initial condition ψ(x) = sin πnx

L
.

The function au(t, x) + bv(t, x) + ...+ cw(t, x) is called a linear combination of
the functions u, v, ..., w.

The heat equation is linear: linear combinations of solutions are solutions too.
The no–flow (zero–temperature) boundary condition is linear: linear combinations
of functions satisfying the boundary condition satisfy the same boundary condition.
Initial conditions of such linear combinations of solutions are the linear combina-
tions of the initial conditions of those solutions. Applying this linearity principle
to the particular solutions un we obtain solutions u = a0u0 +a1u1 + ...+anun (and
similarly, v = b1v1 + ...+ bnvn) to our boundary value problems with the initial
conditions given by trigonometric polynomials

φ(x) = a0 + a1 cos πx
L + ...+ an cos πnx

L
ψ(x) = b1 sin πx

L + ...+ bn sin πnx
L

.

We will see that such solutions are sufficient in order to approximate any other
solutions to our problems as precisely as necessary.
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2.4. Fourier series

A general approach to the initial/boundary value problems for the heat equa-
tion is based on representation of periodic functions by infinite linear combinations
of trigonometric functions known as Fourier series.

2.4.1. Fourier coefficients. A function y = f(x) is called 2L-periodic if
f(x + 2L) = f(x) for any x. In the theory of Fourier series it is convenient to
consider periodic functions (of the real variable x) which assume complex values:
f(x) = u(x)+iv(x), where the real and imaginary parts are real-valued 2L-periodic
functions.

Example. (a) eπinx/L = cos πnx
L + i sin πnx

L , n = 0,±1,±2, ..., are complex-
valued 2L-periodic functions.

The inner product of two 2L-periodic functions is defined as

〈f, g〉 =
1

2L

∫ L

−L

f(x)g(x) dx.

Here ḡ is the function complex conjugate to g. The integral of a complex-valued
function is defined by integration of its real and imaginary parts and is generally
speaking a complex number. It is easy to see that

〈g, f〉 = 〈f, g〉 and 〈λf + µg, h〉 = λ〈f, h〉 + µ〈g, h〉
for any complex numbers λ, µ. Two periodic functions are called orthogonal if
〈f, g〉 = 0.

Example. (b) The functions eπinx/L, n = 0,±1,±2, ..., are pairwise orthogonal:
if m 6= n

〈eπimx/L, eπinx/L〉 =
1

2L

∫ L

−L

eπi(m−n)x/Ldx =
1

2πi(m− n)
eπi(m−n)x/L|L−L = 0.

For m = n we have 〈eπinx/L, eπin/L〉 = 1.

A series of the form
∑∞

m=−∞ cme
πimx/L is a 2L-periodic complex Fourier se-

ries with complex coefficients cm, m = 0,±1,±2, .... Suppose that such a series
converges to some function f(x). Computing the inner products

〈f, eπinx/L〉 =
∑

m

cm〈eπimx/L, eπinx/L〉 = cn

(where we assume that integration of the infinite sum can be replaced by summation
of the term-wise integrals) we find the following formula for the Fourier coefficients
of the function f :

cn =
1

2L

∫ L

−L

f(x)e−πinx/Ldx.

Example. (c) Let ψ be a 2L-periodic function equal x for −L < x < L. We

have c0 = 1
2L

∫ L

−L xdx = 0. Integrating by parts we find for n 6= 0

cn =
1

2L

∫ L

−L

xe−πinx/Ldx =
−x

2πin
e−πinx/L|L−L +

1

2πin

∫ L

−L

e−πinx/Ldx =

−L
2πin

(−1)n − L

2πin
(−1)n + 0 =

iL(−1)n

πn
.
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Exercises 2.4.1.

(a) Show that the inner product of real 2L-periodic functions is symmetric and bilinear.
(b) Prove that the 2L-periodic functions

cos
πnx

L
, n = 0,1, 2, ..., sin

πnx

L
,n = 1,2,3, ...,

are pairwise orthogonal and find their inner squares.
(c) Let f =

P

cneπinx/L be a complex Fourier series. Derive Parseval’s identity:

〈f, f〉 =
X

|cn|2.
Apply Parseval’s identity to the function ψ of Example 2.4.1(c) in order to show that

1 +
1

4
+

1

9
+ ...+

1

n2
+ ... =

π2

6
.

x

f

A piecewise differentiable 2L-periodic function

0 L 2L 3L-L-2L

2.4.2. Convergence. Piecewise continuity of f is sufficient in order to define
the Fourier coefficients. It is not sufficient however for convergence of the Fourier
series to the function f . We introduce a class of functions convenient for our
applications, namely piecewise differentiable periodic functions. By definition this
means that on the periodicity interval [−L, L] (i) the function f is differentiable
(and therefore continuous) everywhere except may be finitely many points, (ii)
at each discontinuity point x it has finite right and left limits f(x+) and f(x−),
and (iii) the derivative f ′ is continuous everywhere except may be finitely many
points and has right and left limits at each discontinuity point. Notice that the
actual values of the function at finitely many discontinuity points can not affect
the integrals defining the Fourier coefficients and therefore may have nothing to do
with the sum of the Fourier series at such points.

Theorem (Fourier Convergence Theorem).
At each point x the Fourier series of a piecewise differentiable 2L-periodic func-

tion f converges to the mean (f(x+) + f(x−))/2 of the right and left limits of f
(and therefore converges to f(x) if f is continuous at x).

Example. The function ψ of Example 2.4.1(c) has the Fourier series

iL

π

∑

n 6=0

(−1)n

n
eπinx/L.

The values of the n-th term at x = 0 and x = L cancel with the values of the −n-th
term at the corresponding point. Thus the series has zero sum at x = 0, L. The
function ψ is continuous at x = 0 with ψ(0) = 0, and is discontinuous at x = L
with the limits ψ(L+) = −1, ψ(L−) = 1. The values agree with the statement of
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the Fourier theorem. At x = L/2 the terms (−1)n

n
eπin/2 = (−i)n/n of the Fourier

series with even n = ±2k cancel each other, and the terms with odd n = ±(2k+1)
yield

2L

π

∞
∑

k=0

(−1)k

(2k + 1)
.

According to the Fourier theorem the series converges to ψ(L/2) = L/2. Thus we
deduce from the theorem that

1 − 1

3
+

1

5
− ...+

(−1)k

(2k + 1)
+ ... =

π

4
.

The last identity is quite non-trivial and illustrates the power of the Fourier
convergence theorem. It is not surprising therefore that the proof of the theorem is
non-trivial too. Fourier himself, who tried to find a proof for many years, did not
really succeed, and we will not even try to present the prove here.

Exercises 2.4.2. (a) Compute complex Fourier coefficients of the 2L-periodic function equal

1 for 0 < x < L, −1 for −L < x < 0 and 0 for x = 0,±L. Apply Parseval’s identity to this
function in order to compute

P

1/(2k− 1)2. Using Fourier Convergence Theorem show that this

function equals the sum of the series

4

π

∞
X

k=0

1

2k− 1
sin

πnx

L
.

Graph a few first terms of the series and their sum in order to see how the function is approximated

by the series. Check the statement of the theorem at x = L/2.

(b) Are the (non-periodic) functions x−1/2, x1/2, x3/2, sin(1/x), x sin(1/x), x2 sin(1/x),

x3 sin(1/x) piecewise differentiable?

2.4.3. Real even and odd functions. If the 2L-periodic function f is real,

that is f(x) = f(x), then the Fourier coefficients cn and c−n are complex conjugate.
Put cn = (an − ibn)/2 for n ≥ 0 (note that b0 = 0 since c0 is real). Using Euler’s
formula e−πinx/L = cos πnx

L
− i sin πinx

L
we find

an =
1

L

∫ L

−L

f(x) cos
πnx

L
dx, n = 0, 1, 2, ...

bn =
1

L

∫ L

−L

f(x) sin
πnx

L
dx , n = 1, 2, ...

On the other hand, the sum of the ±n-th terms of the Fourier series can be rewritten
as

an
eπinx/L + e−πinx/L

2
+ bn

eπinx/L − e−πinx/L

2i
= an cos

πnx

L
+ bn sin

πnx

L
.

Thus, a piecewise differentiable real function f is represented by its real Fourier
series

a0

2
+

∞
∑

n=1

an cos
πnx

L
+

∞
∑

n=1

bn sin
πnx

L
.

A function y = f(x) is called even if f(−x) = f(x) for all x and is called odd
if f(−x) = −f(x) for all x. Graphs of even functions are symmetric about the
y-axis, and graphs of odd functions are centrally symmetric about the origin. The
functions cos πnx

L are even, while sin πnx
L are odd.
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Let f be a real 2L-periodic even function. Then the Fourier coefficients bn van-
ish (why?) and only even terms in the Fourier series survive. We obtain the cosine
Fourier series representing piecewise differentiable even functions, and a formula for
their Fourier coefficients which takes in account the symmetry property:

f(x) =
a0

2
+

∞
∑

n=1

an cos
πnx

L
, an =

2

L

∫ L

0

f(x) cos
πnx

L
dx.

Similarly, real odd 2L-periodic piecewise differentiable functions are represented
by the sine Fourier series

f(x) =

∞
∑

n=1

bn sin
πnx

L
, bn =

2

L

∫ L

0

f(x) sin
πnx

L
dx.

Example. (a) The function ψ from Examples 2.4.1(c) is real and odd. Combin-
ing the symmetric terms of its complex Fourier series we find for n > 0

(−1)niL

πn
[eπinx/L − e−πinx/L] = (−1)n−1 2L

πn
sin

πnx

L
.

Thus we have found the sine Fourier series of the function:

ψ(x) =
2L

π

∞
∑

n=1

(−1)n−1

n
sin

πnx

L
.

(b) Let φ be the 2L-periodic function equal to |x| on the interval [−L, L]. It
is real, even, piecewise differentiable, has no discontinuity points and is therefore

equal to the sum of its cosine Fourier series. We find a0 = 2
L

∫ L

0 xdx = L, and for
n > 0 integration by parts yields:

an =
2

L

∫ L

0

x cos
πnx

L
dx =

2x

πn
sin

πnx

L
|L0 − 2

πn

∫ L

0

sin
πnx

L
dx =

0 − 0 +
2L

π2n2
cos

πnx

L
|L0 =

2L

π2n2
[(−1)n − 1].

Thus

φ(x) =
L

2
− 4L

π2

∞
∑

k=1

1

(2k − 1)2
cos

π(2k − 1)x

L
.

In particular, substituting x = 0 we derive from the Fourier theorem that

1 +
1

9
+

1

25
+ ...+

1

(2k − 1)2
+ ... =

π2

8
.

Exercises 2.4.3. Represent the 2L-periodic functions f, g, h by real Fourier series:

(a) f(x) =



1 for |x| < L/2
0 for L/2 < |x| < L

,

(b) g(x) =



sign(x) for 0 < |x| < L/2

0 for L/2 < |x| < L
,

(c) h(x) = x2 for − L < x < L .
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2.5. The Fourier method

In the application of Fourier series to the heat equation, the idea is to represent
the initial function on the interval (0, L) by a 2L-periodic sine or cosine Fourier series
(depending on the type of the boundary conditions) and then use our knowledge of
particular solutions with trigonometric initial values.

2.5.1. The series solution. In the zero–temperature boundary value prob-
lem we are looking for a solution v(t, x) to the heat equation vt = α2vxx in the strip
t ≥ 0, 0 ≤ x ≤ L satisfying a given initial condition v(0, x) = ψ(x), 0 < x < L,
and the boundary conditions v(t, 0) = 0 = v(t, L), t > 0. The initial value function
ψ defined on the interval (0, L) can be extended to an odd function on the interval
(−L, L) and then extended to the entire line as a 2L-periodic odd function. Assum-
ing that ψ is piecewise differentiable we can expand it into the sine Fourier series
with coefficients

bn =
2

L

∫ L

0

ψ(x) sin
πnx

L
dx.

Then the series

v(t, x) =

∞
∑

n=1

bne
−α2π2n2t/L2

sin
πnx

L

(i) satisfies the heat equation term-wise, (ii) at t = 0 converges to the function
ψ(x) on the interval (0, L) in the sense of the Fourier convergence theorem, and
(iii) vanishes at x = 0, L due to the properties of the sine functions. In fact for
any t > 0 the series converges very fast to an infinitely differentiable function v
(later we will see why) which is therefore the solution to our initial/boundary value
problem.

x-L L

ψ

φ

x

L-L

In the no–flow problem we are looking for a solution u(t, x) to the heat equation
ut = α2uxx satisfying a given initial condition u(0, x) = φ(x), 0 < X < L and the
boundary conditions ux(t, 0) = 0 = ux(t, L), t > 0. In order to find u, we extend φ
to (−L, L) as an even function, then extend it to the entire line by 2L-periodicity
and expand it into the cosine Fourier series. Similarly to the previous case, we find

u(t, x) =
a0

2
+

∞
∑

n=1

ane
−α2π2n2t/L2

cos
πnx

L
,
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where

an =
2

L

∫ L

0

φ(x) cos
πnx

L
dx.

Due to the property of the cosine factors to have zero derivatives at x = 0, L, the
function u defined by the series satisfies all the requirements (provided that φ is
piecewise differentiable).

Examples. (a) Problem. A homogeneous bar of length L = π and thermal
diffusivity α2 = 1 has been maintained at the zero temperature. Starting the
moment t = 0 the ends of the bar will be maintained at the temperatures 0 and 1.
Find the temperature distribution u(t, x) at t > 0.

Solution. In view of Example 2.3.1(a) we have u(t, x) = v(t, x) + x/π where
v satisfies the heat equation vt = vxx, the zero boundary conditions v(t, 0) =
0 = v(t, π) and the initial condition v(0, x) = u(0, x) − x/π = −x/π. Using the
coefficients of the sine Fourier series for the function ψ(x) = x, 0 < x < π, found
in Example 2.4.3(a), we compute

v(t, x) =

∞
∑

n=1

2(−1)n

πn
e−n2t sinnx,

and therefore

u(t, x) =
x

π
− 2

π
e−t sinx+

2

2π
e−4t sin 2x− 2

3π
e−9t sin 3x+ ...

In particular, when t → ∞, the temperature distribution approaches the linear
function x/π.

(b) Problem. A homogeneous bar of length L = π and thermal diffusivity
α2 = 1 had a linear temperature distribution ψ(x) = x/π at the moment t = 0
when it was completely insulated. Find the temperature distribution at t > 0.

Solution. Using the coefficients of the cosine Fourier series for the function x
found in Example 2.4.3(b) we find

u(t, x) =
1

2
− 4

∑

n odd

e−n2t cos nx

π2n2
=

1

2
− 4

π2
e−t cos x− 4

9π2
e−9t cos 3x− 4

25π2
e−25t cos 5x− ...

In particular, when t → ∞ the temperature stabilizes at the level 1/2.

Exercises 2.5.1.
(a) Represent the function ξ(x) = sin2 x by cosine and sine Fourier series on the interval

0 < x < π. In the region 0 ≤ x ≤ π, 0 < t < ∞, write down the solutions to the heat equation
ut = uxx satisfying the initial condition u(0, x) = ξ(x) and (one of) the boundary conditions

(g′) u(t, 0) = 0 = u(t, π), (g′′) ux(t,0) = 0 = ux(t, π).

(b) A homogeneous solid bar of length L and thermal diffusivity α2 is completely insulated

and has the initial temperature distribution x2 for 0 < x < L. Find the temperature distribution
for t > 0.

(c) A homogeneous bar of length L and thermal diffusivity α2 = 1 has the initial temperature
distribution



1 for 0 < x < L/2
0 for L/2 < x < L

.

Find the temperature distribution for t > 0 assuming that the ends of the bar are (i’) insulated,

(i”) maintained at zero temperatures.
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(d) A homogeneous bar of length L and thermal diffusivity α2 has zero initial temperature.

Extremities of the bar are maintained at the temperature T0 starting t = 0. Find the temperature
distribution for t > 0.

(e) Compute the infinite sum

1 +
1

16
+

1

81
+ ...+

1

n4
+ ...

2.5.2. Properties of solutions. The general series solution formulas of the
previous section, whether we like them or not, are the solutions to our boundary
value problems. One can show that solutions to the heat equation with given initial
and boundary conditions are unique. It is plausible (although I don’t know such a
theorem) that the solutions cannot be represented by elementary functions unless
the initial condition is a trigonometric polynomial, and in this sense the series
cannot be “summed”. Instead of complaining about the complexity of the series
formula let us try to figure out what it tells us about heat conduction. We will
analyze the general solution

v(t, x) =

∞
∑

n=1

bne
−n2t sinnx, bn =

2

π

∫ π

0

ψ(x) sin nx dx,

of the zero–temperature boundary value problem, where we put L = π, α2 = 1 for
simplicity of notation. In the case of the no–flow boundary condition the conclusions
would be very similar.

For each particular moment of time t > 0 the formula represents the tem-
perature distribution as a superposition of elementary oscillations sinnx making
n half-waves along the bar. The magnitudes of these oscillations are the Fourier

coefficients bn(t) = bne
−n2t of the temperature distribution at the moment t. When

t grows, the magnitudes die out exponentially, and — due to the factor n2 in the
exponent — the greater n the faster. The initial condition ψ(x), being piecewise
continuous, is bounded in the absolute value by some constant M , and therefore
the initial Fourier coefficients bn(0) = bn are bounded too: |bn(0)| ≤ 2M/π. This
shows that for any positive t only a few first terms of the series is needed in order to
approximate the solution with certain precision, and the greater t the fewer. The
conclusion that contributions of high frequency oscillations sinnx die out much
faster than those of low frequency is one of the most general properties of heat
conduction phenomena.

Another manifestation of basically the same property of heat phenomena is
their smoothening character: frequent bumps and dips present in the graph of the
initial temperature distribution tend to dissolve in the process of heat conduction.
This vaguely formulated statement can be transformed to a precise mathematical
theorem about solutions of the heat equation: even if the initial condition v(0, x) is
discontinuous the solution v(t, x) for t > 0 is differentiable infinitely many times.

In order to justify the claim let us differentiate the terms of the series k times
in x. We will get a new series (of sine or cosine functions depending on the parity of

k) with coefficients b
(k)
n (t) = ±bnnke−n2t. For each positive t the exponential factor

e−n2t as a function of n decreases much faster then the power factor nk increases.
In contrast with the Fourier theorem where convergence can be slow, non-absolute

and hard to prove, the convergence of the Fourier series with the coefficients b
(k)
n (t)

for t > 0 is absolute and follows immediately from any test (root, ratio, comparison,
integral — whichever ). It is then easy to show that the term-wise differentiation
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was legitimate and so the sum of the series is equal to the k-th partial derivative
∂kv/∂xk.

n=1

n=2

n=3

t=0 t>0

x x

uu

e

n

-n
2

bn

(k)

t

n
k

(t)

M

Let us now look at the heat conduction as a dynamical system where the current
state is described by a current temperature distribution in the bar, and the heat
equation is to describe the time evolution. The solution formula tells us how to find
future states of the system via the current state. Does the current state determine
the past history of the system?

We have seen examples of initial conditions with Fourier coefficients bn(0)
proportional to 1/n or 1/n2. For such initial conditions the coefficients bn(t) =

bn(0)e−n2t of the solution series grow with n when t < 0. Thus for t < 0 the
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series does not converge at all, and the general solution formula tells us nothing
about the temperature distribution in the past. This observation agrees with the
following intuitive argument: as a result of heat conduction, different initial tem-
perature distributions eventually become homogeneous, hence the same, or almost
the same. Therefore we should be unable to recover the initial distribution from a
much later one. Thus heat conduction phenomena are semi-deterministic: the future
is determined by the current state while, generally speaking, the past is not.

It turns out that this heuristic principle can be supported by the following
precise mathematical statement about the heat equation: if the initial condition
ψ(x) is differentiable only finitely many times, then not only the series solution
formula does not make sense for t < 0, but no solution to the boundary value
problem with the initial condition ψ may exist on any interval −ε < t < 0.

Indeed, suppose that a function v(t, x) satisfies the heat equation on −ε < t ≤ 0
(and is therefore two times differentiable in x for any such t). Considering a moment
t0 < 0 as the initial one we can describe the function v(t, x) for t > t0 by the Fourier
series formula via the Fourier coefficients for v(t0, x). Thus the function v(0, x)
represented by this series at the moment t = 0 > t0 is differentiable infinitely many
times and does not coincide with ψ.

We see that all differentiable initial temperature distributions are going to live
forever but many of them do not have any past. This conclusion is a mathematically
accurate formulation of the semi-deterministic property of heat conduction.
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t 0

−ε

ψ

ut = xxu

Exercises 2.5.2.
(a) Professor Foulier from the College of Letters and Digits invented new short-term memory

hardware. In order to store a string of eight binary digits he suggested to divide a solid bar into
8 equal parts, heat each part to the temperature 1 or cool it to 0 depending on the corresponding

digit and then insulate the bar. For instance, by heating the left half of the bar to 1 and cooling
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the right half to 0, Foulier’s device stores the string 11110000 and is still able to read it off after

1 minute. How long will the device be able to store the string 10011001?
(b) Consider the zero-temperature boundary value problem for the heat equation ut = uxx

on the interval 0 ≤ x ≤ π. Find the maximal ε such that the solution to the equation exists in
the time interval −ε < t < 0 if the initial condition at t = 0 is given by the function sin2 x, sin3 x.

(c) Returning to diffusion of ink in an infinite tube of water, let us assume that the initial
mass distribution of the ink spot is given by a continuous function m(x) vanishing outside some

finite interval. Show that the function

u(t, x) =

Z ∞

−∞

m(ξ)√
4πt

e−(x−ξ)2/4tdξ

satisfies the diffusion equation ut = uxx for all x and 0 < t <∞. Change the integration variable

ξ to η = (x− ξ)/
√
t and show that

lim
t→0+

u(t, x) = m(x)

and thus the function u satisfies the initial condition m(x).

(d) Show that the solution u(t, x) in Problem (c) is differentiable infinitely many times at
any x and positive t. Deduce that the ink spot cannot evolve backward in time in accordance with

the diffusion equation if the initial distributionm(x) is differentiable only finitely many times.

SAMPLE MIDTERM EXAM

1. Expand the 2π-periodic function f(x) equal to 0 for 0 ≤ x < π and equal
to 1 for π ≤ x < 2π into a real Fourier series.

2. Find the solution to the ODE system

ẋ1 = 3x1 − 2x2

ẋ2 = 2x1 − x2

which satisfies the initial condition x1(0) = 0, x2(0) = 1.

3. The temperature distribution in a completely insulated solid bar of length π
and of thermal diffusivity α2 = 1 is given by the function u(0, x) = cos2 x− sin2 2x
for 0 ≤ x ≤ π. Find the temperature distribution u(t, x) at the moment t.

4. Five linear constant coefficients ODE systems ẋ = Ax have characteristic
polynomials det(λI − A):

(1) : λ2 + 2λ+ 1, (2) : λ2 + λ+ 1, (3) : λ2 + 1, (4) : λ2 − 2λ+ 1, (5) : λ2 − 1.

Four of the systems happened to have the following phase pictures:
A B C D

Match the pictures with the polynomials and sketch the missing fifth phase
picture.

Which of the five systems have asymptotically stable equilibria at x = 0 and
which do not?
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3.1. Classical problems of Linear Algebra

Nonlinear problems, such as finding maxima or inversion of functions, eval-
uation of areas and volumes, summation of infinite series, etc. are complicated.
Differential and Integral Calculus gives us plenty useful hints how to approach such
problems, but simple universal recipes among them are rare. To the contrary, Lin-
ear Algebra deals with very simple, linear or quadratic functions. Among numerous
questions one may ask about such functions there are, roughly speaking, only four
basic, similarly formulated problems which Linear Algebra can handle. It is com-
pleteness and simplicity of solutions to these problems what makes Linear Algebra
efficient in applications. The four model questions and the answers can be described
as follows.

Question 1. Given m linear functions in n variables,

y1 = a11x1 + ...+ a1nxn

...
ym = am1x1 + ...+ amnxn

,

what is the simplest form to which they can be transformed by linear changes of the
variables,

y1 = b11Y1 + ...+ b1mYm

...
ym = bm1Y1 + ...+ bmmYm

,
x1 = c11X1 + ...+ c1nXn

...
xn = cn1X1 + ...+ cnnXn

?

The answer is given by

The Rank Theorem. Any m linear functions in n variables can be transformed
by suitable linear changes of dependent and independent variables to exactly one of
the forms:

Y1 = X1, ..., Yr = Xr , Yr+1 = 0, ..., Ym = 0 where 0 ≤ r ≤ m, n.

The number r featuring in the answer is called the rank of the set of m linear
functions in question.

Question 2. Given a homogeneous quadratic function in n variables,

Q = q11x
2
1 + 2q12x1x2 + 2q13x1x3 + ...+ qnnx

2
n,

what is the simplest form it can be transformed to by a linear change of the variables

x1 = c11X1 + ...+ c1nXn

...
xn = cn1X1 + ...+ cnnXn

?

The Inertia Theorem. Any homogeneous quadratic function in n variables can
be transformed by a suitable linear change of the variables to exactly one of the
normal forms:

X2
1 + ...+X2

p −X2
p+1 − ...−X2

p+q where 0 ≤ p+ q ≤ n.

The numbers p and q of positive and negative squares in the normal form are
called inertia indices of the quadratic function in question. If the quadratic function
Q is known to be positive everywhere outside the origin, the Inertia Theorem tells
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us that in a suitable coordinate system Q assumes the form X2
1 + ...+X2

n with the
inertia indices p = n, q = 0.

Question 3. Given two homogeneous quadratic functions Q(x1, ..., xn) and
S(x1, ..., xn) of which the first one is known to be positive everywhere outside the
origin, what is the simplest form they can be simultaneously transformed to by a
linear change of the variables?

The Orthogonal Diagonalization Theorem. Any pair Q, S of homogeneous qua-
dratic functions in n variables, of which Q is positive everywhere outside the origin,
can be transformed by a linear changes of the variables to exactly one of the normal
forms

Q = X2
1 + ...+X2

n, S = λ1X
2
1 + ...+ λnX

2
n, where λ1 ≥ ... ≥ λn.

Question 4.Given a constant coefficient system of n linear homogeneous 1-st
order ordinary differential equations

ẋ1 = a11x1 + ...+ a1nxn

...
ẋn = an1x1 + ...+ annxn

,

what is the simplest form to which it can be transformed by a linear change of the
phase variables

x1 = c11X1 + ...+ c1nXn

...
xn = cn1X1 + ...+ cnnXn

?

The answer to this question is easier to formulate assuming that the coefficients
aij of the system as well as the coefficients cij in the change of variables are allowed
to be complex numbers.

Example. The system of ODEs

ẋ1 = λx1 + x2

ẋ2 = λx2 + x3

...
ẋm−1 = λxm−1 + xm

ẋm = λxm

is equivalent to the single m-th order ODE

(
d

dt
− λ)my(t) = 0,

y = x1,
d

dt
y − λy = x2, (

d

dt
− λ)2y = x3, ...,

and is called the Jordan cell of size m with the eigenvalue λ. Let us introduce a
Jordan system of several Jordan cells of sizes m1, ..., mr with eigenvalues λ1, ..., λr

similarly equivalent to the system

(
d

dt
− λ1)

m1y1 = 0, ..., (
d

dt
− λr)

mryr = 0

of r unlinked ODEs of orders m1, ..., mr.

The Jordan Theorem. Any constant coefficient system of n linear 1-st order
ODEs can be transformed by a complex linear changes of phase variables to exactly
one (up to reordering of cells) of the Jordan systems with m1 + ...+mr = n.
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Note that the classification list in the Jordan Theorem (as well as in the Or-
thogonal Diagonalization Theorem) is not discrete since Jordan systems depend on
the choice of complex numbers λ1, ..., λr. In fact the numbers can be found as the
roots of the characteristic polynomial det(λI−A) of the coefficient matrix A = [aij]
of the original ODE system. In the typical case when all roots are simple all Jordan
cells have size 1. Thus we arrive at the following corollary of the Jordan Theorem:

A typical constant coefficient system of n linear 1-st order ODEs can be trans-
formed by linear changes of phase variables to the form

Ẋ1 = λ1X1, ..., Ẋn = λnXn.

That’s about it. One may ask many other similarly looking questions, for
instance — about simultaneous classification of triples of quadratic forms or pairs
of ODE systems. Such problems are considered unsolvable: Linear Algebra helps
to solve only those problems which can be reduced to one of the previous four or
to their slightly more general variants. The catch here is not in the word general
but in the word reduced: each of the above theorems has numerous equivalent
reformulations and corollaries (we have seen this in the example of the Orthogonal
Diagonalization Theorem on the plane), and one needs quite a bit of experience in
order to recognize the questions which can be reduced to them and rule out those
where Linear Algebra is helpless.

There is however one more basic theorem (or better to say — formula) in Linear
Algebra which has no resemblance with the above classifications. It answers the
question which substitutions of the form

x1 = c11X1 + ...+ c1nXn

...
xn = cn1X1 + ...+ cnnXn

are indeed changes of the variables and therefore allow to express X1, ..., Xn linearly
via x1, ..., xn. It turns out that there exists a remarkable function det of n2 variables
c11, ..., cnn which vanishes if and only if the square matrix C = [cij] is not invertible.
We begin our study of higher dimensional linear algebra with properties of matrices
and determinants.

Exercises 3.1.
(a) Formulate The Rank Theorem in the particular case of two linear functions in two

variables. Using the theorem classify linear transformations from the (x1, x2)-plane to (y1, y2)-
plane up to linear changes of coordinates in both planes. Prove The Rank Theorem in the case

m = n = 2.
(b) Formulate The Inertia Theorem in the particular case n = 2 and compare the statement

with results of Chapter 1.
(c) Show that X2

1 + ... + X2
n is the only one of the normal forms of The Inertia Theorem

which is positive everywhere outside the origin.
(d) Prove that the special case n = 2 of The Orthogonal Diagonalization Theorem is equiv-

alent to the Orthogonal Diagonalization Theorem of Chapter 1.
(e) Using the binomial formula show that that the Jordan cell of size m with the eigenvalue

λ can be written as the m-th order ODE

y(m) −
“m

1

”

λy(m−1) +
“m

2

”

λ2y(m−2) + ...+ (−1)m−1
“ m

m− 1

”

λm−1y′ + (−1)my = 0.

(f) Show that y(t) = eλt(c0 + tc1 + ... + cm−1t
m−1) is the general solution to the ODE

( d
dt

− λ)my = 0.

(g) Specialize the formulation of the Jordan theorem to the case of n = 2 linear ODEs

ẋ = Ax.
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(h) Prove that any complex 2 × 2-matrix is similar to either a diagonal matrix

»

λ1 0
0 λ2

–

or to the Jordan cell

»

λ 1
0 λ

–

, where λ1, λ2, λ are complex numbers.

3.2. Matrices and Determinants

In our brief introduction to arrays of numbers and their determinants we do
not specify what kind of numbers we use: real, complex or rational numbers will
do equally well.

3.2.1. Matrix Algebra. A rectangular array of numbers with m rows and
n columns is called an m × n-matrix. The entry of the matrix A located on the
intersection of the i-th row with the j-th column is denoted aij.

The sum C = A+B of m× n-matrices A and B is an m× n-matrix defined by
addition of corresponding entries: cij = aij + bij . A scalar multiple C = λA of an
m× n-matrix A is similarly defined by cij = λaij.

The matrix product AB is defined only when the number of columns of A is
equal to the number of rows of B.

Example. (a) The product ab of the 1 × n-matrix a = [a1, ..., an] and the

n× 1-matrix b =





b1
..
bn



 is defined as the 1 × 1-matrix c = a1b1 + ...+ anbn.

More generally, the product C = AB of an m×n-matrix A with an n×l-matrix
B is an m× l-matrix C defined in such a way that the entry cij in the i-th row and
j-th column is equal to the product of the i-th row of A with the j-th column of B:

cij = ai1b1j + ...+ ainbnj =

n
∑

k=1

aikbkj, i = 1, ..., m, j = 1, ..., l.

Examples. (b) The n× n-matrix

In =









1 0 ... 0
0 1 ... 0

...
0 ... 0 1









is called the identity matrix and satisfies AIn = A, InB = B. The products InA
and BIn are defined only when m = n and n = l.

(c) Substitution of n linear forms in l variables,

y1 = b11x1 + ...+ b1lxl, ..., yn = bn1x1 + ...+ bnlxl,

into m linear forms in n variables,

z1 = a11y1 + ...+ a1nyn, ..., zm = am1y1 + ...+ amnyn,

yields m linear forms in l variables,

z1 = c11x1 + ...+ c1lxl, ..., zm = cm1x1 + ...+ cmlxl,

with the coefficient matrix C equal to the matrix product AB.

The associative and distributive rules of matrix arithmetics familiar from the
theory of matrices of sizes ≤ 2 remain true for arbitrary sizes:

(AB)C = A(BC), (A +B)C = AC +BC, C(A +B) = CA+ CB
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whenever the sizes of A,B, C allow to form the expressions. We leave verification
of these formulas to the reader.

A square n×n-matrix A is called invertible if there exists an n×n-matrix B such
that AB = In = BA. If such a B exists, it is unique. Indeed, for another matrix
B′ satisfying AB′ = I = B′A we find B′ = B′I = B′(AB) = (B′A)B = IB = B.
This allows us to introduce the notation A−1 for the matrix B (when it exists) and
call A−1 the inverse matrix.

Example. (d) Using the matrix notation x and x′ for the columns of the vari-
ables x1, ..., xn and x′1, ..., x

′
n, we can encode the linear substitution

x1 = a11x
′
1 + ...+ a1nx

′
n, ..., xn = an1x

′
1 + ...+ annx

′
n

by the matrix product formula x = Ax′. We say that the substitution is a change
of variables if there exists a linear substitution x′ = Bx inverse to it: A(Bx) =
x, B(Ax′) = x′. Thus x = Ax′ is a change of variables if and only if the matrix A
is invertible, in which case the inverse change of variables is given by the formula
x′ = A−1x.

Exercises 3.2.1.

(a) Let

A =

»

1 2 3
1 −1 1

–

, B =

»

1 2
3 4

–

, C =

2

4

1 2

−2 1
0 −1

3

5 .

Compute those of the products

(AB)C,A(BC), (BA)C,B(AC), (BC)A,B(CA), (CB)A,C(BA), (CA)B,C(AB), (AC)B,A(CB).

which are defined.

(b) Verify the statement of Example (c).
(c) Prove that matrix multiplication is associative: (AB)C = A(BC).

(d) Check the distributive laws of matrix algebra.
(e) Show that if AB is defined then BtAt is also defined and is equal to (AB)t. (Here t is the

operation of matrix transposition defined by reflecting the arrays about the principal diagonal.)
(f) A square matrix A = [aij ] is called upper-triangular if aij = 0 for all i < j and lower-

triangular if aij = 0 for all i > j. Prove that products of upper-triangular matrices are upper-
triangular and products of lower-triangular matrices are lower-triangular.

(g) A square matrix A = [aij ] is called diagonal if aij = 0 for all i 6= j. Which diagonal
matrices are invertible?

(h) Let A,B be invertible n × n matrices. Prove that AB is also invertible and (AB)−1 =
B−1A−1.

(i) If AB is invertible, does it mean that A, B and BA are invertible? Consider separately
the cases of square and rectangular matrices A,B.
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3.2.2. The determinant function. Let A =





a11 ... a1n

...
an1 ... ann



 be a square

n× n matrix. The determinant detA is a number defined by the formula

detA =
∑

σ

ε(σ)a1σ(1)a2σ(2)...anσ(n).

Here σ is a permutation of the indices 1, 2, ..., n. A permutation σ can be considered
as an invertible function i 7→ σ(i) from the set of n elements {1, ..., n} to itself.
We use the functional notation σ(i) in order to specify the i-th term in the string
(σ(1), ..., σ(n)) of n indices reordered by σ. Thus each elementary product in the
determinant formula contains exactly one matrix element from each row, and these
elements are chosen from n different columns. The sum is taken over all n! ways of
making such choices. The coefficient ε(σ) in front of the elementary product equals
1 or −1 and is called the sign of the permutation σ. We will explain the general
rule of the signs after the following examples.

Examples. (a) For n = 1 the determinant of A = [a11] equals a11.
(b) For n = 2

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a12a21.

(c) For n = 3 we have 3! = 6 summands
∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

=

a11a22a33 − a12a21a33 + a12a23a31 − a13a22a31 + a13a21a32 − a11a23a32

corresponding to the permutations (123), (213), (231), (321), (312), (132). The rule
of signs is schematically shown on the picture.

The rule of signs is based on some important properties of permutations. We
summarize the properties here and leave their proof to curious readers (see Exer-
cises).

• Each permutation σ on {1, ..., n} can be represented as a composition
σ = τ1...τN of transpositions τ which swap two elements and leave the
other elements in their places.

• The way of representing σ as a sequence of transpositions is not unique,
and different representations of the same σ may have different lengths N
but the parity of N does not depend on the choice of the representation.

• We put ε(σ) = (−1)N . Permutations represented by even number of
transpositions are called even and have ε(σ) = 1, and those represented
by odd number of transpositions are called odd and have ε(σ) = −1. The
result of composing two permutations is even if both are even or both are
odd, and it is odd if one is even and the other is odd: ε(σσ′) = ε(σ)ε(σ′).
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• We say that σ inverses the pair of indices i < j if σ(i) > σ(j). The
total number l(σ) of pairs i < j which σ inverses is called the length of
the permutation σ. Even (odd) permutations have even (odd) length:
ε(σ) = (−1)l(σ) .

Examples. (d) The permutation (4321) inverses all the 6 pairs of indices and
has therefore length l = 6. Thus the elementary product a14a23a32a41 will occur in
the definition of 4 × 4-determinants with the sign ε = (−1)6 = +1.

(e) Any transposition is odd (why?) That is why the term a12a21 occurs in
2 × 2-determinants with the negative sign.

(f) Permutations inverse to each other have the same parity since their compo-
sition is the identity permutation which is even. This shows that the definition of
determinants can be rewritten “by columns”:

detA =
∑

σ

ε(σ)aσ(1)1...aσ(n)n.

Indeed, each summand in this formula is equal to the summand in the original
definition corresponding to the permutation σ−1, and vice versa.

(g) The permutations (123), (213), (231), (321), (312), (132) have lengths l =
0, 1, 2, 3, 2, 1 and respectively — signs ε = +1,−1,+1,−1,+1,−1. Notice that each
next permutation here is obtained from the previous one by an extra flip.

Exercises 3.2.2.

(a) Compute det(λI − A) where

A =

2

4

0 1 1
1 0 −1

−1 −1 0

3

5 .

Compute determinants of diagonal square matrices.
(b) Do the products a13a24a23a41a35, a21a13a34a55a42 occur in the definition of determi-

nants of order 5?
(c) Find the signs of the elementary products a23a31a42a56a14a65,

a32a43a14a51a66a25 in the definition of determinants of order 6.
(d) List all the 24 permutations of {1,2, 3,4}, find the length and the sign of each of them.

(e) Prove that the identity permutation is the only permutation of {1,2, ..., n} which has
length l = 0. What is the maximal length l(σ) of permutations on the set {1, ..., n}?

(f) Show that any transposition τ has odd length l(τ ).

(g) Let σ be a permutation of length l > 0. Show that in the string (σ(1), ..., σ(n)) there is
a pair σ(i), σ(i+ 1) of nearby terms such that σ(i) > σ(i+ 1).

(h) Show that composing σ with the transposition

τ (i) = (1, ..., i− 1, i+ 1, i, i+ 2, ..., n)

of nearby indices reduces the length by 1 if σ(i) > σ(i+ 1):

l(στ (i)) = l(σ) − 1.

Deduce that any permutation σ can be written as a composition of l(σ) transpositions τ (1), ...,

τ (n−1) of nearby indices.

(i) Show that composing σ with the transposition τ (i) increases the length by 1 if σ(i) <
σ(i+ 1):

l(στ (i)) = l(σ) + 1.

Deduce that for any two permutations σ, σ′ the length l(σσ′) has the same parity as the sum
l(σ) + l(σ′).

(j) Deduce from previous exercises that for compositions σ = t1...tN of any transpositions l(σ)

and N have the same parity, and that the sign ε(σ) = ±1 of permutations defined as (−1)l(σ) =
(−1)N satisfies

ε(σσ′) = ε(σ)ε(σ′).
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3.2.3. Properties of determinants. Reflection of a matrix A = [aij] about
the principal diagonal produces the matrix At = [aji] called transposed to A.

(i) Transposed square matrices have equal determinants: detAt = detA. This
follows from Example 3.2.2(f).

We will formulate below properties of determinants in terms of the columns
ai of the n × n-matrix A = [a1, ..., an]. The same properties are true for rows
as well since transposition of A transforms rows to columns without changing the
determinant.

(ii) Interchanging any two columns changes the sign of the determinant:

det[..., aj, ..., ai, ...] = −det[..., ai, ..., aj, ...].

Indeed, the operation replaces each permutation in the definition of determi-
nants by its composition with the transposition of the indices i and j and thus
changes the parity of the permutation.

This property of the determinant considered as a function of n columns is called
total antisymmetry. It shows that a matrix with two equal columns has zero deter-
minant. It also allows us to formulate further column properties of determinants
referring to the first column only since the properties of all columns are alike.

(iii) Multiplication of a column by a number multiplies the determinant by this
number:

det[λa1, a2, ..., an] = λdet[a1, a2, ..., an].

Indeed, this operation simply multiplies each of the n! elementary products by
the factor of λ.

This property shows that a matrix with a zero column has zero determinant.

(iv) The determinant function is additive with respect to each column:

det[a′
1 + a′′

1 , a2, ..., an] = det[a′
1, a2, ..., an] + det[a′′

1 , a2, ..., an].

Indeed, each elementary product contains exactly one factor picked from the
1-st column and thus splits into the sum of two elementary products
a′σ(1)1aσ(2)2...aσ(n)n and a′′σ(1)1aσ(2)2...aσ(n)n. Summing up over all permutations

yields the sum of two determinants on the right hand side of the formula.
The properties (iv) and (iii) together mean that the determinant function is

linear with respect to each column separately. Together with the property (ii) they
show that adding a multiple of one column to another one does not change the
determinant of the matrix. Indeed,

det[a1 + λa2, a2, ...] = det[a1, a2, ...] + λdet[a2, a2, ...] = det[a1, a2, ...]

since the second determinant has two equal columns.
The determinant function shears all the above properties with the identically

zero function. The following property shows that these functions do not coincide.

(v) det I = 1.
Indeed, since all off-diagonal entries of the identity matrix are zeroes, the only

elementary product in the definition of detA that survives is a11...ann = 1.
The same argument shows that the determinant of any diagonal matrix equals

the product of the diagonal entries. It is not hard to generalize the argument in
order to see that the determinant of any upper- or lower-triangular matrix (that is a
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square matrix with zero entries everywhere below, or above the principal diagonal)
equals the product of the diagonal entries too. One can also deduce this from the
following factorization property valid for block-triangular matrices.

Consider an n× n-matrix

[

A B
C D

]

subdivided into four matrices A,B, C,D

of sizes m ×m, m× l, l ×m and l × l respectively (where of course m+ l = n).
We will call such a matrix block-triangular if C = 0. We claim that

det

[

A B
0 D

]

= detA detD.

Indeed, consider a permutation σ of {1, ..., n} which sends at least one of the
indices {1, ..., m} to the other part of the set, {m+1, ..., m+ l}. Then σ must send
at least one of {m+1, ..., m+l} back to {1, ..., m}. This means that any elementary
product in our n×n-determinant which contains a factor from B must contain also
a factor from C and hence vanishes if C = 0. Thus only the permutations σ which
permute {1, ..., m} separately from {m+1, ..., m+ l} contribute to the determinant
in question. Elementary products corresponding to such permutations factor into
elementary products from detA and detD and eventually add up to the product
detAdetD.

Of course, the same factorization holds true if B = 0 instead of C = 0.
We will use the factorization formula in the proof of the following multiplicative

property of determinants.

Theorem. The determinant of the product of two square matrices is equal to
the product of their determinants: det(AB) = (detA)(detB).

Proof. Consider the auxiliary 2n×2n matrix

[

A 0
−I B

]

with the determinant

equal to the product detAdetB according to the factorization formula. We begin
to change the matrix by adding to the last n columns linear combinations of the first
n columns with such coefficients that the submatrix B is eventually replaced by zero
submatrix. Thus, in order to kill the entry bkj we must add the bkj-multiple of the
k-th column to the n + j-th column. According to the properties of determinants
(see (iv)) these operations do not change the determinant but transform the matrix

to the form

[

A C
−I 0

]

. We leave the reader to check that the entry cij of the

submatrix C in the upper right corner equals ai1b1j + ...+ainbnj so that C = AB is
the matrix product! Now, interchanging the i-th and n+ i-th columns, i = 1, ..., n,
we change the determinant by the factor of (−1)n and transform the matrix to the

form

[

C A
0 −I

]

. The factorization formula applies again and yields detC det(−I).
We conclude that detC = detAdetB since det(−I) = (−1)n compensates for the
previous factor (−1)n.

Corollary. Invertible matrices have non-zero determinants.

Indeed, detAdetA−1 = det I = 1 and hence detA 6= 0. The converse state-
ment — that matrices with non-zero determinants are invertible — is also true due
to the explicit formula for the inverse matrix to be described in the next section.
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Exercises 3.2.3.

(a) Compute the determinants

˛

˛

˛

˛

13547 13647
28423 28523

˛

˛

˛

˛

,

˛

˛

˛

˛

˛

˛

246 427 327

1014 543 443
−342 721 621

˛

˛

˛

˛

˛

˛

.

(b) Professor Foulier writes his office and home phone numbers as a 7 × 1-matrix O and a
1 × 7-matrix H respectively. Help him to compute det(OH).

(c) How does a determinant change if all the columns are rewritten in the opposite order?
(d) Solve the equation

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1 x x2 ... xn

1 a1 a2
1 ... an1

1 a2 a2
2 ... an2

...
1 an a2

n ... ann

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

= 0,

where all a1, ..., an are distinct.
(e) A square matrix A = [aij ] is called anti-symmetric if At = −A (that is if aij = −aji for

all i, j). Prove that if n is odd then any anti-symmetric n× n-matrix has zero determinant.

(f) Prove that similar matrices have equal characteristic polynomials:

det(λI −A) = det(λI − C−1AC).

(g) Give another, more conceptual proof of the Theorem. Namely, show first that any function
f [a1, ...,an] of n columns linear in each of them has the form

P

ai11...ainnf [ei1, ...,ein ]. Deduce

that such a function, if totally antisymmetric, must be proportional to the determinant func-
tion: f [a1, ...,an] = det[a1, ...,an]f [e1, ...,en]. Next, show that the function det[Ba1, ...,Ban],

where B is a fixed square matrix, is linear in each ai and is totally antisymmetric. Deduce
that det[Ba1, ...,Ban] = det[a1, ...,an] det[Be1, ..., Ben]. Finally, let ai be the columns of A.

Show that Bai are the columns of BA, Bei are the columns of B and conclude that det(BA) =
(detA)(detB).

3.2.4. Cofactors. In the determinant formula for an n × n-matrix A each
elementary product ±a1σ(1)... begins with one of the entries a11, ..., a1n of the first
row. The sum of all terms containing a11 in the 1-st place is the product of a11

with the determinant of the (n− 1) × (n − 1)-matrix obtained from A by crossing
out the 1-st row and the 1-st column. Similarly, the sum of all terms containing
a12 in the 1-st place looks like the product of a12 with the determinant obtained
by crossing out the 1-st row and the 2-nd column of A. In fact it differs by the
factor of −1 from this product, since switching the columns 1 and 2 changes signs
of all terms in the determinant formula and interchanges the roles of a11 and a12.
Proceeding in this way with a13, ..., a1n we arrive at the cofactor expansion formula
for detA which can be stated as follows.

The (n − 1)-determinant of the submatrix in A obtained by crossing out the
row i and the column j is called the (ij)-minor of A. We denote it Mij. The (ij)-
cofactor Aij of the matrix A is the number which differs from the minor Mij by the
factor ±1: Aij = (−1)i+jMij. The chess-board of the signs (−1)i+j is shown on
the picture. With these notations, the cofactor expansion formula reads:

detA = a11A11 + a12A12 + ...+ a1nA1n.

Example. (a)
∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

− a12

∣

∣

∣

∣

a21 a23

a31 a33

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

.
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Using the properties (i) and (ii) of determinants we can adjust the cofactor
expansion to the i-th row or j-th column:

detA = ai1Ai1 + ...+ ainAin = a1jA1j + ...+ anjAnj, i, j = 1, ..., n.

These formulas reduce evaluation of n×n-determinants to that of (n−1)×(n−1)-
determinants and can be useful in recursive computations.

Furthermore, we claim that applying the cofactor formula to the entries of the
i-th row but picking the cofactors of another row we get zero sum:

ai1Aj1 + ...+ ainAjn = 0 if i 6= j.

Indeed, construct a new matrix Ã replacing the j-th row by a copy of the i-th
row. This “forgery” does not change the cofactors Aj1, ..., Ajn (since the j-th row
is crossed out anyway) and yields the cofactor expansion ai1Aj1 + ...+ ainAjn for

det Ã. But Ã has two identical rows and hence — zero determinant. The same
arguments applied to the columns yield the dual statement

a1iA1j + ...+ aniAnj = 0 if i 6= j.

All the above formulas can be summarized in a single matrix identity. Let us
introduce the n× n-matrix adj(A) adjoint to A by placing the cofactor Aij on the
intersection of j-th row and i-th column (in other words, adj(A) = [Aij]

t).

Example. (b) adj

[

a b
c d

]

=

[

d −b
−c a

]

.

Cofactor Theorem. A adj(A) = (detA) I = adj(A) A.

Corollary. If detA 6= 0 then A is invertible and A−1 = (detA)−1 adj(A).

We conclude our introduction to determinants by an application to systems of
linear equations. Let Ax = b be a system of n linear equations in n unknowns
x1, ..., xn written in the matrix form, and let a1, ..., an be the columns of A.

Corollary. (Cramer’s rule.) If detA 6= 0, then the system of linear equations
Ax = b has a unique solution given by the formulas:

x1 =
det[b, a2, ..., an]

det[a1, ..., an]
, ..., xn =

det[a1, ..., an−1,b]

det[a1, ..., an]
.

Indeed, when detA 6= 0, the matrix A is invertible, and the matrix equation
Ax = b implies x = A−1b. Thus the solution is unique, and xi = (detA)−1(A1ib1+
...+Anibn) according to the cofactor formula for the inverse matrix. But the sum
b1A1i + ...+ bnAni is the cofactor expansion for det[a1, ..., ai−1,b, ai+1, ..., an] with
respect to the i-th column.

Remark. In the case n = 2 Cramer’s rule coincides with the determinant
formulas for solutions of linear systems mentioned in 1.5.2. The use of these nice-
looking formulas for numerical solutions of linear systems with n > 3 unknowns is
not recommended.
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ij =A (-1)
i+j

Mij

1 2 3 4 5

1

2
3
4
5

+    -   +    -    +

-    +   -    +    -

+    -   +    -    +
-    +   -    +    -
+    -   +    -    + 

(-1)
i+j

i j

a a

a a

a

Mij =

11 1n

n1 nn

ij

Minors

Cofactors

Exercises 3.2.4.

(a) Compute determinants using cofactor
expansions:

˛

˛

˛

˛

˛

˛

˛

˛

1 2 2 1

0 1 0 2
2 0 1 1

0 2 0 1

˛

˛

˛

˛

˛

˛

˛

˛

,

˛

˛

˛

˛

˛

˛

˛

˛

2 −1 0 0

−1 2 −1 0
0 −1 2 −1

0 0 −1 2

˛

˛

˛

˛

˛

˛

˛

˛

.

(b) Compute inverses of the following ma-

trices using the Cofactor Theorem:
2

4

1 2 3

3 1 2
2 3 1

3

5 ,

2

4

1 1 1

0 1 1
0 0 1

3

5 .

(c) Compute
2

6

6

4

1 −1 0 0
0 1 −1 0

0 0 1 −1
0 0 0 1

3

7

7

5

−1

.

(d) Using Cramer’s rule solve the systems

of linear equations Ax = b where A is one of
the matrices of Exercise (b) and b = [1,0,1]t.

(e) Express det(adj(A)) of the adjoint ma-

trix via detA.
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3.3. Vectors and linear systems

3.3.1. 3D and beyond. We do not have to abandon our common sense and
everyday experience in order to encounter higher-dimensional spaces.

Examples. (a) The space of visual colors has dimension 3. Indeed, any color
can be mixed from red, yellow, blue and is specified by corresponding 3 intensities.
The space of tastes has dimension 4: each taste is specified by intensities of sweet,
salty, sour and bitter.

(b) Efficient management. Maximization of profit by means of reallocation of
available resources under existing constraints: this task, when expressed mathe-
matically, usually reduces to the problem of finding the maximum of a given linear
function on a given polyhedral region. The dimension of the region equals the
number of parameters the manager is able to control. When this number does not
exceed 3, the maximum is most surely achieved by firing the manager.

(c) Positions of 11 soccer players in the field can be represented by 11 points in
the plane. The position of the whole team is therefore a point in the 22-dimensional
space. For the same reason, the phase space of n competing species has dimension
n. The mass-spring system consisting of n masses connected by springs oscillates in
the 6n-dimensional phase space since the current position in space and the current
velocity vector of each mass is needed in order to determine the motion unambigu-
ously.

(d) Physical colors (or sounds) form a space of infinite dimension: the intensity
of each contributing frequency should be specified. Similarly, the phase space of
the heat equation is infinite-dimensional since the current temperature distribution
is characterized by an infinite sequence of Fourier coefficients.

Relying on the visual experience we could easily extend our geometrical ap-
proach to vectors in the plane to the case of vectors in the space, but our geometrical
intuition seems to fail beyond 3D. There are two ways out: we can try to train our
geometrical intuition to percept higher-dimensional images, or we can substitute
for geometrical images their algebraic or analytic expressions (such as coordinates
of vectors) and rely only on conclusions derived by coordinate computations. In a
sense, we intend to do both. Namely,

• we define n-vectors as columns x =





x1

...
xn



 of n numbers;

• introduce componentwise addition and multiplication by scalars:

x + y =





x1 + y1
...

xn + yn



 , αx =





αx1

...
αxn



 ;

• and denote by R
n the set of all n-vectors provided with these algebraic

operations.

Now on all mathematical facts about n-vectors are going to rely on these definitions
and should be derived from them by formal algebraic arguments. At the same time,
working with algebraically defined objects, we intend to develop a terminological
scheme which is deliberately geometrical and appealing to our visual intuition.
To begin, we call Rn the space of n-vectors (or the coordinate n-space, or the
Euclidean n-space) and, depending on a context, will often refer to elements of Rn
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as radius-vectors or points in this space. Eventually, when geometrically formulated
and algebraically verified facts about the n-space accumulate, one usually discovers
that geometrical intuition is as much supportive in higher dimensions as it is in
2D or 3D. Attempting to break the barrier, let us compare geometry of 3- and
4-dimensional cubes.

Examples. (e) Consider the cube in R3 consisting of all points with coordinates
−1 ≤ xi ≤ 1, i = 1, 2, 3. It has 8 vertices (±1,±1,±1) and 6 faces situated in the
planes xi = ±1 , i = 1, 2, 3. The centers of the faces are points with coordinates
±(1, 0, 0),±(0, 1, 0),±(0, 0, 1). They can be considered as vertices of the octahe-
dron, a regular polyhedron inscribed into the cube. The octahedron and the cube
have the same symmetries: any linear transformation of the space that preserves
the cube preserves therefore the inscribed octahedron, and vice versa. Consider
now the 4 vertices of the cube with the product of coordinates equal to 1, that
is (1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1). We claim that the polyhedron with
these vertices is a regular tetrahedron. Indeed, all pairwise distances between these
4 points are the same and equal to 2

√
2 (for instance, the distance between the 2-nd

and 3-rd points is the length of the vector (0,−2, 2) which is
√

0 + 4 + 4 =
√

8).
The angles π/3 between any two edges in each face of the tetrahedron can be found
from inner products of corresponding vectors.

(f) Consider now the cube in R4 defined by the inequalities −1 ≤ xi ≤ 1, i =
1, 2, 3, 4. It has 16 vertices (±1,±1,±1,±1) and 8 faces of dimension 3 situated in
the 3D-planes xi = ±1 and isometric (= “identical”) to the 3D-cube each. Cen-
ters of the 3D-faces are the unit vectors situated on the 4 pairwise perpendicular
coordinate axes: ±(1, 0, 0, 0),±(0, 1, 0, 0),±(0, 0, 1, 0),±(0, 0, 0, 1) (see the last pic-
ture on the nect page). They are the vertices of the 4-dimensional “octahedron”,
a regular polyhedron inscribed into the 4D-cube which actually has 16 faces iso-
metric to a 3D-tetrahedron. Let us now examine the vertices with the product of
coordinates equal to 1. We should be surprised to find out that there are 8 such
vertices, ±(1, 1, 1, 1), ±(1, 1,−1,−1), ±(1,−1, 1,−1),±(1,−1,−1, 1), so that they
do not form a 4-dimensional analogue of the tetrahedron (the latter would have 5
vertices). The 8 vertices are split into 4 pairs of opposite vectors, have the same
distance

√
1 + 1 + 1 + 1 = 2 to the origin, and the 4 lines carrying these 4 pairs of

vectors are perpendicular to each other. Indeed, all the 6 corresponding inner prod-
ucts are zeroes: 1·1+1·1+1·(−1)+1·(−1) = 0, 1·1+1·(−1)+(−1)·1+(−1)·(−1) = 0,
etc. Therefore the 4D-polyhedron formed by these 8 vertices is isometric to the 4D-
“octahedron” with the vertices ±(2, 0, 0, 0),±(0, 2, 0, 0),±(0, 0, 2, 0),±(0, 0, 0, 2) (it
differs by the scale factor of 2 from the 4D-“octahedron” formed by the centers of
cube’s faces). This result could not be predicted on the basis of our geometrical
intuition, that is by analogy with the Example (e). It becomes a singular fact of
4D geometry when formulated as such and verified by algebra.

Exercises 3.3.1.
(a) How does the length of the diagonal in the n-dimensional unit cube depend on n? Find

the angles the diagonal makes with the edges of the cube.
(b) The n-dimensional simplex is defined as a subset in Rn+1 given by the equation x1 + ...+

xn+1 = 1 and by the inequalities x1, ..., xn+1 ≥ 0. Sketch the simplex for n = 1,2,3. How many
edges are there in the n-dimensional simplex? Find angles between the edges.
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3.3.2. Linear (in)dependence and bases. Any n-vector x can be uniquely
written as a linear combination of the unit coordinate vectors e1, ..., en:





x1

...
xn



 = x1





1
0
...



 + ...+ xn





...
0
1



 .

A set of n vectors f1, ..., fn in Rn is called a basis if any n-vector can be uniquely
represented as a linear combination of f1, ..., fn. The conditions can be and uniquely
in this definition deserve separate study.

Let v1,v2, ... be a set of vectors in Rn. We call this set linearly independent if no
vector from Rn has two different representations as linear combinations of vectors
from the set. Another way to say this: no two linear combinations of vectors from
the set are equal to each other. Yet another way: if two linear combinations are
equal, α1v1 + ... + αNvN = β1v1 + ... + βNvN , then their coefficients must be
the same: α1 = β1, ..., αN = βN . Subtracting one of the linear combinations from
the other we arrive at a few more reformulations: if γ1v1 + ...+ γNvN = 0 then
necessarily γ1 = ... = γN = 0. In other words, v1, ...,vN are linearly independent
if the vector 0 can be written as their linear combination only in the trivial way:
0 = 0v1 + ...+ 0vN . Equivalently, any non-trivial linear combination of the vectors
is not equal to zero: γ1v1 + ...+ γNvN 6= 0 if at least one of the coefficients γi 6= 0.

Of course, vectors v1,v2, ... are called linearly dependent if they are not linearly
independent. Yet it is useful to have an affirmative reformulation of this condition:
the vectors v1,v2... are linearly dependent if and only if some non-trivial linear
combination of these vectors equals 0: γ1v1 + ... + γNvN = 0. The linear com-
bination being non-trivial means that at least one of the coefficients is non-zero.
Dividing by this coefficient and moving all other summands to the other side of the
equality we obtain the following equivalent formulation: a set of vectors is linearly
dependent if and only if one of the vectors is a linear combination of the others. We
advise the reader to check at this point that any set containing the vector 0 is lin-
early dependent, any set containing two proportional vectors is linearly dependent,
adding new vectors to a linearly dependent set yields a linearly dependent set, any
3 vectors in R2 are linearly dependent, and 3 vectors in R3 are linearly dependent
only if all three are contained in some plane passing through the origin.

The following statement is a key to vector geometry.

Main Lemma. Any n+ 1 vectors in Rn are linearly dependent.

Proof. Any two vectors on the line R1 are proportional and therefore linearly
dependent. We intend to prove the lemma by deducing from this that any 3 vectors
in R2 are linearly dependent, then deducing from this that any 4 vectors in R3

are linearly dependent, and so on. Thus we only need to prove that if any n
vectors in Rn−1 are linearly dependent then any n + 1 vectors in Rn are linearly
dependent too. To this end, consider n-vectors v1, ...,vn+1 as n-columns. If the
last entry in each column is 0, then v1, ...,vn+1 are effectively n−1-columns, hence
some nontrivial linear combination of v1, ...,vn equals 0 and thus the set is linearly
dependent. Now consider the case when at least one column has non-zero last entry.
Reordering the vectors we may assume that it is the column vn+1. Subtracting the
column vn+1 with suitable coefficients α1, ..., αn from v1, ...,vn we form n new
columns u1 = v1 − α1vn+1, ...,un = vn − αnvn+1 which all have the last entries
equal to zero. Thus u1, ...,un are effectively n−1-vectors and are therefore linearly
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dependent: β1u1 + ... + βnun = 0 for some β1 , ..., βn not all equal to 0. Thus
β1v1 + ...+ βnvn − (α1β1 + ...+αnβn)vn+1 = 0 and hence v1, ...,vn+1 are linearly
dependent too.

Corollary 1. Any m > n vectors in Rn are linearly dependent.

Let us now analyze the can be condition in the definition of a basis. Given
a set of vectors v1,v2, ..., we will denote by Span(v1,v2...) the set of all linear
combinations of the vectors from the set. In other words, Span(v1 ,v2, ...) consists
of all n-vectors which can be represented as linear combinations of v1,v2, .... For
instance, two vectors v1,v2 in R3 are always contained in some plane P passing
through the origin, and Span(v1 ,v2) = P if v1 and v2 are not proportional to each
other. We say that v1,v2, ... span Rn (or that Rn is spanned by v1,v2, ...) if any
n-vector can be represented as their linear combination: Span(v1 ,v2, ...) = Rn.

Corollary 2. If k < n then Span(v1 , ...,vk) 6= Rn.

Proof. Indeed, if Span(v1, ...,vk) = Rn, we can represent the coordinate unit
vectors ej as linear combinations ej = a1jv1 + ...+ akjvk. The coefficient matrix
[aij] has n columns of size k. If k < n, the columns are linearly dependent by
Corollary 1 and hence α1ai1 + ... + αnain = 0 for all i = 1, ..., k and suitable
α1, ..., αn not all equal 0. Then the non-trivial linear combinationα1e1+...+αnen =
(
∑

j αja1j)v1 + ...+(
∑

j αjakj)vk = 0v1 + ...+0vk = 0 in contradiction with linear

independence of e1, ..., en. Thus Span(v1, ...,vk) 6= Rn.

Returning now to the definition of a basis we see that any linearly independent
set which spans Rn must consist of exactly n vectors and forms a basis in Rn.

Bases and coordinate systems in Rn are in a natural correspondence to each
other. Given a basis f1, ..., fn, we can introduce coordinates of a vector x with
respect to this basis as the coefficients x′1, ..., x

′
n of that unique linear combination

x′1f1+...+x′nfn which is equal to x. The columns of the transition matrix A relating
the coordinates with respect to the bases e and f as x = Ax′ are exactly the vectors
f1, ..., fn (in the original basis). It is easy to see that expressing the vectors e1, ..., en

by columns of their coordinates with respect to the basis f we obtain the matrix
inverse to A. Thus bases in Rn are exactly the n-tuples of columns of invertible
n× n-matrices.

Exercises 3.3.2.

(a) Show that any subset of a linearly independent set of vectors is linearly independent.
(b) For each of the 16 subsets in the set of the four 4-vectors

v1 = (1,1,−1,−1), v2 = (1,−1, 1,−1), v3 = (1,−1,−1, 1), v4 = (1,5,−1,−5)

find out if the subset is linearly dependent, and if yes — represent one of the vectors as a linear

combination of the others. Is the set Span(v1,v2,v3,v4) finite? Describe Span(v1,v2,v3,v4)
by a linear equation in R4 of the form a1x1 + a2x2 + a3x3 + a4x4 = 0.

(c) Are the 5-vectors

(1,1, 1,1,1), (1,2,4, 8,16), (1,3,9,27,81), (1,4,16,64,256), (1,5,25,125,625)

linearly independent? Do they form a basis in R5? Why?
(d) Show that the polynomials 1, t, t2, ..., tn, ... form a linearly independent set. The same

— about the functions eint, n = 0,±1,±2, ... Are the functions sin t, sin(t + π/5), sin(t + π/3)
linearly dependent? The same — about the functions sin2 t, sin2(t+ π/5), sin2(t+ π/3).

(e) Let us identify the set of all polynomials a0t
n + a1t

n−1 + ...+ an of degree ≤ n with the
space Rn+1 of (n+ 1)-tuples of coefficients (a0, ..., an). Let t0, ..., tn be distinct numbers. Prove

that the degree n polynomials
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L0 = (t − t1)(t− t2)...(t− tn), L1 = (t − t0)(t− t2)(t− t3)...(t− tn),

L2 = (t − t0)(t− t1)(t− t3)...(t− n), ..., Ln = (t − t0)(t− t1)...(t− tn−1)

form a basis in Rn+1. Represent the polynomial 1 as a linear combination of L0, ..., Ln.
(f) Is there a polynomial P (t) of degree ≤ 10 which at the points t = 0, 1,2, ...,10 takes on

the values sin 0, sin 1, ..., sin 10 ?

3.3.3. Subspaces and dimension. Definition. A set V of vectors in Rn is
called a linear subspace (or simply subspace) if any linear combinations of vectors
from V are also in V .

Examples. (a) The set consisting of one vector 0 as well as the set Rn of all
vectors are called trivial subspaces.

(b) Non-trivial subspaces in R2 are lines passing through the origin, and in R3

— lines or planes passing through the origin.
(c) The set Span(v1 ,v2, ...) is a subspace in Rn since sums and scalar multi-

ples of linear combinations of v1,v2, ... are their linear combinations too. The set
Span(v1,v2, ...) is called the subspace spanned by the vectors v1,v2, ....

Let A be an m×n-matrix. Consider the linear operator y = Ax from Rn to Rm

defined by the multiplication of n-columns x by the matrix. It hass the following
linearity property A(αu + βv) = αAu + βAv (due to the properties of matrix
multiplication). It is easy to see that any function from Rn to Rm which satisfies
the linearity condition is actually defined by the multiplication by an m×n-matrix.
We reserve the term linear transformations for linear operators from Rn to itself and
use the term linear operators when the spaces Rn and Rm are different, and even
in the case m = n if the spaces are considered as two different copies of Rn rather
than the same space.

Examples. (d) The range of a linear operator A from Rn to Rm is a subspace
in R

m. Indeed, if u1 = Av1 and u2 = Av2 are in the range, then their linear
combinations α1u1 + α2u2 = A(α1v1 + α2v2) are in the range too. Applying A to
the vectors e1, ..., en we see that this subspace is spanned by the columns of the
matrix A. The range of a linear operator is often called the column space of the
corresponding matrix.

(e) The graph of a linear operator y = Ax consists of all n+m-vectors (x,y) of
the form (x, Ax). The graph is a subspace in Rn+m: linear combinations α(u, Au)+
β(v, Av) = (αu + βv, A(αu + βv)) are in the graph.

(f) Consider a linear transformation x′ = Tx from Rn to itself. Pick a number
λ and consider the set of all vectors x satisfying Ax = λx. They form a subspace
in Rn called the eigenspace of A corresponding to the eigenvalue λ. By definition,
all non-zero vectors in this subspace are eigenvectors with the eigenvalue λ.

(g) Consider a homogeneous system Ax = 0 of m linear equations in n un-
knowns. The solution set of this system is a subspace in Rn. Indeed, if Au = 0
and Av = 0 then A(αu + βv) = 0. It is called the null-space of the matrix A or
the kernel of the corresponding linear operator y = Ax.

(h) The solution set to the inhomogeneous liner system Ax = b is not a subspace
(unless b = 0) since x = 0 does not satisfy the system. However, if the system is
consistent and x0 is one of solutions, then any other solution x differs from x0 by
a vector v = x − x0 from the null-space of A: A(x − x0) = b− b = 0. Vice versa,
adding to x0 any vector v from the null-space we obtain another solution to the
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system: A(x0 +v) = b+0 = b. Thus the solution set to an inhomogeneous system
is obtained from the null-space as the translation by the vector x0. To distinguish
from linear subspaces, we will call an affine subspace any set P of vectors obtained
from a linear subspace V by translation (P = V + x0). We will often refer to P as
an affine subspace parallel to the linear subspace V (planes in R3 parallel to a given
plane passing through the origin are good examples). Thus, the solution set to a
consistent inhomogeneous system Ax = b of m linear equations in n unknowns is
an affine subspace in Rn parallel to the null-space of A. Also, the system Ax = b
is consistent if and only if the m-vector b is in the column space of A. This pair of
statements is the starting point in the abstract theory of systems of linear algebraic
equations.

0

x
0

V

P

The following proposition shows that “intrinsic” geometry of any non-trivial
subspace in Rn does not differ from geometry of Rk where k is one of the numbers
1, ..., n− 1 — the dimension of the subspace.

Proposition. Any non-trivial subspace V in Rn is spanned by k < n linearly
independent vectors.

Proof. Let f1 be a non-zero vector in V . If it spans V , we are done (and k = 1).
If not, there is a vector f2 in V not proportional to f1. If V = Span(f1, f2) then we
are done (and k = 2). If not, then there is a vector f3 in V which is not a linear
combination of f1 and f2. Thus f1, f2, f3 are linearly independent, and if they span
V , we are done (k = 3), and so on. This process cannot continue forever since any
n linearly independent vectors in Rn form a basis and thus span the whole space.
Thus, if V 6= Rn, then for some k < n the linearly independent vectors f1, ..., fk will
span V .

Using the vectors f1, ..., fk as a basis in the subspace V , we write each vector v
from V as a unique linear combination v = v1f1+ ...+vkfk and thus identify V with

the space Rk of k-columns





v1
...
vk



. Sums and scalar multiples of vectors from V are

expressed by componentwise operations with the k-vectors: if w = w1f1 + ...+wkfk
then v + w = (v1 + w1)f1 + ... + (vk + wk)fk and αw = (αw1)f1 + ... + (αwk)fk.
Thus, the subspace V has exactly the same properties as Rk. In particular, any
linearly independent set of vectors which spans V consists of exactly k vectors and
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forms a basis in the subspace. The number k of vectors in a basis of V is called the
dimension of the subspace.

We conclude this section with the following remark which we will need in the
proof of the Rank Theorem: any basis f1, ..., fk in a subspace V can be completed
to a basis f1, ..., fk, fk+1, ..., fn in the whole space Rn by continuing the procedure
described in the proof of the Proposition.

Exercises 3.3.3.

(a) Sketch the subspace in R3 spanned by the vectors (1,−1, 0), (1,0,−1), (0,1,−1). Find
the dimension of the subspace in R4 spanned by the vectors

(1,−1, 0,1), (1,0,−1, 1), (0,1,−1, 0), (1,−2, 1,1).

(b) Find bases in the null-space and range of the linear operator from R4 to R3 defined by

the matrix
2

4

1 0 1 0

1 1 1 1
0 1 0 1

3

5 .

Complete each of these bases to a basis in R4 (respectively — R3).

(c) Find eigenspaces of the linear transformation from R4 to itself defined by the matrix
2

6

6

4

1 1 0 0

0 1 1 0
0 0 1 1

0 0 0 1

3

7

7

5

.

(d) Is a linear subspace affine?

(e) Find the dimension of the affine subspace in R4 given by the equations x1 + x2 + x3 =
1, x2 + x3 + x4 = 1, x1 − x4 = 0. Find the equations of a linear subspace parallel to this affine

subspace. Find a basis in this linear subspace and complete this basis to a basis in R4.
(f) What is the dimension of the graph of a linear operator from Rn to Rm?

(g) Find a basis in the space of all symmetric traceless 3 × 3-matrices and in the space of all
anti-symmetric 4 × 4-matrices.

(h) Show that d/dt is a linear operator from the space Rn+1 of polynomials antn+ ...+a0 of
degree ≤ n to the space Rn−1 of polynomials of degree < n and find the null-space and the range

of this linear operator.
(i) Deduce from The Rank Theorem that any subspace in Rn has a basis, that all such bases

have the same number of elements, and that any such a basis can be completed to a basis in Rn.

3.3.4. The Rank Theorem and applications. The matrix of a linear op-
erator y = Ax from Rn to Rm depends on the choice of coordinate systems in Rn

and Rm. The changes x = Bx′, y = Cy′ of coordinated defined by invertible n×n
and m×m transition matrices B and C yield y′ = C−1ABx′ and thus change the
matrix A to C−1AB. We will show now that those properties of a linear operator
which are independent on the choice of coordinate systems are completely charac-
terized by the dimension r of the range (= the column space of the matrix A) called
the rank of the linear operator (and of the matrix).

Example. (a) Consider the m × n-matrix Er =

[

Ir 0
0 0

]

where r = 0, 1, ...,

min(m, n) (Er contains the identity matrix of size r in the left upper corner and
has all other entries equal to 0). It defines the linear operator given by m linear
functions y1 = x1, ..., yr = xr, yr+1 = 0, ..., ym = 0 in n-variables x1, ..., xr, ..., xn.
The range of this linear operator is the subspace in Rm given by the equations
yr+1 = ... = ym = 0 and is spanned by the linearly independent m-vectors e1, ..., er.
Thus the rank of Er equals r. The null-space of Er is the subspace in Rn given by
the equations x1 = ... = xr = 0, and has dimension n − r.
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Theorem. A rank r linear operator from Rn to Rm has the matrix Er in
suitable coordinate systems in Rn and Rm.

Example. (b) The rank of a linear operator from R2 to another R2 can be
equal to 0, 1 or 2. If it is 0, the linear operator is 0. If it is 2, the linear operator
identifies the two copies of R2. In the corresponding coordinate systems, such a
linear operator will be described by the identity matrix. If the rank equals 1, the
linear operator projects one of the planes onto a line in the other plane.

(c) More generally, the linear operator defined by the matrix Er can be de-
scribed as the projection of Rn along the null-space onto the column space in Rm.
The Rank Theorem says that any linear operator A from Rn to Rm is such a
projection along the null-space of A onto the range of A.

Proof of the Rank Theorem. Let u1, ...,ur be a basis in the range of the lin-
ear operator A in question. Complete the basis to a basis of Rm by choosing
suitable vectors ur+1, ...,um (see the remark in the end of the previous section).
Let v1, ...,vr be any n-vectors such that u1 = Av1, ...,ur = Avr . Pick a ba-
sis vr+1, ... in the null-space of A. We claim that v1, ...,vr,vr+1 , ... form a basis
in Rn and thus the linear operator A (which sends vi to ui for i ≤ r and to 0
for i > r) has in these bases the matrix Er. In order to justify the claim we
will show that any n-vector x is uniquely written as a linear combination of vi’s.
Indeed, we have Ax = α1u1 + ... + αrur since Ax is in the range of A. Then
A(x − α1v1 − ...− αrvr) = 0 and hence x − α1v1 − ... − αrvr = αr+1vr+1 + ...
since it is in the null-space of A. Thus x = α1v1 + ...+ αrvr + αr+1vr + .... On
the other hand, if in this equality x = 0, then Ax = α1u1 + ... + αrur = 0 and
hence α1 = ... = αr = 0. Finally the equality 0 = αr+1vr+1 + ... implies that
αr+1 = ... = 0 and thus shows that the n-vectors v1, ...,vr,vr+1, ... are linearly
independent (and in particular — that the total number of these vectors is n).

Corollary. Any m × n matrix A of rank r can be transformed to Er by the
transformation A 7→ C−1AB with suitable invertible matrices B and C.

RR
n

RR
m

A linear operator is a projection 
along the null-space onto the range
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As one can see from applications below The Rank Theorem is a concise sum-
mary of a number of simple basic properties of vectors, linear functions, linear
operators, subspaces and systems of linear algebraic equations. Some of such prop-
erties are already known to us (see Exercises) since they were needed in order
to prove the theorem, and some others which may seem new to us can be easily
deduced from the theorem.

I. Linear equations and hyperplanes.
Let y(x) = a1x1 + ...+ anxn be a non-zero linear function. Then the equation

y(x) = 0 determines a linear subspace in Rn of dimension n−1. Indeed, y is a linear
operator from Rn to R1 of rank 1 and has therefore the null-space of dimension
n− 1.

Vice versa, let H be a hyperplane in Rn, that is a linear subspace of dimension
n−1. Any hyperplane can be described by one linear equation. Indeed, let f1, ..., fn−1

be a basis inH . Then H is the range of the linear operator from Rn−1 to Rn defined
by the matrix whose columns are f1, ..., fn−1. According to The Rank Theorem,
the linear operator is given by the formulas Y1 = X1, ..., Yn−1 = Xn−1, Yn = 0
in suitable coordinate systems. In particular its range is described by one linear
equation Yn = 0.

II. Several hyperplanes.
Consider now m linear functions yi = ai1x1 + ... + ainxn, i = 1, ..., m. We

may expect that the intersection of m hyperplanes in Rn defined by the equations
y1(x) = 0, ..., ym(x) = 0 is a subspace of dimension n −m. However, if one of the
functions, say ym(x) is a linear combination of the others, then the subspace is
actually given by m − 1 equations y1(x) = ... = ym−1(x) = 0 and has dimension
greater than n−m.

In fact the subspace is the null-space of the linear operator from Rn to Rm

defined by the functions y1(x), ..., ym(x). According to The Rank Theorem it has
dimension n− r where r is the rank of the coefficient matrix A = [aij].

When the functions y1(x), ..., ym(x) are linearly dependent, the range of the
linear operator A is contained in some hyperplane γ1y1 + ...+ γmym = 0 and has
dimension r < m. Vice versa,
if the rank of the linear operator A is smaller than m then the functions y1(x), ...,
ym(x) are linearly dependent.

Indeed, according to the Rank Theorem the linear operator is given by the
matrix Er in some new coordinate systems y′ and x′. Each y′ is a non-trivial
linear combination of y’s. When r < m, the last row of Er is zero. This means
that the last coordinate function y′m(x′) — which is equal to some nontrivial linear
combination γ1y1 + ...+ γmym of y1(x), ..., ym(x) — is the identically zero function
of x1, ..., xn.

In particular, any m linear functions in n < m variables are linearly dependent.

III. The row space.
Linear combinations of the linear functions y1(x), ..., ym(x) form a subspace

in the space Rn of all n-rows. The subspace is often called the row space of the
coefficient matrix A = [aij]. The Rank Theorem shows that the dimension of the
row space coincides with the dimension of the column space and is equal to the rank
of the matrix since this is true for the matrices Er.
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The row space of A coincides with the column space of At. Thus we can
rephrase the above conclusion this way: transposed matrices have the same rank.

IV. Codimension.
Any subspace V in Rm of dimension d is the range of some linear operator

A from Rd to Rm. Namely, V is the column space of the m × d-matrix A whose
columns f1, ..., fd form a basis in V . Here is the dual statement: any subspace V in
Rm of dimension d is given by c = m− d linearly independent linear homogeneous
equations. Indeed, according to The Rank Theorem the linear operator A has the
matrix Ed in some new coordinate systems, and hence the range V of the linear
operator is given by the equations y′d+1 = ... = y′m = 0 in these new coordinates.
The number c = m − d is called the codimension of the subspace V in Rm. In
particular, subspaces of codimension 1 are hyperplanes.

One of the corollaries of the rank theorem is that for any matrix, the codimen-
sion of the null-space coincides with the dimension of the column space and is equal
to the rank. Several applications of this statement are described in the following
examples.

V. Dimension counting.
Two distinct planes in R3 passing through the origin intersect along a line

passing through the origin, while a line through the origin meets a plane not con-
taining it only at the origin. How do these obvious statements generalize to higher
dimensions?

Consider the subspace W in Rm obtained as the intersection of subspaces U
and V of codimensions k and l, that is given respectively by k and l independent
linear equations. If U and V together span the whole ambient space Rm then their
intersection W has codimension k + l. (In particular, if k + l > m, the subspaces
cannot span the whole m-space.) Equivalently, if p = m − k and q = m − l
are dimensions of the subspaces U and V which together span the whole ambient
space Rm, then their intersection W has dimension d = m − k − l = p + q −m.
Indeed, consider linear operators y = Au and y = Bv from Rp and Rq to Rm

with the ranges U and V . We define a single linear operator C from Rp+q to Rm:
C(u,v) = Au−Bv. The range of C is spanned by U and V and thus coincides with
Rm. On the other hand, the intersection W consists of allm-vectors w representable
as w = Au = Bv and therefore has the same dimension d as the null-space of C.
Since codimension of the null-space is equal to the rank, we have p+ q − d = m.

More generally,
if the subspaces U and V of dimensions p and q span together a subspace in Rn of
dimension m then their intersection W has dimension d = p+ q −m ≥ p+ q − n.
Indeed, the subspace spanned by U and V can be identified with Rm.

An illustration to the rule (n = 4, k = l = 2): two distinct 2-dimensional
subspaces in R4 intersect along a line if and only if they both are contained in the
same 3-dimensional subspace, and meet only at the origin otherwise.

VI. The abstract theory of linear algebraic systems.
Consider a system Ax = b of m linear equations in n unknowns and denote r

the rank of the coefficient matrix A. Then
(i) the solution set of the corresponding homogeneous system Ax = 0 is a

subspace in Rn of codimension r (the null-space of A);
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(ii) the system Ax = b is consistent if and only if b belongs to the subspace in
Rm of dimension r (the column space of A);

(iii) if it does, the solution set is an affine subspace in Rn of codimension r
parallel to the null-space.

Consider now systems Ax = b with the number of equations m equal to the
number of unknowns n (so that A is a square matrix).

(iv) If detA 6= 0, the system has a unique solution for any b. In particular,
the homogeneous system Ax = 0 has only the trivial solution x = 0.

(v) If detA = 0, the homogeneous system has non-trivial solutions (which form
a linear subspace of dimension n − r), and the systems Ax = b have no solutions
for some b and infinitely many solutions for some others.

The statements (i) – (v) constitute the final point in the abstract theory of
linear algebraic equations. They follow easily from the description, provided by the
Rank Theorem, of the linear operator y = Ax as the projection along the null-space
onto the range and from the fact that for a square n× n-matrix A with detA = 0
we have detEr = detC−1 detAdetB = 0 and hence r < n. In the next section we
develop a practical algorithm for solving linear algebraic systems with numerical
coefficients.

Exercises 3.3.4.

(a) Using the Rank Theorem classify linear operators from R3 to R3 up to changes of co-
ordinates in both spaces. Sketch the pictures illustrating the action of the operators defined by

corresponding matrices Er.
(b) Find a coordinate system in which the linear operator given by the formulas

y1 = 2x1 − x2 − x3,

y2 = −x1 + 2x2 − x3,
y3 = −x1 − x2 + 2x3,

has the matrix E2. Are the functions y1(x), y2(x), y3(x) linearly dependent? For which b the

system y1(x) = b1, y2(x) = b2, y3(x) = b3 is consistent? has a unique solution?
(c) Find the dimension of the intersection V of the hyperplanes x1 + x2 + x3 = 0 and

x2 + x3 + x4 = 0 in R4. Are there hyperplanes which intersect V at a point? along a line? a
plane? a subspace of dimension 3? If yes give examples of such hyperplanes.

(d) List all possible dimensions of intersection of two 3-dimensional subspaces U and V in
R5. Give examples illustrating each possibility. What are the dimensions of subspaces spanned

by U and V in your examples?
(e) Find a linear operator from R3 to R4 whose range coincides with the hyperplane x1 +

x2 + x3 + x4 = 0.

(f) Suppose that the system Ax = b of m linear equations in 1999 unknowns has a unique
solution for b = (1,0, ...,0). Does it imply that

– the null-space of A is trivial?
– the rank of A equals 1999?

– m ≥ 1999?
– A is invertible?

– AtA is invertible?
– det(AAt) 6= 0?

– the rows of A are linearly independent?
– the columns of A are linearly independent?

(g) Given a linear operator A from Rn to Rm, a linear operator B from Rm to Rn is called
right inverse to A if AB = Im and left inverse to A if BA = In. Prove that a left inverse exists if

and only if A has rank m and that the right inverse exist if and only if A has rank n. Is a left
(right) inverse unique when exists? Consider separately the case m = n of square matrices.
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3.4. Gaussian elimination

It will take your PC another millennium to evaluate the determinant of a 20×20
floating-point matrix using the definition of determinants as sums of 20! elementary
products, and — a tiny fraction of a second, using the algorithm described in this
section.

3.4.1. Row reduction. Usually, solving a system of linear algebraic equa-
tions with coefficients given numerically we express, using one of the equations, the
1-st unknown via the other unknowns and eliminate it from the remaining equa-
tions, then express the 2-nd unknown from one of the remaining equations, etc.,
and finally arrive to an equivalent algebraic system which is easy to solve starting
from the last equation and working backward. This computational procedure called
Gaussian elimination can be conveniently organized as a sequence of operations with
rows of the coefficient matrix of the system. Namely, we use three elementary row
operations:
• interchange of two rows;
• division of a row by a non-zero number;
• subtraction of a multiple of one row from another one.

Example. (a) Solving the system

x2 + 2x3 = 3
2x1 + 4x2 = −2
3x1 + 5x2 + x3 = 0

by Gaussian elimination, we pull the 2-nd equation up (since the 1-st equation does
not contain x1), divide it by 2 (in order to express x1 via x2) and subtract it 3
times from the 3-rd equation in order to get rid of x1 in there. Then we use the
1-st equation (which has become the 2-nd one in our pile) in order to eliminate
x2 from the 3-rd equation. The coefficient matrix of the system is subject to the
elementary row transformations:





0 1 2 | 3
2 4 0 | −2
3 5 1 | 0



 7→





2 4 0 | −2
0 1 2 | 3
3 5 1 | 0



 7→





1 2 0 | −1
0 1 2 | 3
3 5 1 | 0





7→





1 2 0 | −1
0 1 2 | 3
0 −1 1 | 3



 7→





1 2 0 | −1
0 1 2 | 3
0 0 3 | 6



 7→





1 2 0 | −1
0 1 2 | 3
0 0 1 | 2



 .

The final “triangular” shape of the coefficient matrix is an example of the row-
echelon form. If read from bottom to top, it represents the system x3 = 2, x2+2x3 =
3, x1 + 2x2 = −1 which is ready to be solved by back substitution: x3 = 2, x2 =
3 − 2x3 = 3 − 4 = −1, x1 = −1 − 2x2 = −1 + 2 = 1. The process of back
substitution, expressed in the matrix form, consists of a sequence of elementary
operations of the 3-rd type:





1 2 0 | −1
0 1 2 | 3
0 0 1 | 2



 7→





1 2 0 | −1
0 1 0 | −1
0 0 1 | 2



 7→





1 0 0 | 1
0 1 0 | −1
0 0 1 | 2



 .

The last matrix is an example of the reduced row-echelon form and represents the
system x1 = 1, x2 = −1, x3 = 2 which is “already solved”.
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A reduced row-echelon form 
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m

r

1 2 3 n-r

1 n

In general, Gaussian elimination is an algorithm of reducing an augmented ma-
trix to a row-echelon form by means of elementary row operations. By an augmented
matrix we mean simply a matrix subdivided into two blocks [A|B]. The augmented
matrix of a linear system Ax = b in n unknowns is [a1, ..., an|b] where a1, ..., an are
columns of A, but we will also make use of augmented matrices with B consisting
of several columns. Operating with rows [α1, ..., αn|β1, ...] of augmented matrices
we will refer to the leftmost non-zero number among αi as the leading entry of the
row. We say that the augmented matrix [A|B] is in the row-echelon form of rank r
if the m× n-matrix A satisfies the following conditions:

• each of the first r rows has the leading entry equal to 1;
• the leading entries of the rows 1, 2, ..., r are situated respectively in the

columns with indices j1, ..., jr satisfying j1 < j2 < ... < jr ;
• all the rows of A with indices i > r are zero.

Notice that a row-echelon matrix has zero entries everywhere below and to the left
of each leading entry. A row-echelon matrix is called reduced if all the entries in
the columns j1, ..., jr above the leading entries are also equal to zero.

Example. (b) If the matrix A of a linear system is in the row-echelon form
and indeed has one or several zero rows in the bottom, then the system contains
equations of the form 0x1 + ... + 0xn = b. If at least one of such b is non-zero,
the system is inconsistent. If all of them are zeroes, the system is consistent and is
ready to solve by back substitution. For instance, the following augmented matrix
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is in the row-echelon form of rank 2:




1 2 3 | 0
0 0 1 | 2
0 0 0 | 0



 .

It corresponds to the system x1 + 2x2 + 3x3 = 0, x3 = 2, 0 = 0. The system
is consistent: x3 = 2, x2 = t, x1 = −3x3 − 2x2 = −6 − 2t satisfy the system for
any value of the parameter t. We see that the presence of leading entries in the
columns j1, ..., jr of the row-echelon form allows to express the unknowns xj1, ..., xjr

via the unknowns xj with j 6= j1, ..., jr while the values t1, ..., tn−r of the unknowns
xj, j 6= j1, ..., jr are completely ambiguous. The general solution to the linear
system depends in this case on the n − r parameters t1, ..., tn−r.

The algorithm of row reduction of an augmented matrix [A|B] to the row-
echelon form can be described by the following instructions. Let n be the number
of columns of A. Then the algorithm consists of n steps. At the step l = 1, ..., n we
assume that the matrix formed by the columns of A with the indices j = 1, ..., l− 1
is already in the row-echelon form of some rank s < l with the leading entries
located in some columns j1 < ... < js < l. The l-th step begins with locating the
first non-zero entry in the column l below the row s. If none — the l-th step is over,
since the columns 1, ..., l are already in the row echelon form of rank s. Otherwise
— the first non-zero entry is located in a row i(> s), and we perform the following
operations:

(i) interchange the rows i and s+ 1 of the augmented matrix,
(ii) divide the whole row s+ 1 of the augmented matrix by the leading entry

(it is now as+1,l(6= 0)),
(iii) annihilate all the entries in the column l below the leading entry of the

s+ 1-st row by subtracting suitable multiples of the s+ 1-st row of the augmented
matrix from all rows with indices i > s+ 1.

The l-th step is over since the columns 1, ..., l are now in the row-echelon form
of rank s+ 1.

When an augmented matrix [A|B] has been reduced to a row-echelon form
with the leading entries a1,j1 = ... = ar,jr

= 1, the back substitution algorithm,
which reduces it further to a reduces row-echelon form, consists of r steps which
we number by l = r, r − 1, ..., 1 (and perform in this order). On the l-th step we
subtract from each of the rows i = 1, ..., l− 1 of the augmented matrix the l-th row
multiplied by ai,jl

(and thus annihilate all the entries of the column jl above the
leading one).

Exercises 3.4.1.
Solve the systems of linear equations

(a)

2x1 − x2 − x3 = 4

3x1 + 4x2 − 2x3 = 11
3x1 − 2x2 + 4x3 = 11

, (b)

x1 − 2x2 + x3 + x4 = 1

x1 − 2x2 + x3 − x4 = −1
x1 − 2x2 + x3 + 5x4 = 5

, (c)

x1 + x2 − 3x3 = −1

2x1 + x2 − 2x3 = 1
x1 + x2 + x3 = 3

x1 + 2x2 − 3x3 = 1

(d)

2x1 + x2 + x3 = 2

x1 + 3x2 + x3 = 5
x1 + x2 + 5x3 = −7

2x1 + 3x2 − 3x3 = 14

, (e)

x1 − 2x2 + 3x3 − 4x4 = 4

x2 − x3 + x4 = −3
x1 + 3x2 − 3x4 = 1

−7x2 + 3x3 + x4 = −3

, (f)

2x1 + 3x2 − x3 + 5x4 = 0

3x1 − x2 + 2x3 − 7x4 = 0
4x1 + x2 − 3x3 + 6x4 = 0

x1 − 2x2 + 4x3 − 7x4 = 0
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(g)

3x1 + 4x2 − 5x3 + 7x4 = 0
2x1 − 3x2 + 3x3 − 2x4 = 0

4x1 + 11x2 − 13x3 + 16x4 = 0
7x1 − 2x2 + x3 + 3x4 = 0

, (h)

x1 + x2 + x3 + x4 + x5 = 7
3x1 + 2x2 + x3 + x4 − 3x5 = −2

x2 + 2x3 + 2x4 + 6x6 = 23
5x1 + 4x2 + 3x3 + 3x4 − x5 = 12

(i) Find those λ for which the system is consistent:

2x1 − x2 + x3 + x4 = 1

x1 + 2x2 − x3 + 4x4 = 2
x1 + 7x2 − 4x3 + 11x4 = λ

3.4.2. Applications. The row-reduction algorithms allow to find a basis in
the null-space, in the row space and in the column space of a given matrix, and to
compute efficiently determinants and inverses of square matrices given numerically.

I. Suppose that an m × n-matrix A has been reduced by elementary row op-
erations to the row-echelon form A′ with the leading entries a1,j1 = ... = ar,jr

=
1, j1 < ... < jr. Then (i) rkA = rkA′ = r, (ii) the first r rows of A′ form a basis
in the row space of A, (iii) the columns of A with the indices j1, ..., jr form a basis
in the column space of A.

Indeed, the row operations do not change the row space of the matrix. The
non-zero rows of a row-echelon matrix are linearly independent and thus form a
basis in the row-space. Row operations do change the columns [a1, ..., an] of a
matrix, but they preserve linear dependencies among them: α1a1 + ...+ αnan = 0
if and only if α1a

′
1 + ...+ αna′

n = 0. The columns a′
j1
, ..., a′

jr
containing leading

entries of the row echelon matrix A′ form a basis in the column space of A′, and
hence the columns aj1 , ..., ajr

form a basis in the column space of A.

Example. (a) The following row reduction





1 2 3 −1
2 4 5 1
3 6 8 0



 7→





1 2 3 −1
0 0 −1 3
0 0 −1 3



 7→





1 2 3 −1
0 0 1 −3
0 0 0 0





shows that the matrix has rank 2, the row space has a basis (1, 2, 3,−1), (0, 0, 1,−3),
and the column space has a basis (1, 2, 3)t, (3, 5, 8)t.

II. Suppose that the augmented matrix [A|b] of the system Ax = b has been
transformed to a reduced row-echelon form [A′|b′] with the leading entries posi-
tioned in the columns j1 < j2 < ... < jr. These columns are the unit coordinate
vectors e1, ..., er, and the system is consistent only if b′ is their linear combination,
b′ = b′1e1 + ...+ b′rer. Assuming that it is the case we can assign arbitrary values
t1, ..., tn−r to the unknowns xj , j 6= j1, ..., jr, and express xj1 , ..., xjr

as linear in-
homogeneous functions of t1, ..., tn−r. The general solution to the system will have
the form x = c0 + t1c1 + ...+ tn−rcn−r of a linear combination of some n-vectors
c0, c1, ..., cn−r. We claim that the vectors c1, ..., cn−r form a basis in the null-space
of the matrix A. Indeed, substituting t = 0 we see that c0 is a particular solution
to the system and hence x − c0 = t1c1 + ...+ tn−rcn−r is the general solution to
the homogeneous system Ax = 0. In addition, we see that the general solution to
the inhomogeneous system is the affine subspace in Rn obtained from the null-space
by the translation through the vector c0.
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Example. (b) Consider the system Ax = 0 with the matrix A from the example
(a). Transform the matrix to the reduced row-echelon form:

... 7→





1 2 3 −1
0 0 1 −3
0 0 0 0



 7→





1 2 0 8
0 0 1 −3
0 0 0 0



 .

The general solution to the system assumes the form








x1

x2

x3

x4









=









−2t1 − 8t2
t1
3t2
t2









= t1









−2
1
0
0









+ t2









−8
0
3
1









.

The columns (−2, 1, 0, 0)t and (−8, 0, 3, 1)t form therefore a basis in the null-space
of the matrix A.

III. Suppose that during the row reduction of an n × n matrix A to the row-
echelon form A′ we performed k times the operation of row interchange and applied
the operation of division by leading entries α1, ..., αr. If the rank r of the row-echelon
form is smaller than n then detA = 0. If r = n then detA = (−1)kα1...αn.

Indeed, each row interchange reverts the sign of the determinant, divisions of a
row by α divides the determinant by α, and subtraction of a multiple of one row from
another one does not change the determinant. Thus detA = (−1)kα1...αr detA′.
The row-echelon matrix is upper-triangular and has n leading 1s on the diagonal
when r = n. In this case detA′ = 1. When r < n we have detA′ = 0.

IV. Given an n × n-matrix A, introduce the augmented matrix [A|In] (where
In is the identity matrix) and transform it to the reduced row-echelon form [A′|B]
by elementary row operations. If A′ = In then B = A−1.

Indeed, the equality A′ = In means that rkA = n and thus A−1 exists. Then
the system Ax = b has a unique solution for any b, and for b = e1, ..., en the
corresponding solutions x = A−1e1, ..., A

−1en are the columns of the inverse matrix
A−1. These solutions can be found by simultaneous row reduction of the augmented
matrices [A|e1], ..., [A|en] and thus coincide with the columns of the matrix B in
the reduced row-echelon form [In|B].

Example. (c) Let us compute detA and A−1 for the matrix of the Example
4.1(a). We have:





0 1 2 | 1 0 0
2 4 0 | 0 1 0
3 5 1 | 0 0 1



 7→





1 2 0 | 0 1
2 0

0 1 2 | 1 0 0
0 −1 1 | 0 −3

2 1



 7→

7→





1 2 0 | 0 1
2

0
0 1 2 | 1 0 0
0 0 1 | 1

3 −1
2

1
3



 ,

where one row interchange and divisions by 2 and by 3 were applied. Thus detA =
(−1) · 2 · 3 = −6, and the matrix is invertible. Back substitution eventually yields
the inverse matrix:

7→





1 2 0 | 0 1
2

0
0 1 0 | 1

3
1 −2

3
0 0 1 | 1

3
−1

2
1
3



 7→





1 0 0 | −2
3

−3
2

4
3

0 1 0 | 1
3

1 −2
3

0 0 1 | 1
3

−1
2

1
3



 .
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Remark. Gaussian elimination algorithms are unlikely to work for matrices
depending on parameters. To see why, try the row reduction in order to solve
a linear system of the form (λI − A)x = 0 depending on the parameter λ, or
— even better — apply Gaussian elimination to the system a11x1 + a12x2 = b1,
a21x1 + a22x2 = b2 depending on the 6 parameters a11, a12, a21, a22, b1, b2.

Exercises 3.4.2.

For the following matrices, find the rank, a basis in the null-space, a basis in the column
space and a basis in the row space:

(a)

2

6

6

4

0 4 10 1

4 8 18 7
10 18 40 17

1 7 17 3

3

7

7

5

(b)

2

6

6

4

14 2 6 8 2

6 104 21 9 17
7 6 3 4 1

35 30 15 20 5

3

7

7

5

(c)

2

6

6

6

6

4

1 0 0 1 4

0 1 0 2 5
0 0 1 3 6

1 2 3 14 32
4 5 6 32 77

3

7

7

7

7

5

(d)

2

6

6

6

6

6

6

4

2 1 1 1

1 3 1 1
1 1 4 1

1 1 1 5
1 2 3 4

1 1 1 1

3

7

7

7

7

7

7

5

(e)

2

6

6

4

2 1 3 −1
3 −1 2 0

1 3 4 −2
4 −3 1 1

3

7

7

5

For the following matrices, compute the determinant and the matrix inverse:

(f)

2

4

2 2 −3
1 −1 0

−1 2 1

3

5 (g)

2

6

6

4

1 1 1 1

1 1 −1 −1
1 −1 1 −1

1 −1 −1 1

3

7

7

5

(h)

2

6

6

4

2 1 0 0

3 2 0 0
1 1 3 4

2 −1 2 3

3

7

7

5

(i) Let P (ij) , i 6= j, denote the n×n-matrix [pkl] with pij = pji = 1, pii = pjj = 0, all other

diagonal entries pkk = 1 and all other entries equal to 0. Let Di(λ) be the diagonal n× n-matrix
with the i-th diagonal entry equal to λ and all other diagonal entries equal to 1. Let Eij(a),

i 6= j, be an n × n-matrix with the (ij)-entry equal to a, all diagonal entries equal to 1 and all
off-diagonal entries equal to 0. Show that the three elementary row operations on an n×n-matrix

A act as the left multiplication of A by suitable matrices Pij , Di(λ) and Eij(a) respectively.
(j) Suppose that the row reduction of a square matrix A to a row-echelon form does not

involve the operation of row transposition. Prove that A = LU where L is a lower-triangular
square matrix, and U is an upper-triangular square matrix.
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3.5. Quadratic forms

Elements of the n-dimensional Euclidean geometry, the theory of quadratic
forms and their applications are the subject of this section.

3.5.1. Inertia indices. A quadratic form in Rn is defined as a homogeneous
degree 2 polynomial in n variables:

Q(x) =

n
∑

i=1

n
∑

j=1

qijxixj.

In this sum, the terms xixj and xjxi with i 6= j are similar, and we will assume
that the total coefficient qij + qji is distributed “equally”, qij = qji, so that the
matrix Q = [qij] of the quadratic form Q(x) is symmetric: Qt = Q. A linear
change of coordinates x = Cx′ transforms the quadratic form to a quadratic form
Q′(x′) =

∑

kl q
′
klx

′
kx

′
l with the coefficient matrix Q′ = CtQC. Indeed,

Q′(x′) =
∑

i,j

qij

∑

k,l

cikcjlx
′
kx

′
l =

∑

k,l

x′kx
′
l

∑

i,j

cikqijcjl.

Notice that the matrix CtQC is symmetric automatically:
(CtQC)t = CtQtCtt = CtQC.

More generally, if x = Cy is a linear operator from Rm to Rn, the composite
function Q(Cy) is a quadratic form in Rm with the symmetric m×m matrix CtQC.
Indeed, invertibility of C did not play any role in the previous computation.

Theorem. Any quadratic form Q(x) in Rn in a suitable coordinate system
X1, ..., Xn is equal to one of the quadratic forms ±X2

1 ± ...±X2
r , r = 0, ..., n.

In order to prove the theorem we associate to a quadratic form Q(x) a new
function of two vectors (abusing notation, we denote it by the same letter) :

Q(u,v) =

n
∑

i=1

n
∑

j=1

uiqijvj.

It is symmetric, Q(u,v) = Q(v,u), since the coefficient matrix is symmetric. It is
bilinear,

Q(u, αv + βw) = αQ(u,v) + βQ(u,w), Q(αv + βw,u) = αQ(v,u) + βQ(w,u),

since Q(u,x) with u fixed is a linear function of x1, ..., xn. The function Q(u,v)
is called the symmetric bilinear form associated with the quadratic form Q(x). The
associated quadratic and bilinear forms determine each other by the formulas:

Q(x) = Q(x,x), Q(u,v) =
1

2
[Q(u + v) −Q(u) −Q(v)].

The coefficients qij of the quadratic form Q in a coordinate system with the basis
f1, ..., fn can be computed as the values qij = Q(fi, fj) of the associated bilinear
form.

Example. (a) The quadratic forms ±x2
1±...±x2

r are associated with the bilinear
forms (u,v) = ±u1v1 ± ...±urvr which are characterized by the following property
with respect to the basis e1, ..., en: (ei, ej) = 0 for i 6= j, and (ei, ei) = 1,−1 or 0.

We call vectors u,v Q-orthogonal if Q(u,v) = 0. In order to prove the theorem
we first construct a basis f1, ..., fn of pairwise Q-orthogonal vectors. Namely, on the
role of f1 we pick any vector satisfyingQ(f1) 6= 0 (if such a vector does not exist then
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the quadratic and the corresponding bilinear forms are identically zero and thus
any basis f1, ..., fn will do). Then we consider the subspace V1 in Rn of all vectors
Q-orthogonal to f1. It is given by one non-trivial linear equation Q(f1,x) = 0 and
thus has dimension n − 1. Next, we restrict the quadratic form to this subspace
and repeat our first step: choose f2 as a vector in V1 satisfying Q(f2) 6= 0 (if exists)
and pass to the subspace V2 of all vectors in V1 which are Q-orthogonal to f2. The
process stops when we have selected f1, ..., fr in the subspaces Rn, V1, .., Vr−1 of
dimensions n, n−1, ..., n− r+1, but the next subspace Vr does not contain vectors
with Q(x) 6= 0. Of course, it may be due to r = n and Vr being the trivial subspace.
If however r < n, we complete the construction of the basis by choosing any basis
in Vr on the role of fr+1, ..., fn. Since each of the vectors fi is Q-orthogonal to all
previous ones, we have Q(fi, fj) = 0 for i 6= j, and also Q(fi, fi) = 0 for i > r. In
order to complete the proof it remains only to rescale the vectors f1, ..., fr by the
factors |Q(fi, fi)|−1/2 which makes Q(fi, fi) = ±1 for i ≤ r.

Examples. (b) A quadratic form Q in Rn is called positive if Q(u) > 0 for all
x 6= 0. The symmetric bilinear form Q(u,v) corresponding to a positive quadratic
form is called an inner product. The theorem shows that a positive quadratic form
takes on x2

1 + ...+x2
n in a suitable coordinate system in Rn. Indeed, this is the only

one among the functions ±x2
1 ± ... ± x2

r which is positive everywhere outside the
origin. The proof of the theorem in this case consists in constructing an orthonormal
basis of the corresponding inner product Q(u,v), that is a basis f1, ..., fn satisfying
Q(fi, fj) = 0 for i 6= j and = 1 for i = j. Thus any inner product has an orthonormal
basis. This result shows that different choices of a positive symmetric bilinear form
on the role of the inner product in Rn give rise to equivalent Euclidean geometries.
Indeed, any inner product in an orthonormal basis takes on the standard form
〈u,v〉 = u1v1 + ...+unvn corresponding to the quadratic form 〈x,x〉 = x2

1 + ...+x2
n.

(c) Restriction of the quadratic form x2
1 + ... + x2

n to a subspace V in Rn is
a positive quadratic form in the subspace. Identifying the subspace with R

k and
applying the theorem we conclude that any non-zero subspace in the Euclidean
space has an orthonormal basis. For instance, let V be a plane containing given
two n-vectors u and v. If f1, f2 is an orthonormal basis in the plane, then the inner
product of vectors in this plane is described by the standard coordinate formula
u1v1 + u2v2 with respect to this basis. We conclude that the Schwartz inequality
〈u,v〉2 ≤ 〈u,u〉〈v,v〉 holds true for any n-vectors u,v. Thus we have just proved
the following inequality:

(x1y1 + ...+ xnyn)2 ≤ (x2
1 + ...+ x2

n)(y2
1 + ...+ y2

n).

The following Proposition shows that the numbers of positive and negative
squares in the normal form ±X2

1 ± ... ± X2
r do not depend on the choice of the

coordinate system but are determined by the quadratic form Q itself.

Proposition. The numbers p and q, p+q = r, of positive and negative squares
in Q = ±X2

1 ± ...±X2
r are equal to the maximal dimensions of the subspaces in Rn

where the quadratic form Q (respectively, −Q) is positive.

Proof. The quadratic form X2
1 + ...+ X2

p − X2
p+1 − ...− X2

p+q is positive on
the p-dimensional subspace Xp+1 = ... = Xn = 0 and non-positive on the subspace
W of dimension n − p given by the equations X1 = ... = Xp = 0. Existence of
a subspace V of dimension p + 1 where the quadratic form is positive would lead
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to a contradiction. Indeed, The subspaces V and W where the quadratic form is
positive and non-positive would intersect along a subspace of dimension at least
(p + 1) + (n − p) − n = 1 containing therefore non-zero vectors v with Q(v) > 0
and Q(v) ≤ 0.

The maximal dimensions of positive and negative subspaces are called respec-
tively positive and negative inertia indices of a quadratic form in question. The
Proposition and the Theorem together cover the content of the Inertia Theorem
formulated in the section 3.1 and show that inertia indices (p, q), p+ q ≤ n, com-
pletely characterize those properties of quadratic forms in Rn which do not depend
on the choice of coordinates. The matrix formulation of the Inertia Theorem reads:

Any symmetric matrix Q can be transformed by Q 7→ CtQC with invertible C

to one and exactly one of the diagonal forms





Ip 0 0
0 −Iq 0
0 0 0



.

Exercises 3.5.1.

(a) For each of the following quadratic forms Q(x), write down the corresponding symmetric
matrix Q = [qij ], the symmetric bilinear form Q(u,v); then, following the proof of the theorem,

transform the quadratic form to
P

±x2
i and find the inertia indices: Q = x2

1 +x1x2 +x3x4, Q =

x1x2 +x2x3 +x3x1, Q = x2
1 +2x1x2 +2x2

2 + 4x2x3 +5x2
3, Q = x2

1 − 4x1x2 + 2x1x3 +4x2
2 +x2

3.
(b) Let Q(x) be a positive quadratic form. Prove that the determinant det[qij ] of the corre-

sponding symmetric matrix is positive.
(c) Given a quadratic form Q(x), denote ∆1 = q11, ∆2 = q11q22 − q12q21, ..., ∆n = det[qij ]

the k × k-minors ∆k = det[qij ], 1 ≤ i, j ≤ k of the corresponding symmetric matrix. They are
called principal minors of the symmetric matrix [qij ]. Prove that ifQ is positive then ∆1, ...,∆n > 0.

(d) Suppose that all principal minors of a quadratic form are non-zero. Following the proof
of the theorem, show that the basis f1, ..., fn diagonalizing the quadratic form can be chosen in

such a way that f1 is proportional to e1, f2 is a linear combination of e1 and e2, f3 is a linear
combination of e1, e2, e3, etc.

(e) Deduce that a symmetric matrix Q with non-zero principal minors can be written as
Q = U tDU where U is an invertible upper-triangular matrix, and D is a diagonal matrix with

the diagonal entries ±1.
(f) Deduce the Sylvester theorem: the negative inertia index q of a quadratic form with non-

zero principal minors equals the number of changes of signs in the sequence ∆0 = 1,∆1, ...,∆n.
(g) Test the Sylvester theorem in examples of Exercise (a).

(h) Find inertia indices of the quadratic form
P

i6=j xixj .

(i) Classify surfaces in R3 given by equations F (x1, x2, x3) = 0, where F is a polynomial of
degree ≤ 2, up to linear inhomogeneous changes of coordinates

xi = ci1x
′
1 + ci2x

′
2 + ci3x

′
3 + di, i = 1,2, 3.

q q

q q

q

qq

11 12

21 22

1n

n1 nn

∆

∆

∆

∆
∆

1

2

3

n-1

n
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3.5.2. Least square fitting to data. In pure mathematics, there is exactly
one straight line through any two distinct points in the plane. In empirical sciences,
one tends to suspect a linear dependence y = α+ βx in any cloud of experimental
points graphed on the plane and to explain the deviation of the points from the line
by natural experimental errors. The problem we will discuss here is how to find
α and β which make the line y = α + βx fit the experimental data with minimal
error.

More generally, the problem can be formulated as follows. Let y1, ..., yN be the
values of some function y = y(x) measured experimentally at the points x1, ..., xN.
One assumes that the actual dependence of y on x has the form of a linear com-
bination f(x) = α1f1(x) + ...+ αnfn(x) of some known functions f1, ..., fn where
n < N (in the above example n = 2, and the known functions are 1 and x). The
problem is to find the coefficients α1, ..., αn which would minimize the total error

E(α1, ..., αn) = (y1 − f(x1))
2 + ...+ (yN − f(xN ))2.

We would like to stress that there is no intrinsic reason why one should choose
the sum of squares for measuring the error. Any other positive function of yi −
f(xi), say E(α) =

∑

(yi − f(xi))
4, would seem equally suitable for this role. The

unknowns α1, ..., αn hidden in the symbols f(xi) are to be found via minimization
of the function E(α). This yields the system of algebraic equations ∂E/∂α1 =
0, ..., ∂E/∂αn = 0 which are non-linear (say, will have degree 3 for the sum of 4-
th powers) unless the error function is quadratic. Thus, the choice of the sum of
squares is rather dictated by our inability to solve non-linear equations.

y

x

0

y

f
0

Fitting to data

Projection of a vector 
  to a subspace
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We will derive the above system of linear equations for α using some elementary
Euclidean geometry instead of multivariable calculus. Let us introduce the N × n-
matrix A with the entries aij = fj(xi). The N -vectors fj = (fj(x1), ..., fj(xN))
span the column space V of A which therefore consists of all linear combinations
f = α1f1 + ...+ αnfn. Let y = (y1, ..., yN) be the N -vector of experimental data.
Minimization of the error function E = |y − f |2 can be now interpreted as finding
the point f0 in the subspace V which minimizes the Euclidean distance to y. We
will show that there exists a unique point f0 in V which minimizes the distance to
y, and that f0 is characterized by the condition that the vector y− f0 is orthogonal
to V : 〈y − f0, f 〉 = 0 for any f from V . One calls this f0 the orthogonal projection
of y to the subspace V .

Indeed, if the orthogonality condition is satisfied then |y−f |2 = |y−f0|2 + |f0−
f |2 by the Pythagorean theorem and hence |y − f |2 > |y − f0|2 unless f = f0. This
proves uniqueness. In order to prove existence, let us pick an orthonormal basis
e1, ..., em in V and put

f0 = 〈y, e1〉e1 + ...+ 〈y, em〉em.

It is immediate to check that 〈y − f0, ej〉 = 0 for all j = 1, ..., m. Thus y − f0 is
orthogonal to any linear combination of e1, ..., em.

As a by-product, we get a nice formula describing the orthogonal projection
f0 of a vector y to a subspace in terms of an orthonormal basis e1, ..., em in the
subspace.

The orthogonality condition 〈f ,y−f0〉 = 0 is sufficient to check for f = f1, ..., fn
spanning V . Thus, we arrive to the system of n linear equations for n coefficients
of the linear combination f0 = α1f1 + ...+ αnfn:

〈fi, f1〉α1 + ...+ 〈fi, fn〉αn = 〈fi,y〉, i = 1, ..., n.

If the vectors f1, ..., fn are linearly independent (that is n = m), the solution to this
system is unique. In the matrix form the system can be written as AtAa = Aty
where a = (α1, ..., αn). Solving the system one finds the solution to our problem of
least square fitting to the experimental data.

Example. If n = 2 and f1 = 1, f2 = x, we have f1 = (1, ..., 1), f2 = (x1, ..., xN),
y = (y1, ..., yN). The linear 2 × 2-system for α, β reads

αN + β
∑

xi =
∑

yi, α
∑

xi + β
∑

x2
i =

∑

xiyi.

Thus the line “passing through” the points (x1, y1), ..., (xN, yN ) with the least
square error is given by the equation y = α+ βx where

α =
(
∑

yi)(
∑

x2
i ) − (

∑

xiyi)(
∑

xi)

N
∑

x2
i − (

∑

xi)2
, β =

N
∑

xiyi − (
∑

xi)(
∑

yi)

N
∑

x2
i − (

∑

xi)2
.

Exercises 3.5.2.
(a) Find the linear function y = αx+ β which provides the least square fitting to the data

y = 1, 4,9,16

x = 1,2,3, 4.

(b) Find the quadratic function y = αx2 + βx+ γ which provides the least square fitting to

the data

y = −1,1,−1,1

x = 0,1,2, 3.
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(c) Find the projection of the vector x = (1,1, 1,1,1) to the plane spanned by (1,0,−1, 0,1)

and (0,1, 0,−1, 0) and compute the distance from x to the plane.
(d) Gram – Schmidt orthogonalization.

Given a subspace V in the Euclidean n-space and a basis f1, ..., fk in the subspace, one
constructs an orthonormal basis u1, ...,uk in V as follows: Normalize f1 to the unit length and

denote the result u1. Subtract from f2 its projection to the line spanned by u1 and normalize the
difference to the unit length. Denote the result u2. Subtract from f3 its projection to the plane

spanned by u1 and u2 and normalize the difference to the unit length. Denote the result u3. And
so on ...

Apply the algorithm to the subspace in R4 spanned by

f1 = (1,1,1,1), f2 = (1,−1,−1, 1) f3 = (3,1,1,−1).

Prove that u1, ...,uk form an orthonormal basis in V satisfying the condition that ui is a
linear combination of f1, ..., fi.

3.5.3. Orthonormal bases. Our next goal is to classify pairs of quadratic
forms in n variables up to linear changes of the variables, assuming that one of
the quadratic forms is positive. According to the Inertia Theorem, there exists
a linear change of coordinates which transforms the positive quadratic form to
x2

1 + ...+x2
n. The same change of coordinates applied to the second quadratic form

yields some quadratic form Q(x) =
∑

i,j qijxixj . Our problem is therefore equiv-

alent to the classification of quadratic forms Q(x) up to linear transformations
preserving Euclidean inner squares 〈x,x〉 = x2

1 + ... + x2
n of all vectors. Further-

more, the Euclidean inner product 〈x,y〉 = x1y1 + ...+ xnyn can be expressed via
addition of vectors and their lengths as 〈x,y〉 = (〈x+y,x+y〉−〈x,x〉− 〈y,y〉)/2.
Since linear transformations send sums of vectors to sums, we conclude that linear
transformations preserving lengths of all vectors actually preserve inner products
of all vectors. Linear transformations U from Rn to itself which preserve inner
products, 〈Ux, Uy〉 = 〈x,y〉 for all x and y, are called orthogonal transformations.
Thus, our problem is to classify quadratic forms in Rn up to orthogonal transfor-
mations. We begin with the following proposition which gives several equivalent
characterizations of orthogonal transformations.

Proposition. The following properties of a linear transformation U are equiv-
alent:

(a) U is orthogonal.
(b) The matrix of U in an orthonormal basis satisfies U tU = I.
(c) U−1 = U t.
(d) The matrix of U in an orthonormal basis satisfies UU t = I.
(e) U t is orthogonal.
(f) Columns of the matrix form an orthonormal basis.
(g) Rows of the matrix form an orthonormal basis.
(h) U transforms orthonormal bases to orthonormal bases.
(i) U transforms an orthonormal basis to an orthonormal basis.

Proof. If U is orthogonal then 〈x,y〉 = 〈Ux, Uy〉 = 〈x, U tUy〉 for all x,y
which is possible only if U tU = I. If U tU = I then detU = ±1 and in particular
U is invertible and U−1 = U t. If U is invertible and U−1 = U t then UU t = I.
If UU t = I then 〈U tx, U ty〉 = 〈x, UU ty〉 = 〈x,y〉 for all x,y and hence U t is
orthogonal. If U t is orthogonal, then the previous chain of implications shows that
U tt = U is orthogonal and therefore proves the equivalence of (a),(b),(c),(d),(e).
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Obviously, the equalities U tU = I and UU t = I are equivalent to the properties
of columns and respectively — rows of the matrix U to form an orthonormal basis.
Thus (f), (g) are equivalent to (b), (d).

If U is orthogonal than it transforms orthonormal bases to orthonormal bases
(since it is invertible, as we already know, and preserves inner products of all
vectors). Thus (a) implies (h). Obviously (h) implies (i). On the other hand (i)
means that the matrix of U in some orthonormal basis satisfies U tU = I and hence
(i) implies (b) and hence (a).

Examples. (a) As we know from Chapter 1, orthogonal transformations in R2

are rotations about the origin or reflections about a line through the origin.
(b) Rotation in the space about a line through the origin are examples of or-

thogonal transformations in R3. Let f1 be one of (the two) unit vectors in the line,
and f2, f3 be an orthonormal basis in the plane perpendicular to this line. Com-
posing the rotation with the reflection f1 7→ −f1, f2 7→ f2, f3 7→ f3 about the plane
perpendicular to the axis of rotation we get another example of orthogonal trans-
formations in R3. The rotation about f1 through the angle θ and its composition
with the reflection have in the basis f1, f2, f3 the following matrices:





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 ,





−1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 .

The matrices have determinants 1 and −1 respectively. Notice that these two
types of orthogonal transformations in R3 depend on 3 parameters: 2 angles are
needed in order to specify the direction of the line spanned by f1, and the third
parameter is the angle θ of rotation. This dimension counting agrees with the fact
that orthonormal bases in R3 are singled out by 6 equations on 9 coordinates of
the three basic vectors (pairwise orthogonality and unit lengths of the vectors).

In fact any orthogonal transformation in R3 is a rotation about a line or the
composition of such a rotation with the reflection about the plane perpendicular to
this line. Indeed, consider the characteristic polynomial det(λI3 − U) of a 3 × 3-
matrix U . It has degree 3 and hence — at least one real root λ0. The system Ux =
λ0x has a non-trivial solution x0. If U is orthogonal then 〈x0,x0〉 = 〈Ux0, Ux0〉 =
λ2

0〈x0,x0〉 and hence λ0 = ±1. Normalizing x0 to the unit length we get a unit
vector f1 such that U f1 = ±f1. Since U preserves inner products and preserves the
line spanned by f1 it also preserves the plane perpendicular to f1 and acts on this
plane as an orthogonal transformation in R2. Assuming that U acts in the plane as
a rotation, we pick any orthonormal basis f2, f3 in this plane and find that U has
one of the above matrices in the orthonormal basis f1, f2, f3. If U acts in the plane
as a reflection, that is f2 7→ f2, f3 7→ −f3, then U is also described by one of the
above matrices in a reodered basis (figure out yourself — which one?)

In the above argument, we considered the plane perpendicular to a given line
in R

3. This construction is an example of the orthogonal complement to a subspace
in the Euclidean n-space. Let V be a subspace in Rn of dimension l. A vector w
is called orthogonal to V if it is orthogonal to any vector from V . If u and w are
orthogonal to V then their linear combinations are also orthogonal to V : for any v
from V

〈αu + βw,v〉 = α〈u,v〉+ β〈w,v〉 = α0 + β0 = 0.
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Thus vectors orthogonal to V form a subspace W which is called the orthogonal
complement to V . The subspaces V and W intersect only at the origin. Indeed, a
common vector u of V and W is orthogonal to itself, 〈u,u〉 = 0, and thus must be
equal to 0. Thus the dimension of W does not exceed n− l. On the other hand, W
is given by l linear equations 〈w,v1〉 = ... = 〈w,vl〉 = 0 where v1, ...,vl is a basis in
V and therefore must have dimension n−l at least. Thus dimV +dimW = n. Also,
all vectors from V are orthogonal to W and hence V is the orthogonal complement
to W . In particular, if v1, ...,vl and w1, ...,wn−l are orthonormal bases in V and
W then their union is an orthonormal basis in R

n.

Example. (c) An m× n-matrix A and its transpose At define linear operators
of the same rank r from Rn to Rm and from Rm to Rn respectively. The range
(= the column space) of A is the orthogonal complement in Rm to the null-space
of At, and the range of At (= the row space of A) is the orthogonal complement to
the null-space of A in Rn. Indeed, if y = Ax and Aty′ = 0 then

〈y,y′〉 = 〈Ax,y′〉 = 〈x, Aty′〉 = 〈x, 0〉 = 0.

Similarly, all vectors from the range of At are orthogonal to all vectors from the
null-space of A. The rest follows from dimension counting.

Exercises 3.5.3.

(a) Find the matrix (in the standard basis e1, e2, e3) of the rotation through the angle ±θ
about the line in R3 spanned by the vector (1, 1,1).

(b) Find the place in the above description of orthogonal transformations in R3 for (i) a
reflection about a plane, (ii) reflection about a line, (iii) composition of reflections about two

different planes, (iv) composition of three such reflections.
(c) Show that real eigenvalues of an orthogonal matrix are equal to ±1.

Give an example of an orthogonal 4 × 4 matrix with no real eigenvalues.

(d) Find the orthogonal complement to the plane in R4 spanned by the vectors (1,1, 1,1)
and (−1, 1,−1, 1). Find the orthogonal complement to the plane in R4 given by the equations

x1 +x2 +x3 = 0, x2 −x3 +x4 = 0. Find an orthonormal bases in these orthogonal complements.
(e) Cayley transform. Let U be an orthogonal matrix without eigenvalue −1. Prove that the

matrix Ω = (I − U )(I + U )−1 is anti-symmetric. Let Ω be an anti-symmetric matrix. Prove that
the matrix U = (I − Ω)(I + Ω)−1 is orthogonal.

(f) LU -factorization. Let u1, ...,un be the orthonormal basis in Rn obtained by the Gram-
Schmidt orthogonalization of a basis f1, ..., fn (see Exercise 3.5.2(d)). Represent the property of

ui to be linear combinations of f1, ..., fi in a matrix form and deduce that any invertible matrix

can be written as the product UR of an orthogonal matrix U and an upper - triangular matrix R.

Applying transposition show that, similarly, any invertible matrix is the product LU of a

lower-triangular and an orthogonal matrix.

3.5.4. Orthogonal diagonalization. As we have already mentioned in Sec-
tion 3.5.1, the Orthogonal Diagonalization Theorem formulated in Section 3.1 is
reduced to the existence of an orthogonal transformation U in R

n which transforms
a given quadratic form Q(x) to λ1x

2
1 + ...+ λnx

2
n. In the matrix form, U tQU = Λ

where Λ is to be diagonal. Since U t = U−1, this means QU = UΛ, that is columns
of U are to form an orthonormal basis of eigenvectors of Q with the eigenvalues
λ1, ..., λn. Thus the Orthogonal Diagonalization Theorem can be reformulated this
way:

Theorem. Any symmetric matrix Q has an orthonormal basis of eigenvectors.

Proof. First, we want to show that eigenvalues of a symmetric matrix are real.
For this, let λ0 be a complex root of the characteristic polynomial det(λI − Q)
(λ0 exists by the Fundamental Theorem of Algebra). Then the system of linear
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equations Qz = λ0z has a non-trivial complex solution z = (z1, ..., zn) 6= (0, ..., 0).
We put z̄ = (z̄1, ..., z̄n), note that Qz̄ = λ̄0z̄ (since Q is real) and compute the
number 〈Qz, z̄〉 =

∑

qijzj z̄i in two ways (using Q = Qt):

λ0〈z, z̄〉 = 〈Qz, z̄〉 = 〈z, Qz̄〉 = λ̄0〈z, z̄〉.
Since 〈z, z̄〉 = |z1|2 + ...+ |zn|2 > 0, we conclude that λ0 = λ̄0 meaning that λ0 is
real indeed.

Second, we claim that eigenvectors of a symmetric matrix corresponding to
different eigenvalues are orthogonal to each other. Indeed, let Qu = λu, Qv = µv,
u 6= 0, v 6= 0 and Qt = Q. Then

λ〈u,v〉 = 〈Qu,v〉 = 〈u, Qv〉 = µ〈u,v〉
and hence 〈u,v〉 = 0 unless λ = µ.

An orthonormal basis of eigenvectors of Q can be constructed as follows. Let
λ1, ..., λr denote the set of distinct roots of the characteristic polynomial, and
V1, ..., Vr denote the corresponding eigenspaces. We pick orthonormal bases in the
subspaces Vi and consider the resulting set of vectors v1, ...,vk. It follows from
the previous paragraph that the set is orthonormal (and hence — linearly indepen-
dent). We claim that in fact the vectors span Rn so that k = n and the vectors
form a basis in Rn. In order to justify the claim we need the following

Lemma. If all vectors from a subspace V are transformed by Q to vectors from
the same subspace V , then the same is true about the orthogonal complement W of
V .

Indeed, if w is orthogonal to all vectors from V , then 〈Qw,v〉 = 〈w, Qv〉 = 0
for all v from V (since Qv is in V ) and hence Qw is in W .

Finally, we apply the lemma to the subspace V = Span(v1 , ...,vk) containing
all eigenvectors of Q and show that the orthogonal complement W must contain
eigenvectors of Q too (in contradiction with the choice of V ) unless W = 0. Namely,
if W 6= 0, consider the linear transformation from W to itself defined by Q. In an
orthonormal basis of W , the matrix of this linear transformation will be symmetric,
since the property 〈Qw,w′〉 = 〈w, Qw′〉 holds true for any w,w′ from W . Thus
our linear transformation in W has real eigenvalues (according to the first step of
the proof) and hence — real eigenvectors. This contradiction shows that W = 0
and hence V = Rn.

Example. (a) The matrix

Q =









2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2









of the quadratic form

Q(x) = (x1 − x2)
2 + (x2 − x3)

2 + (x3 − x4)
2 + (x4 − x1)

2

has the characteristic polynomial λ4 − 8λ3 + 20λ2 − 16λ = λ(λ − 2)2(λ − 4). The
columns of the matrix

U ′ =









1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1








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(some vertices of the 4D-cube studied in Section 3.3.1) are mutually perpendicular
eigenvectors of Q with the eigenvalues 0, 2, 2, 4 respectively. When divided by 2
they form an orthonormal basis in R4 (and the corresponding matrix U = U ′/2 is
orthogonal). The change of variables x = Uy transforms Q(x) to 0y2

1 +2y2
1 +2y2

3 +
4y2

4 .

Exercises 3.5.4.

(a) Following the proof of the Orthogonal Diagonalization Theorem find an orthonormal basis
diagonalizing the symmetric matrix

2

4

1 1 1
1 1 1

1 1 1

3

5 .

(b) Transform the following quadratic forms to the form
P

λix
2
i by orthogonal transforma-

tions:

2x2
1 + x2

2 − 4x1x2 − 4x2x3, x2
1 + 2x2

2 + 3x2
3 − 4x1x2 − 4x2x3, 3x2

1 + 4x2
2 + 5x2

3 + 4x1x2 − 4x2x3,

x2
1 − 2x2

2 − 2x2
3 − 4x1x2 + 4x1x3 + 8x2x3, x2

1 + x2
2 + x2

3 + x2
4 + 2x1x2 − 2x1x4 − 2x2x3 + 2x3x4.

(c) Three knights at The King Arthur’s round table are served unequal amounts of cereal.

At the moment n each knight borrows one half of cereal from the plates of his left and right
neighbors. Find the distribution of cereal in the plates at the moment n = 1999 when The King

Arthur joins the party.
(d) Show that maximum (minimum) of the quadratic form λ1x

2
1 + ... + λnx2

n restricted to

the unit sphere x2
1 + ...+ x2

n equals the maximal (minimal) number among λ1, ..., λn.

(e) The hypersurface in Rn given by the equation

x2
1

a2
1

+ ...+
x2
n

a2
n

= 1, a1 ≥ a2 ≥ ... ≥ an,

is called the normal ellipsoid with semiaxes a1, ..., an. Show that for any positive quadratic form

Q(x), the ellipsoid defined by the equation Q(x) = 1 is obtained from one of the normal ellipsoids
by an orthogonal transformation.

(f) Show that the intersection of an ellipsoid E in Rn with a linear subspace is an ellipsoid
E′ in this subspace. Prove that the largest semiaxes a1 and a′1 of E and E′ satisfy a′1 ≤ a1.

(g) Classify quadratic surfaces

Q(x1, x2, x3) = 1

in R3 up to orthogonal changes of coordinates (here Q is a quadratic form). Sketch the corre-
sponding pictures.

3.5.5. Small oscillations. Let us consider the system of 4 identical masses
m positioned at the vertices of a square which are cyclicly connected by 4 identical
elastic springs and can oscillate in the direction perpendicular to the plane of the
square. 1 Assuming that the oscillations are small, we can describe motion of
the masses by solutions to the following system of Newton equations (mass ×
acceleration = force):

mẍ1 = −k(x1 − x4) − k(x1 − x2),
mẍ2 = −k(x2 − x1) − k(x2 − x3),
mẍ3 = −k(x3 − x2) − k(x3 − x4),
mẍ4 = −k(x4 − x3) − k(x4 − x1).

1We may assume that the springs are stretched, but the masses are confined on vertical rods

and can only slide along them without friction. When a spring of length L is horizontal (∆x = 0),
the stretching force T is compensated by the reactions of the rods. When ∆x 6= 0, the horizontal

component of the stretching force is still compensated, but the vertical component contributes
to the RHS of the Newton equations. When ∆x is small, the contribution equals approximately

−T (∆x)/L (so that k = −T/L. )
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Here x1, ..., x4 are the coordinates of the masses in the direction perpendicular to
the plane, and k characterizes rigidity of the springs. In fact the ODE system can
be read off a pair of quadratic forms — the kinetic energy

K(ẋ) =
mẋ2

1

2
+
mẋ2

2

2
+
mẋ2

3

2
+
mẋ2

4

2
,

and the potential energy

P (x) = k
(x1 − x2)

2

2
+ k

(x2 − x3)
2

2
+ k

(x3 − x4)
2

2
+ k

(x4 − x1)
2

2
.

Namely, for any conservative mechanical system with quadratic kinetic and poten-
tial energy functions

K(ẋ) =
1

2
〈M ẋ, ẋ〉, P (x) =

1

2
〈Qx,x〉

the equations of motion take on the form

M ẍ = −Qx.

A linear change of variables x = Cy transforms the kinetic and potential energy
functions to a new form with the matrices M ′ = CtMC and Q′ = CtQC. On the
other hand, the same change of variables transforms the ODE system M ẍ = −Qx
to MCÿ = −QCy. Multiplying by Ct we get M ′ÿ = −Q′y and see that the
relationship between K,P and the ODE system is preserved. The relationship is
therefore intrinsic, i. e. independent on the choice of coordinates.

Since the kinetic energy is positive we can apply the Orthogonal Diagonalization
Theorem (in the form described in Section 3.1) in order to transform K and P
simultaneously to

1

2
(ẏ2

1 + ...+ ẏ2
n), and

1

2
(λ1y

2
1 + ...+ λny

2
n).

The corresponding ODE system splits into unlinked 2-nd order ODEs

ÿ1 = −λ1y1, ..., ÿn = −λnyn.

When the potential energy is also positive, we obtain a system of n unlinked har-
monic oscillators with the frequencies ω =

√
λ1, ...,

√
λn.

Let us examine our system of 4 masses tied by the springs. The kinetic energy
function is proportional to the square length of the velocity vector ẋ. The potential
energy function is proportional to the quadratic form studied in Example (a) of the
previous section. Thus we can use the eigenvectors and eigenvalues found there.
In the coordinate system (y1, y2, y3, y4) the ODE system reads mÿ1 = 0, mÿ2 =
−2ky2, mÿ3 = −2ky3, mÿ4 = −4ky4 and is easy to solve explicitly.

The first eigenvector (x1, x2, x3, x4) = (1, 1, 1, 1) describes the simultaneous
shift of the 4 masses in the direction perpendicular to the plane. Since the cor-
responding eigenvalue λ1 = 0, the solution y1(t) = y1(0) + ẏ1(0)t does not have
oscillating character and represents the “free particle” motion of the mass-spring
system as a whole.

The next eigenvector (1, 1,−1,−1) corresponds to the mode of oscillation with

the frequency
√

2k/m where the 1-st and 2-nd masses as well as the 3-rd and 4-th
masses move together, but the pairs move in the opposite directions.

Similarly, the eigenvector (1,−1,−1, 1) corresponds to the oscillation mode
when the masses 2, 3 and 1, 4 move in pairs.
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The last eigenvector (1,−1, 1,−1) corresponds to the diagonal pairs 1, 3 and

2, 4 moving together. The oscillation frequency
√

4k/m here is greater than in the
previous two cases.

x

x x

x1

2 3

4

λ=0 λ=2

λ=2 λ=4



112 3. LINEAR ALGEBRA

A general motion of the configuration point (x1, x2, x3, x4) in the configuration
space 2

R4 can be understood as a superposition of the above four modes. Even
though the general motion may look complicated in the original coordinate system
(related to the coordinate 4D-cube), we see that it actually consists of four simple
independent motions in the directions of the eigenvectors (the axes of the 4D-
“octahedron” formed by “black” vertices of the 4D-cube shown on the picture in
Section 3.3.1).

Similarly to the above example, the Orthogonal Diagonalization Theorem guar-
antees that small oscillations in any conservative mechanical system near a local
minimum of potential energy are described as superpositions of independent har-
monic oscillations.

Exercises 3.5.5.
(a) Using Exercise 3.5.4(f) explain why a broken bell sounds lower than a new one.

(b) Find frequencies and describe the modes of oscillations in the mass-spring system of 3
identical masses positioned at the vertices of the regular triangle. The same — for 6 masses

positioned at the vertices of the regular hexagon (like the 6 carbon atoms in benzene molecules).
The same — in the case of the regular n-gon for arbitrary n.

2The phase space of our system has dimension 8 since a phase point is to represent not only

the configuration vector x but also the velocity vector ẋ.
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3.6. Eigenvectors

Classification of linear transformations from a space to itself up to change of
coordinates and applications to linear constant coefficients ODE systems is the
subject of this section.

3.6.1. Diagonalization theorem. Let x′ = Ax be a linear transformation
from Rn to itself. The n × n-matrix A of the linear transformation depends on
the choice of the coordinate system and is subject to a similarity transformation
A 7→ C−1AC when the coordinate system changes: if x = Cy (and respectively
x′ = Cy′) we have y′ = C−1x′ = C−1Ax = C−1ACy. As we remarked in Section
3.1, the classification of matrices up to similarity transformations looks simpler if
we allow complex matrices on the role of both A and C. So, we introduce the
space Cn of all complex n-vectors, that is columns (z1, ..., zn)t of complex numbers
3 with componentwise addition and multiplication by (complex) scalars. A linear
transformation z′ = Az from Cn to itself is described by the matrix multiplication
with the coefficient matrix A = [aij] where the matrix entries aij are allowed to be
complex numbers. The characteristic polynomial det(λI − A) of the matrix A is
therefore a degree n polynomial in λ which has complex coefficients. According to
the Fundamental Theorem of Algebra it has n complex roots λ1, ..., λn, possibly —
multiple. We will assume for the moment that for our matrix A the roots of the
characteristic polynomial are distinct, λi 6= λj if i 6= j.

Theorem. If the characteristic polynomial of a complex n × n-matrix A
has n distinct roots λ1, ..., λn then the matrix is similar to the diagonal matrix

Λ =





λ1 0 ...
...

... 0 λn



: there exists an invertible complex n× n-matrix C such that

C−1AC = Λ.

Proof. Since det(λiI − A) = 0, the system of linear equations Az = λiz (with
complex coefficients) has a non-trivial solution zi 6= 0. We claim that the complex
eigenvectors z1, ..., zn corresponding to the distinct eigenvalues λ1, ..., λn are linearly
independent and therefore form a basis in Cn. Then the matrix C whose columns
are z1, ..., zn is invertible, and we have AC = CΛ and hence C−1AC = Λ.

In order to justify the claim, let us assume that, say, z1, ..., zk are linearly
independent, but zk+1 is their linear combination. Consider the subspace V =
Span(z1, ...zk) and the linear transformation from V to itself defined by A: Azi =
λizi, i = 1, ..., k. The matrix of this linear transformation in the basis z1, ..., zk is
diagonal with the characteristic polynomial (λ − λ1)...(λ− λk). Since λk+1 is not
a root of this characteristic polynomial, our linear transformation from V to itself
can not have an eigenvector with the eigenvalue λk+1. Thus zk+1 does not belong
to V in contradiction with our assumption. This contradiction completes the proof
of the diagonalization theorem.

Let us improve the result in the case when the matrix A is actually real. In
this case the characteristic polynomial of A has real coefficients and therefore its
roots are either real or come in complex conjugated pairs λ, λ̄. For a real root λi

the corresponding eigenvector can be taken real. For a complex conjugated pair,
if a complex non-zero vector z = (z1, ..., zn) satisfies Az = λz then Az̄ = λ̄z̄ so

3
C is the standard notation for the set of complex numbers.
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that z̄ = (z̄1, ..., z̄n) is an eigenvector with the eigenvalue λ̄. As we know from
Section 1.5.3, the linear transformation A acts on the plane spanned by the real
and imaginary parts of the vector z as the complex multiplication by λ = a + bi

and has the matrix

[

a −b
b a

]

. We arrive therefore at the following conclusion.

Corollary. Suppose that the characteristic polynomial of a linear transforma-
tion from Rn to itself has n = r + 2s distinct roots: r real roots λ1, ..., λr and s
pairs of complex conjugated roots a1±b1i, ..., as±bsi. Then in a suitable coordinate
system in Rn the linear transformation has the matrix

























λ1

...
λr

a1 −b1
b1 a1

...
as −bs
bs as

























.

What happens if the characteristic polynomial of the complex matrix A has
multiple roots?

Examples. (a) The m×m-matrix

Jλ0,m =













λ0 1 0 ... 0
0 λ0 1 0 ...

...
0 ... 0 λ0 1
0 ... 0 λ0













has the characteristic polynomial (λ − λ0)
m with one root λ0 of multiplicity m. It

is called the Jordan cell of size m with the eigenvalue λ0 (which can be a complex
number). The linear transformation defined by the matrix Jλ0,m acts on the unit
coordinate vectors in the following way:

em 7→ λ0em + em−1, em−1 7→ λ0em−1 + em−2, ..., e2 7→ λ0e2 + e1, e1 7→ λ0e1.

In particular, e1 is an eigenvector with the eigenvalue λ0. In fact any eigenvector
of Jλ0,m is proportional to e1. Indeed, the matrix Jλ0,m − λ0I has rank m − 1
(since the last m − 1 columns of this matrix are equal to e1, ..., em−1 and are
linearly independent). Hence the system Jλ0,mz = λ0z of linear equations has one-
dimensional solution space. We see that the Jordan cell does not have a basis of
eigenvectors and is therefore not similar to any diagonal matrix.

(b) Let Bλ0,m be a block-diagonal matrix of the form

Bλ0,m =









Jλ0,m1
0 ... 0

0 Jλ0,m2
0 ...

...
0 ... 0 Jλ0,ms









,

with Jordan cells of sizes m1 ≥ m2 ≥ ... ≥ ms ≥ 1 on the role of the diagonal
blocks. We assume here that all the Jordan cells have the same eigenvalue λ0, and
that the sizes add up to m. We use the symbol m to denote the whole string of
sizes (m1, ..., ms).
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The characteristic polynomial of the matrix Bλ0,m is the product (λ−λ0)
m1 ...

(λ − λ0)
ms = (λ − λ0)

m of the characteristic polynomials of the Jordan cells. It
is easy to see that the eigenspace of Bλ0,m has dimension s (one eigenline for each
of the s Jordan cells). When m1 = ... = ms = 1 the matrix equals λ0Im and is
diagonal. In any other case it has no basis of eigenvectors and is not similar to any
diagonal matrix. In fact two matrices Bλ,m and Bλ′,m′ are similar if and only if
λ = λ′ and m = m′, as it is stated in the following theorem.

Theorem. (Jordan normal forms.)
Suppose that the characteristic polynomial of a square matrix A has distinct

complex roots λ′, λ′′, ... of multiplicities n′, n′′, .... Then A is similar to exactly one
of the following block-diagonal matrices with the blocks of sizes n′, n′′, ...:





Bλ′,m′ 0 ... 0
0 Bλ′′,m′′ 0 ...
0 0 ...



 .

Example. (c) According to the Jordan normal form theorem, a non-zero 4 ×
4-matrix with the characteristic polynomial λ4 is similar to exactly one of the
following matrices:









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









,









0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0









,









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









,









0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

We stop here in our discussion of similarity classification of matrices and leave
a proof of the Jordan theorem to a more systematic linear algebra course.

Exercises 3.6.1.
Are the following matrices

diagonalizable?

(a)

2

4

9 22 −6

−1 −4 1
8 16 −5

3

5 , (b)

2

4

0 3 3

−1 −8 6
2 −14 −10

3

5 .

Find Jordan normal forms of the following matrices

(c)

2

6

6

4

1 2 3 4
0 1 2 3

0 0 1 2
0 0 0 1

3

7

7

5

, (d)

2

6

6

4

0 1 0 0
0 0 1 0

0 0 0 1
1 0 0 0

3

7

7

5

.

Diagonalize the following matrices by a real or complex similarity transformation:

(e)

2

4

1 2 0

0 2 0
−2 −2 −1

3

5 , (f)

2

4

4 6 0

−3 −5 0
−3 −6 1

3

5 , (g)

2

4

7 −12 −2

3 −4 0
−2 0 −2

3

5 ,

(h)

2

4

−2 8 6
−4 10 6

4 −8 −4

3

5 , (i)

2

4

3 7 −3
−2 −5 2

−4 −10 3

3

5 , (j)

2

4

1 −1 2
3 −3 6

2 −2 4

3

5 .

(k) List all Jordan normal forms with characteristic polynomials (λ+ 1)4, (λ2 − 1)2, λ5.

(l) Prove that a complex matrix A satisfying A1999 = I is diagonalizable.

(m) Prove that transposed square matrices are similar to each other.
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3.6.2. Linear ODE systems. Let

ẋ1 = a11x1 + ...+ a1nxn

...
ẋ2 = an1x1 + ...+ annxn

be a linear homogeneous system of ordinary differential equations with constant
complex coefficients aij . It can be written in the matrix form as ẋ = Ax.

Consider the infinite matrix series

etA := I + tA+
t2A2

2
+
t3A3

6
+ ...+

tkAk

k!
+ ...

If M is an upper bound for the absolute values of the entries of A, then the matrix
entries of tkAk/k! are bounded by nktkMk/k!. It is easy to deduce from this that
the series converges (at least as fast as the series for exp(ntM)).

Proposition. The solution to the system ẋ = Ax with the initial condition
x(0) is given by the formula x(t) = etAx(0).

Proof. Differentiating the series
∑∞

0 tkAk/k! we find

d

dt
etA =

∞
∑

k=1

tk−1Ak

(k − 1)!
=

∞
∑

k=0

tkAk+1

k!
= AetA

and hence d
dte

tAx(0) = A(etAx(0)). Thus x(t) satisfies the ODE system. At t = 0

we have e0Ax(0) = Ix(0) = x(0) and therefore the initial condition is also satisfied.

The proposition reduces the problem of solving the ODE system ẋ = Ax to
computation of the exponential function etA of a matrix. Notice that ifA = CBC−1

then

Ak = CBC−1CBC−1CBC−1... = CBBB...C−1 = CBkC−1

and therefore exp(tA) = C−1 exp(tB)C. This observation reduces computation of
etA to that of etB where the Jordan normal form of A can be taken on the role of
B.

Examples. (a) Let Λ be a diagonal matrix with the diagonal entries λ1, ..., λn.
Then Λk is a diagonal matrix with the diagonal entries λk

1 , ..., λ
k
n and hence

etΛ = I + tΛ +
t2

2
Λ2 + ... =





eλ1t 0 ...
...

... 0 eλnt



 .

(b) Let N be a Jordan cell of size m with zero eigenvalue. We have (for m = 4)

N =









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









, N2 =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









, N3 =









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









, N4 = 0.

Following the pattern we find

etN = I + tN +
t2

2
N2 + ...+

tm−1

(m− 1)!
Nm−1 =















1 t t2

2 ... tm−1

(m−1)!

0 1 t ... tm−2

(m−2)!

0 0 1 t ...
...

... 0 1















.
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(c) Let λI + N be the Jordan cell of size m with the eigenvalue λ. Then
et(λI+N) = etλIetN = eλtetN . Here we use the multiplicative property of the
matrix exponential function: 4

eA+B = eAeB provided that A and B commute: AB = BA.

(d) Let A =

[

B 0
0 D

]

be a block-diagonal square matrix. Then Ak =
[

Bk 0
0 Dk

]

and respectively etA =

[

etB 0
0 etD

]

. Together with the Exam-

ples (b) and (c) this shows how to compute the exponential function etJ for any
Jordan normal form J : each Jordan cell has the form λI+N and should be replaced
by eλtetN . Since any square matrix A can be reduced to one of the Jordan normal
matrices J by similarity transformations, we conclude that etA = CetJC−1 with
suitable invertible C.

Applying the Example (a) to ODE systems ẋ = Ax we arrive at the following
conclusion. Suppose that the characteristic polynomial of A has n distinct roots
λ1, ..., λn. Let C be the matrix whose columns are the corresponding n complex
eigenvectors z1, ..., zn. Then the solution with the initial condition x(0) is given by
the formula

x(t) = C





eλ1t 0 ...
...

... 0 eλnt



C−1x(0).

Notice that C−1x(0) here (as well as x(0)) is a column c = (c1, ..., cn)t of arbi-
trary constants, and the columns of CetΛ are eλitzi. We conclude that the general
solution formula reads

x(t) = c1e
λ1tz1 + ...+ cne

λntzn.

This formula involves eigenvalues λi of A, the corresponding eigenvectors zi and the
arbitrary complex constants ci. The values of c1, ..., cn corresponding to a given
initial condition x(0) can be found by representing x(0) as a linear combination
c1z1 + ...+ cnzn of the eigenvectors.

Example. (e) The ODE system

ẋ1 = 2x1 + x2

ẋ2 = x1 + 3x2 − x3

ẋ3 = 2x2 + 3x3 − x1

has A =





2 1 0
1 3 −1
−1 2 3



 .

The characteristic polynomial λ3−8λ2+22λ−20 has a real root λ1 = 2. It factors as
(λ−2)(λ2−6λ+10) and thus has two complex roots λ2 = 3+i, λ3 = 3−i. The 1-st
eigenvector z1 = (1, 0, 1) is found from the system 2x1 +x2 = 2x1, x1 +3x2 −x3 =
2x2, −x1+2x2 +3x3 = 2x3. The 2-nd eigenvector z2 = (1, 1+i, 2−i) is found from
the system 2x1+x2 = (3+i)x1, x1+3x2−x3 = (3+i)x2, −x1+2x2+3x3 = (3+i)x3 .
The complex conjugate z3 = (1, 1 − i, 2 + i) to z2 can be taken on the role of the

4This is just a property of the exponential series and can be proved in exactly the same way

as the multiplicativity of the complex exponential function exp(z+w) = (exp z)(expw) in Section
1.4.2. As one can see from that proof, the commutativityAB = BA is essential. When AB 6= BA,

the property usually fails, and we recommend the reader to find an example where eA+B 6= eAeB.
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3-rd eigenvector. Thus the general complex solution is a linear combination of the
solutions

e2t





1
0
1



 , e(3+i)t





1
1 + i
2 − i



 , e(3−i)t





1
1 − i
2 + i





with arbitrary complex coefficients. Real solutions can be extracted from the com-
plex ones by taking their real and imaginary parts:

e3t





cos t
cos t − sin t

2 cos t+ sin t



 , e3t





sin t
cos t+ sin t

2 sin t− cos t



 .

Thus the general real solution is described by the formulas

x1(t) = c1e
t + c2e

3t cos t + c3e
3t sin t

x2(t) = c2e
3t(cos t − sin t) + c3e

3t(2 cos t+ sin t)
x3(t) = c1e

t + c2e
3t(cos t + sin t) + c3e

3t(2 sin t− cos t)
,

where c1, c2, c3 are arbitrary real constants. At t = 0 we have

x1(0) = c1 + c2, x2(0) = c2 + 2c3, x3(0) = c1 + c2 − c3.

Given the initial values (x1(0), x2(0), x3(0)) the corresponding constants c1, c2, c3
can be found from this system of linear algebraic equations.

In general, even if the characteristic polynomial of A has multiple roots, the
Examples (a) – (d) show that solutions to the ODE system ẋ = Ax are expressible
as linear combinations of the functions tkeλt, tkeat cos bt, tkeat sin bt where λ are
real eigenvalues, a± ib are complex eigenvalues, and k = 0, 1, 2, ... is to be smaller
than the multiplicity of the corresponding eigenvalue. This observation suggests to
approach the ODE systems with multiple eigenvalues in the following way avoiding
explicit similarity transformation to the Jordan normal form: look for the general
solution in the form of linear combinations of these functions with arbitrary coeffi-
cients by substituting them into the equations and find the relations between the
arbitrary constants from the resulting system of linear algebraic equations.

Example. (f) The ODE system

ẋ1 = 2x1 + x2 + x3

ẋ2 = −3x1 − 2x2 − 3x3

ẋ3 = 2x1 + 2x2 + 3x3

, has A =





2 1 1
−3 −2 −3

2 2 3





with the characteristic polynomial λ3 − 3λ2 + 3λ− 1 = (λ− 1)3. Thus we can look
for solutions in the form
x1 = et(a1 + b1t + c1t

2), x2 = et(a2 + b2t+ c2t
2), x3 = et(a3 + b3t+ c3t

2).
Substituting into the ODE system (and omitting the factors et), we get

(a1 + b1) + (b1 + 2c1)t + c1t
2 =

= (2a1 + a2 + a3) + (2b1 + b2 + b3)t+ (2c1 + c2 + c3)t
2,

(a2 + b2) + (b2 + 2c2)t + c2t
2 =

= −(3a1 + 2a2 + 3a3)− (3b1 + 2b2 + 3b3)t− (3c1 + 2c2 + 3c3)t
2,

(a3 + b3) + (b3 + 2c3)t + c3t
2 =

= (2a1 + 2a2 + 3a3) + (2b1 + 2b2 + 3b3)t + (2c1 + 2c2 + 3c3)t
2.
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Introducing the notation A =
∑

ai,B =
∑

bi, C =
∑

ci, P = A + Bt + Ct2, we
rewrite the system of 9 linear equations in 9 unknowns in the form

b1 + 2c1t = P, b2 + 2c2t = −3P, b3 + 2c3t = 2P.

This yields b1 = A, b2 = −3A, b3 = 2A and hence c1 = c2 = c3 = 0 since B =
A− 3A+ 2A = 0. The general solution to the ODE system is therefore found:





x1

x2

x3



 =





et(a1 + (a1 + a2 + a3)t)
et(a2 − 3(a1 + a2 + a3)t)
et(a3 + 2(a1 + a2 + a3)t)



 ,

where a1, a2, a3 are arbitrary constants. 5

Exercises 3.6.2.
Solve the following ODE systems. Find the solution satisfying the initial condition

x1(0) = 1, x2(0) = 0, x3(0) = 0.

(a)

ẋ1 = 3x1 − x2 + x3

ẋ2 = x1 + x2 + x3

ẋ3 = 4x1 − x2 + 4x3

(λ1 = 1)

(b)

ẋ1 = −3x1 + 4x2 − 2x3

ẋ2 = x1 + x3

ẋ3 = 6x1 − 6x2 + 5x3

(λ1 = 1)

(c)

ẋ1 = x1 − x2 − x3

ẋ2 = x1 + x2

ẋ3 = 3x1 + x3

(λ1 = 1)

(d)

ẋ1 = 4x1 − x2 − x3

ẋ2 = x1 + 2x2 − x3

ẋ3 = x1 − x2 + 2x3

(λ1 = 2)

(e)

ẋ1 = −x1 + x2 − 2x3

ẋ2 = 4x1 + x2

ẋ3 = 2x1 + x2 − x3

(λ1 = 1)

(f)

ẋ1 = 4x1 − x2

ẋ2 = 3x1 + x2 − x3

ẋ3 = x1 + x3

(λ1 = 2)

(g)

ẋ1 = 2x1 − x2 − x3

ẋ2 = 2x1 − x2 − 2x3

ẋ3 = −x1 + x2 + 2x3

(λ1 = 1)

(h) Sketch 3D phase portraits of the linear ODE systems
ẋ1 = λ1x1

ẋ2 = λ2x2

ẋ3 = λ3x3

with

λ1 > λ2 > λ3 > 0, λ1 > λ2 > 0 > λ3, λ1 > 0 > λ2 > λ3, 0 > λ1 > λ2 > λ3.

Is the equilibrium x = 0 of these systems asymptotically stable?

5In particular, since t2 does not occur in the formulas, we can conclude that the Jordan form
of our matrix has only Jordan cells of size 1 or 2, and hence — one cell of size 1 and one — of

size 2 since the total size of the matrix is 3:

2

4

1 1 0
0 1 0

0 0 1

3

5.



120 3. LINEAR ALGEBRA

3.6.3. Higher order linear ODEs. A linear homogeneous constant coeffi-
cient n-th order ODE

dn

dtn
x+ a1

dn−1

dtn−1
x+ ...+ an−1

d

dt
x+ anx = 0

can be rewritten as a system ẋ = Ax of n first order equations with the matrix

A =













0 1 0 ... 0
0 0 1 0 ...

...
0 ... 0 0 1

−an −an−1 ... −a2 −a1













,

by introducing the notations x1 = x, x2 = ẋ, x3 = ẍ, ..., xn = dn−1x/dtn−1. Then
our theory of linear ODE system applies. There are however some simplifications
which are due to the special form of the matrix A. First, computing the character-
istic polynomial of A we find

det(λI −A) = λn + a1λ
n−1 + ...+ an−1λ + an.

Thus the polynomial can be easily read off the high order differential equation.
Next, let λ1, ..., λr be the roots of the characteristic polynomial, and m1, ..., mr

— their multiplicities (m1 + ... + mr = n). Then it is clear that the solutions
x(t) = x1(t) must have the form

eλ1tP1(t) + ...+ eλrtPr(t),

where Pi = a0 + a1t + ... + ami−1t
mi−1 is a polynomial of degree < mi. The

total number of arbitrary coefficients in these polynomials equals m1 + ...+mr =
n. On the other hand, the general solution to the n-th order ODE must depend
on n arbitrary initial values (x(0), ẋ(0), ..., x(n−1)(0)) due to the Existence and
Uniqueness Theorem. We conclude that all the n functions

eλ1t, eλ1tt, ..., eλ1ttm1−1, ..., eλrt, eλrtt, ..., eλrttmr−1

must satisfy our differential equation, and any (complex) solution is uniquely written
as a linear combination of these functions with suitable (complex) coefficients. (In
other words — these functions form a basis of complex solutions to the differential
equation.)

Example. The differential equation x(xii) − 3x(viii) + 3x(iv) − x = 0 has the
characteristic polynomial λ12 − 3λ8 + 3λ4 − 1 = (λ − 1)3(λ + 1)3(λ − i)3(λ + i)3.
The following 12 functions form therefore a basis of complex solutions:

et, tet, t2et, e−t, te−t, t2e−t, eit, teit, t2eit, e−it, te−it, t2e−it.

Of course, a basis of real solutions is obtained by taking real and imaginary parts
of complex solutions:

et, tet, t2et, e−t, te−t, t2e−t, cos t, sin t, t cos t, t sin t, t2 cos t, t2 sin t.

Remark. The fact that the functions eλittk, k < mi, i = 1, ..., r, form a basis
of solutions to the differential equation with the characteristic polynomial (λ −
λ1)

m1 ...(λ−λr)
mr is not hard to check directly, without a reference to linear algebra

and Existence and Uniqueness Theorem. However, it is useful to understand how
this property of the equation is related to the Jordan structure of the corresponding
matrix A. In fact the Jordan normal form of the matrix A consists of exactly r
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Jordan cells — one cell of size mi for each eigenvalue λi. This simplification can be
explained as follows. For any λ the matrix λI − A has rank n − 1 at least (due to
the presence of the (n − 1) × (n − 1) identity submatrix in the right upper corner
of A). This guarantees that the eigenspaces of A have dimension 1 at most and
hence A cannot have more than one Jordan cell corresponding to the same root of
the characteristic polynomial. Using this property, the reader can check now that
the formulation of the Jordan Theorem in terms of differential equations given in
Section 3.1 is indeed equivalent to the matrix formulation given in Section 3.6.1.

Exercises 3.6.3.
Solve the following ODEs. Find the solution satisfying the initial condition

x(0) = 1, ẋ(0) = 0, ..., x(n−1)(0) = 0.

(a) x(iii) − 8x = 0

(b) x(iv) + 4x = 0

(c) x(vi) + 64x = 0

(d) x(v) − 10x(iii) + 9x = 0

(e) x(iii) − 3x(i) − 2x = 0

(f) x(v) − 6x(iv) + x(iii) = 0

(g) x(v) + 8x(iii) + 16x(i) = 0

(h) x(iv) + 4x(ii) + 3x = 0

(i) Rewrite the ODE system

ẍ1 + 4ẋ1 − 2x1 − 2ẋ2 − x2 = 0
ẍ1 − 4ẋ1 − ẍ2 + 2ẋ2 + 2x2 = 0

of two 2-nd order equations in the form of a linear ODE system ẋ = Ax of four 1-st order equations
and solve it.
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3.7. Vector spaces

In this course, we have encountered linear combinations and inner products of
different objects — geometrical vectors, columns of numbers, trigonometric func-
tions, polynomials, solutions of ODEs — and have noted certain similarity in their
properties. To understand this similarity, we will treat these different objects as
particular examples of vectors in abstract vector spaces which are defined axiomat-
icly by way of listing their formal properties but without any reference to the actual
nature of the objects.

3.7.1. Axioms and examples. Definition. A vector space is a set V (whose
elements are called vectors) provided with operations of addition and multiplication
by scalars which satisfy the following conditions:

(i) the sum of two vectors u and v is a vector (denoted u + v); the result of
multiplication of a vector v by a scalar λ is a vector (denoted λv);

(ii) addition of vectors is commutative and associative: for any u,v,w from V
we have

u + v = v + u, (u + v) + w = u + (v + w);

(iii) there exists the zero vector (denoted 0) such that

v + 0 = 0 + v = v for any v from V ;

(iv) for any vector u there exists the opposite vector (denoted −u) such that

−u + u = 0;

(v) the multiplication by scalars is distributive: for any vectors u,v and any
scalars λ, µ we have

(λ + µ)(u + v) = λu + λv + µu + µv;

(vi) the multiplication is associative in the following sense: for any vector v
and any scalars λ, µ we have:

(λµ)u = λ(µu);

(vii) the multiplication by the scalars 0 and 1 act on any vector u as

0u = 0, 1u = u.

We have to add to this definition the following comment about the use of the
word scalars. We can take one of the sets R or C of real or complex numbers on the
role of scalars and obtain the definition of a real vector space or a complex vector
space. In fact any system K of “numbers” closed with respect to addition and
multiplication will do, provided that the multiplication of numbers is commutative,
and that the division by all non-zero numbers is defined. 6 We arrive in this way
to the notion of K-vector spaces. For instance, the set Z2 = {0, 1} of remainders
modulo 2 with the usual arithmetics of remainders (0 + 0 = 0 = 1 + 1, 0 + 1 = 1 =
1 + 0, 0 · 0 = 1 · 0 = 0 · 1 = 0, 1 · 1 = 1) can be taken on the role of scalars which
gives rise to the definition of Z2-vector spaces useful in computer science and logic.

6For example, the set of all integers, or of all polynomials is not allowed on the role of
scalars since the division is not always defined, but all rational numbers or all rational functions

P (x)/Q(x) on the role of K are OK.
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Before presenting examples of vector spaces we would like to emphasize that the
axioms (i) – (vii) describe properties of operations with vectors rather than prop-
erties of vectors themselves. In order to find different examples of vector spaces
we therefore should figure out which operations are good candidates on the role of
addition and multiplication by scalars. It turns out that in almost all useful exam-
ples the operations are pointwise operations of addition and scalar multiplication of
functions.

Examples. (a) Let S be any set and V be the set K[S] of all functions on S
with values in K provided with pointwise operations:

(f + g)(s) = f(s) + g(s), (λf)(s) = λ(f(s)).

Then V is a K-vector space.
(b) Let S be the set of n elements 1, 2, ..., n. Then R[S] = Rn and C[S] = Cn:

each function x is specified by a column (x(1), ..., x(n))t of its values, and the
operations are pointwise.

(c) Let S be the set of all ordered pairs (i, j) where i = 1, ..., m, j = 1, ..., n.
Then the vector spaces R[S] and C[S] are respectively spaces of real and complex
m× n-matrices [a(i, j)] with the usual operations of addition of matrices and their
multiplication by scalars.

(d) Let V be a K-vector space. Since elements of V can be added and multiplied
by scalars, vector-valued functions from any set S to V can be added and multiplied
pointwise. The set of all such functions is a K-vector space too.

(e) A subset W in a vector space V is called a linear subspace if all linear
combinations λu + µv of vectors from W are also in W . A subspace of a vector
space satisfies the axioms of a vector space on its own (since the operations are the
same as in V ). For instance, all upper-triangular n× n-matrices (lower-triangular,
block-triangular, block-diagonal, diagonal matrices — the reader can continue this
line of examples) form a subspace in the space of matrices and provide examples of
vector spaces. The sets of all polynomials (say, in one variable), of all trigonometric
polynomials, of all continuous ( differentiable, 5 times continuously differentiable,
infinitely differentiable) functions form a subspace in the space R[R] of all real func-
tions on the number line and therefore provide examples of vector spaces. Linear
forms or quadratic forms in Rn form subspaces in the space R[Rn] and therefore —
vector spaces on their own.

(f) It is hard 7 to find examples of vector spaces which would not have the
form of a subspace in the space of vector-valued functions on a set with pointwise
operations of addition and scalar multiplication. It raises the suspicion that the
axiomatic definition of vector spaces which obscures the actual nature of vectors as
functions is useless. Here is an example of a construction of new vector spaces from
old ones where it would be awkward to interpret the vectors as functions. In the
theory of Fourier series we considered the space of 2L-periodic piece-wise differen-
tiable functions. However we ignored the values of the functions at discontinuity
points as irrelevant. This means that we actually identified those functions on R

which differ by their values at finitely many points. Thus, in the space V of all 2L-
periodic piece-wise differentiable functions on R (which is a subspace in R[R]) we
consider the subspace W of all functions non-zero only at finitely many points on
each period. A vector in the space of our interest corresponds to an affine subspace

7formally speaking — impossible
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in V parallel to W . The set of all affine subspaces in a vector space V parallel to
a given subspace W is a vector space V/W called the quotient space of V modulo
W . Another example of this kind: let V be the space of all polynomials with real
coefficients in one variable i, and W be the subspace of such polynomials divisible
by i2 + 1. Then it is natural to identify the quotient space V/W with the set C of
complex numbers (which is indeed a 2-dimensional real vector space).

(g) There was however an example in this course where the vector operations
did not originate from pointwise operations with functions: addition of geometrical
vectors on the plane was introduced via composition of directed segments and not
as pointwise addition of functions.

Definition. A vector space is called finite-dimensional if it can be spanned by
finitely many vectors.

Let V be a finite-dimensional K-vector space spanned by v1, ...,vn. We may
assume that these vectors are linearly independent (otherwise we can throw away
those of the vectors which are linear combinations of previous ones, and the re-
maining vectors will be linearly independent and will still span the whole space
V ). Then any vector v from V can be uniquely written as a linear combination
v = x1v1 + ...+ xnvn. This identifies V with the space K

n of all functions from
{1, ..., n} to K. 8 Then it is easy to prove (in the same way as we did it in Section
3.3 for Rn) that any basis in V has exactly n elements (one announces this n to
be the dimension of V ), that any non-trivial subspace in V has finite dimension
k, 0 < k < n, etc. Thus, any geometrical fact about Rn remains true for any
n-dimensional real vector space (and up to certain extent — for any n-dimensional
K-vector space).

The next section presents an example where geometrical intuition is applied to
vectors in Zn

2 .

Exercises 3.7.1.

(a) Deduce from the axioms (iv),(v),(vii) that −u = (−1)u.
(b) Verify the axioms (i) – (vii) for the space C[S] of all complex-valued functions on a set

S.
(c) Let N be the null-space of a linear operator from Rn to Rm. Identify the quotient space

Rn/N with the column space of A in Rm.
(d) Compute the dimension of the space of upper-triangular n × n-matrices, of the space of

linear forms in Rn, of quadratic forms in Rn, of bilinear forms in Rn.
(e) Show that polynomials of degree n do not form a subspace in R[R], while polynomials of

degree ≤ n do. Compute its dimension.
(f) Prove that an infinite-dimensional vector space contains an infinite linearly independent

set of vectors. Show that K[S] is finite-dimensional if and only if S is finite.
(g) Which of the examples of vector spaces given in the text are finite-dimensional?

3.7.2. Error-correcting codes. A piece of data is encoded by a string (x1, ...,
xn) of binary digits 0 or 1 and is wired from a transmitter to receiver. There is a
small probability that the string is received with an error in one digit — 1 instead of
0 or 0 instead of 1, but simultaneous error in two bits is extremely unlikely. Thus,
encoding the data by the (n + 1)-string (x0, ..., xn) where x0 equals the parity of
x1 + ...+ xn we give the addressee an opportunity to check whether the error took

8Do not overestimate this fact: the identification depends on the choice of the basis v1, ...,vn,

and very often a “natural” choice is not unique. For instance, which basis would you choose
in the space of polynomials of degree ≤ n: (1, t, t2, ..., tn), (1, t − 1, (t − 1)2, ..., (t − 1)n),

(1, t, t2/2, ..., tn/n!), or a basis (L0, ..., Ln) of Lagrange interpolation polynomials?
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place: a string with x0 + ... + xn = 1 (in Z2) is erroneous, but if a string with
x0 + ...+ xn = 0 has arrived, an error is very unlikely.

How to improve this parity check (possibly — by sending a longer string) so
that not only an error can be detected but also the bit where the error has occurred
can be determined (and the error therefore — corrected) assuming that there is only
one such a bit?

Let the string x (we consider it as a vector in Zn
2 ) represents the data, and the

additional string we send be a vector y in Zm
2 . The vector x can be arbitrary, but

the vector y should depend on x in a certain way known to the addressee and thus
provide the opportunity to detect an error by checking if the relationship between
x and y is broken. Let us try a linear code, where y = Ax is obtained from x by
a linear operator. Thus error-free strings (x,y) must have the form (x, Ax). All
such strings form the graph of the linear operator A from Zn

2 to Zm
2 . The graph is

a subspace V of dimension n in Z
n+m
2 .

What do we want from A? If an error occurs, the received vector z = (x,y)
differs by one bit from some vector in V and thus has the form ej + (x, Ax) where
ej is one of the m + n unit coordinate vectors 9 The erroneous vectors z form
the affine subspaces passing through one of the points e1, ..., em+n and parallel to
V . If two such affine subspaces meet at a point z (and hence coincide), it will be
impossible to figure out which bit in z is erroneous. Thus what we need from A
is that all affine subspaces e1 + V, ..., en+m + V in Z

n+m
2 parallel to the graph of

A and passing through e1, ..., en+m are distinct (and differ from the graph V itself
which corresponds to error-free strings).

Affine subspaces parallel 
to the graph and passing
through  
are to be distinct

0, e1 , e2 , e3,...

Notice that the graph is given by the equation Ax = y and is thus the null-
space of the linear operator from Z

n+m
2 to Zm

2 with the m× (n+m)-matrix [A|Im].
The parallel affine subspaces passing through 0, e1, ..., em+n are distinct if and only
if the m+ n columns of the matrix [A|I] are distinct and non-zero. This would be
easy to accomplish by a suitable choice of the matrix A if the matrix were real.
However our matrix consists of 0’s and 1’s. The total number of non-zero vectors
in Zm

2 is finite and equal to 2m − 1, and m of them are columns of the identity
matrix Im. Thus we have totally 2m − 1 −m different choices for columns of A,

9Ironically, the addressee would not know which part — x or y — contains the error.
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and our problem has a solution only if n ≤ 2m − 1−m. Since the relative length of
the transmitted signal better be maximized, we arrive at the following description
of economical error-correcting codes.

Pick m > 2 and put n = 2m −m − 1 (we have n = 4 for m = 3, n = 9 for
m = 4, n = 26 for m = 5, etc.) Take A to be any m × n-matrix whose columns
represent all m-columns of binary digits except 0, e1, ..., em. For instance, if m = 3
take

A =





0 1 1 1
1 0 1 1
1 1 0 1



 .

Encode n-vectors x by the n + m-vectors

[

x
Ax

]

. If an n + m-vector

[

x
y

]

is

received, compute Ax + y. If it is zero, the data vector was x. If it is not zero,
find which column of [A|I] it is equal to. The index of this column indicates the
erroneous bit.

The reader may conclude from the above discussion that “geometry” of Z2-
vector spaces is strikingly different from that of R2 or R3 — Z2-spaces consist of
only finitely many “points”. In fact our geometrical arguments with affine spaces,
graphs and linear operators work in Z2-spaces not because the geometry in Zn

2 is
the same as in Rn but because the facts about Rn known to us from Section 3.3
rely exclusively on the axioms (i) – (vii) of abstract vector spaces which equally
hold true in Rn and Zn

2 .

Exercises 3.7.2.

(a) Our friend Professor Foulier from the College of Letters and Digits receives the message
1001001 encoded by the error-correcting code with the 3× 4 matrix A above. What was the 4-bit

string of data sent to him? Encode your answer by the 7-bit error-correcting code and check that
it differs from the message received by Professor Foulier only in one bit.

(b) How many non-zero vectors, 1-dimensional subspaces, bases are there in Z2
2? How many

invertible linear transformations from Z2
2 to itself are there?

3.7.3. Linear operators and ODEs. Definition. A linear operator from a
vector space V to a vector space W is a function A from V to W which for any
vectors u,v from V and any scalars λ, µ satisfies the condition

A(λu + µv) = λAu + µAv.

Examples. (a) Suppose that V is finite-dimensional and therefore has a basis
f1, ..., fn. Then any vector from V is uniquely written as a linear combination
v = x1f1 + ...+ xnfn. Let w1, ...,wn be any n vectors from W . We define a linear
operator A from V to W by putting Av = x1w1 + ...+xnwn . Vice versa, any linear
operator A from V to W has this form: Av = x1Af1 + ...+ xnAfn is determined
unambiguously by the n vectors w1 = Af1, ...,wn = Afn in W . Suppose that W
is also finite-dimensional. Then any vector from W is uniquely written as a linear
combination w = y1f

′
1 + ...+ymf ′m of a basis f ′1, ..., f

′
m. Applying this to the vectors

wj = Afj, wj = a1jf
′
1 + ... + amjf

′
m, j = 1, ..., n, we introduce the m × n-matrix

A = [aij] and find that the linear operator A is described in coordinates (x1, ..., xn)
on V and (y1 , ..., ym) on W as the matrix product y = Ax: yi =

∑

j aijxj.

(b) Linear operators from a K-vector space V to W = K are called linear forms
on V . Let V be the space of continuous functions on a closed interval [a, b] (this
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is a subspace in the space R[a, b] of all such functions). Integration of continuous
functions over [a, b],

f 7→
∫ b

a

f(x) dx,

is a linear form on V since
∫

(λf(x) +µg(x)) dx = λ
∫

f(x) dx+ µ
∫

g(x) dx. More
generally, one defines a linear form Iφ on V by picking a continuous function φ and
putting

Iφf =

∫ b

a

φ(x)f(x) dx.

Yet many linear forms on V can not be represented in this way. For instance, pick
a point x0 on [a, b]. Evaluation f 7→ f(x0) of functions at x0 is a linear form on V
since (λf + µg)(x0) = λf(x0) + µg(x0). This suggests the formal notation

f(x0) =

∫ b

a

δx0
(x)f(x) dx,

where δx0
(x) is the Dirac δ-“function” equal 0 everywhere except x0 and equal to

infinity at x0 (and describing the unit mass distribution of an ink spot concentrated
at one point x0).

(c) Let V be the space of infinitely differentiable functions on R. Differentiation
d/dt is a linear operatorDf = df/dt from V to itself since (λf(t)+µg(t))′ = λf ′(t)+
µg′(t). Linear operators from a vector space to itself are called linear transformations
in the space. Given a linear transformation A, one can compose it with itself and
introduce powers Ak and — more generally — polynomial expressions a0A

n +
a1A

n−1 + ... + an−1A
1 + anA

0. Let us consider the linear transformation Dn +
a1D

n−1 + ... + anD
0 in V . The null-space of this linear transformation is, by

definition, the solution set to the ordinary differential equation

dn

dtn
f + a1

dn−1

dtn−1
f + ...+ anf = 0.

In particular, the solution set is a linear subspace in V . According to the Existence
and Uniqueness Theorem the solution space has finite dimension n. As we found
in Section 3.6.3, the functions

tk−1eλit, k = 1, ..., mi, i = 1, ..., r, and

tk−1eaj t cos bjt, t
k−1eaj t sin bjt, k = 1, ..., lj, j = 1, ..., s,

form a basis in this space provided that λ1, ..., λr, a1±ib1, ..., as±ibs are the complex
roots of the polynomial λn + a1λ

n−1 + ... + an, and m1, ..., mr, l1, ..., ls are the
corresponding multiplicities.

(d) Considering a more general linear operators defined by the formula f 7→
f(n) + a1(t)f

(n−1) + ... + an(t)f with non-constant (say, continuous) coefficient
functions a1(t), ..., an(t), we conclude that the solution set of the corresponding

linear homogeneous ODE f(n) + a1(t)f + ...+ an(t)f = 0 is the null-space of this
operator and has dimension n. Moreover, the solution set to an inhomogeneous
linear ODE

dn

dtn
f + a1(t)

dn−1

dtn−1
f + ...+ an(t)f = g(t)

is an affine subspace parallel to the null-space. In particular, the general solution
to the differential equation has the form

f(t) = f0(t) + c1f1(t) + ...+ cnfn(t),
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where f1, ..., fn form a basis of solutions to the corresponding homogeneous ODE, f0
is a particular solution to the inhomogeneous ODE, and c1, ..., cn are arbitrary con-
stants. However, it is seldom possible to point out the functions f0(t), f1(t), ..., fn(t)
explicitly (see Exercises though).

Exercises 3.7.3.

(a) Find all eigenvalues and eigenvectors of the linear transformationD = d
dt

in the space of
infinitely differentiable functions on the number line.

(b)Suppose that the RHS of the differential equation

(Dn + a1D
n−1...+ anD

0)f = g

with constant coefficients a1, ..., an is a quasipolynomial of degree ≤ k of weight λ0, that is a

function of the form eλ0t(α0 + α1t+ ...+ αkt
k). Prove that if

λn0 + a1λ
n−1
0 + ...+ an 6= 0,

then there exists a particular solution f0 which is a quasipolynomial of the same weight and degree

as g.

More generally, prove that if λ0 is a multilplicity m root of the characteristic polynomial,
then there exixts a particular solution f0 which is a quasipolynomial of weight λ0 and degree

≤ m+ k.
(c) Using (b) solve the ODEs:

f ′′′ − 8f = t(et + e2t),

f ′′′ − 8f = sin(
√

3t),

f ′′′ − 8t = e−t sin(
√

3t).

3.7.4. The heat equation revisited. Definition. An inner product in a real
vector space V is a function 〈u,v〉 of two vectors which satisfies symmetricity, bilin-
earity and positivity conditions: for any vectors u,v,w and any scalars λ, µ

〈v,u〉 = 〈u,v〉
〈λu + µv,w〉 = λ〈u,w〉 + µ〈v,w〉
〈v,v〉 > 0 unless v = 0.

A vector space provided with an inner product is called Euclidean. 10

Examples. (a) Any finite-dimensional Euclidean vector space has an orthonor-
mal basis. This follows from the Inertia Theorem applied to the positive-definite
quadratic form 〈x,x〉.

(b) Let V be the space of infinitely differentiable 2π-periodic functions in one
variable. The formula

〈f, g〉 =

∫ π

−π

f(x)g(x) dx

defines an inner product in V .

Definition. A linear transformation A in a Euclidean vector space is called
symmetric if 〈Au,v〉 = 〈u, Av〉 for any vectors u,v.

Examples. (c) If f1, ..., fn is an orthonormal basis, then the matrix [aij] of
a symmetric linear transformation in this basis is symmetric, aij = 〈fi, Afj〉 =
〈Afi, fj〉 = 〈fj, Afi〉 = aji, and vice versa.

(d) According to The Orthogonal Diagonalization Theorem, a symmetric linear
transformation in a finite-dimensional Euclidean vector space has an orthogonal
basis v1, ...,vn of real eigenvectors: Avi = λivi. Consider the system ẋ = Ax of

10In the case of complex vector spaces the first property of inner products should be modified:

〈v,u〉 = 〈u,v〉.
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linear ODEs with symmetric A. The solution, corresponding to a particular initial
condition x(0), is described by the general formula

x(t) = c1e
λ1tv1 + ...+ cne

λntvn,

where the values of the coefficients are given by

ci = 〈x(0),vi〉/〈vi,vi〉.
The last formula is due to orthogonality of the eigenvectors:

〈x(0),vi〉 =
∑

cj〈vj ,vi〉 = ci〈vi,vi〉.

Consider the linear transformation D2 = d2

dx2 in the Euclidean space V of in-
finitely differentiable 2π-periodic functions. We claim that it is symmetric. Indeed,
since f, g, f ′, g′ take on the same values at x = ±π, we find

〈D2f, g〉 =

∫ π

−π

f ′′(x)g(x)dx = −
∫ π

−π

f ′(x)g′(x)dx =

∫ π

−π

f(x)g′′(x)dx = 〈f,D2g〉.

Let us look for eigenvectors of D2, that is for non-zero 2π-periodic functions f
satisfying the ODE f ′′ = λf . For λ > 0 the solutions are linear combinations of

e±
√

λt and are not periodic. For λ = 0 the solutions have the form a + bt and are
periodic only when b = 0. If λ = −ω2 < 0, the solutions are linear combinations of
cosωt and sinωt. They are 2π-periodic only when ω = 1, 2, 3, .... Thus, the eigenval-
ues λ of D2 are 0,−1,−4,−9, ..., and the eigenspaces have dimensions 1, 2, 2, 2, ....
Eigenvectors corresponding to different eigenvalues are orthogonal (why?). Since
〈cosnx, sinnx〉 = 0 too, we conclude that the functions

1

2
, cos t, sin t, cos 2t, sin 2t, cos 3t, sin 3t, ...

form a complete set of pairwise orthogonal eigenfunctions, that is eigenvectors of
D2 in V .

Consider now the linear “system of ODEs” u̇ = Au with the infinite - dimen-
sional phase space V and with A = D2. Since u here is a 2π-periodic function of x,
the equation is in fact the heat equation ut = uxx describing the heat conduction in
a circular “wire” of length 2π with thermal diffusivity coefficient equal to 1. Driven
by the analogy with Example (d), we obtain the solution to the heat equation in
the form of a Fourier series

u(t, x) =
a0

2
+

∞
∑

n=1

e−n2t(an cos nx+ bn sinnx),

where the initial Fourier coefficients a0, a1, b1, ... are to be found from the initial
condition: a0 = 〈u0, 1/2〉/〈1/2, 1/2〉,

an =
〈u0, cosnx〉

〈cosnx, cosnx〉 , bn =
〈u0, sinnx〉

〈sinnx, sinnx〉 .

Since the square lengths of the eigenfunctions are
∫ π

−π

1

4
dx =

π

2
,

∫ π

−π

cos2 nx dx = π,

∫ π

−π

sin2 nx dx = π,

we finally find

an =
1

π

∫ π

−π

u(0, x) cosnx dx, bn =
1

π

∫ π

−π

u(0, x) sinnx dx.
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In fact generalization of the Orthogonal Diagonalization Theorem to infinite
dimensions is not straightforward (as a result of this, the solution formula works
only for t ≥ 0). Further discussion of this subject would be more appropriate for a
functional analysis course.

Exercises 3.7.4.

(a) Prove that 〈cosnx, sinnx〉 = 0.
(b) Modify the basis 1, cosx, sinx, cos 2x, sin 2x, ... of eigenfunctions of the transformationD2

in order to make it orthonormal.
(c) Write down the (infinite!) matrix of the linear transformationD = d

dx
in the orthonormal

basis of Exercise (a). Check that the matrix is anti-symmetric: Dt = −D.

(d) Show that the transformation D = d
dx

in the space V of infinitely differentiable 2π-

periodic functions is anti-symmetric: 〈Df, g〉 = −〈f,Dg〉 for any f, g from V .

SAMPLE FINAL EXAM

1. Compute the rank of the linear operator from R4 to R3 given by the matrix




2 1 3 7
3 −2 1 7
1 4 5 7





and find a basis in the orthogonal complement to the null-space of this matrix.

2. Find the solution to the differential equation f ′′′′ + 2f ′′ + f = 0 satisfying
the initial condition f(0) = f ′(0) = f ′′(0) = 0, f ′′′(0) = 1.

3. Find the temperature distribution u(t, x) in a length-π solid bar with thermal
diffusivity α2 = 1 if the initial temperature u(0, x) = 1 and the zero temperatures
are maintained at the ends of the bar for t > 0.

4. Find the function y = a+ bx which provides the Least Square fitting to the
experimental data

x : −1 0 1 2
y : 2 1 −1 −3

5. Find out which of the following three matrices are similar to each other
and which are not. (The problem requires some work. So, guess is not accepted -
explain your decisions.)

A =





3 −1 −1
−1 3 −1
−1 −1 3



 , B =





2 0
√

2
0 4 0√
2 0 3



 , C =





4 0 1
0 1 0
0 0 4



 .

6. Find out which of the following quadratic forms in R3 can be transformed
into one another by linear changes of variables, and which cannot? Why?

P = 2xy + z2, Q = x2 + y2 + z2 − 2xy − 2yz − 2zx, R = 2xy+ 2yz + 2zx

7. Formulate the definition of an eigenvector and prove that eigenvectors of
a symmetric matrix corresponding to different eigenvalues are orthogonal to each
other.

8. Is there a 3 × 3-matrix A such that A4 = 0 but A3 6= 0? If “yes”— give an
example, if “no” — explain “why”.


