Mock Putnam Competition - October 4, 2013

1. Find the greatest integer, not divisible by 10 , which is a complete square and such that after crossing out its two rightmost digits, the remaining number is also a complete square.
2. How many real roots does the following polynomial have:

$$
1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+\frac{x^{n}}{n} ?
$$

3. Prove that for every positive integer n, equations $x^{2}+y^{2}=n$ and $x^{2}+y^{2}=2 n$ have the same number of integer solutions (x, y).
4. Let $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ be a bounded sequence of positive integers. It is known that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{1} a_{2} \cdots a_{n}}=1
$$

Prove that

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=1
$$

5. Prove that system of equations

$$
\begin{array}{rc}
p_{1} z_{1}+p_{2} z_{2}+\cdots+p_{n} z_{n}= & 0 \\
p_{1} z_{1}^{2}+p_{2} z_{2}^{2}+\cdots+p_{n} z_{n}^{2}= & 0 \\
\cdots & \\
p_{1} z_{1}^{n}+p_{2} z_{2}^{n}+\cdots+p_{n} z_{n}^{n} & =0
\end{array}
$$

where p_{1}, \ldots, p_{n} are given positive real numbers, has a unique complex solution $z_{1}=z_{2}=\cdots=z_{n}=0$.
6. Let $B=C^{-1} A C$, where A and C are $n \times n$-matrices with integer entries, $\operatorname{det} A=1$, and $\operatorname{det} C \neq 0$. Prove that there exists a positive integer m such that all entries of B^{m} are integer.

