Answers to HW8

- **3.2.13.** Yes, as the hint suggests, by the Jordan-Brouwer separation theorem, each connected component of the hypersurface is two-sides, i.e. its normal 1-dimensional bundle is orientable, and since the ambient Euclidean space is also orientable, the tangent bundle to the hypersurface is orientable as well.
- **3.2.23.** As some of you noticed, the claim is false, unless X is connected. If it is, then X has only two orientations, and the reversal of one on X results in no change of the product orientation on $X \times X$ (in the end, because times is +).
- **3.3.2.** (a) On the standard $S^k \subset \mathbb{R}^{k+1}$, the antipodal map maps e_0 to $-e_0$, which can be rotated back into e_0 inside the plane $Span(e_0, e_1)$ around the subspace $Span(e_2, \ldots, e_k)$ (whose points remain fixed in the process the rotations). The basis $e_1, \ldots e_k$ in tangent space $T_{e_0}S^k$ is mapped to $-e_1, \ldots, -e_k$ under the antipodal map, and then to $e_1, -e_2, \ldots, -e_k$ under the 180-degree rotation. Thus, the degree of the antipodal map equals $(-1)^{k-1}$. [Another argument: the map $x \mapsto -x$ changes/preserves the orientation of \mathbb{R}^{k+1} according to the sign $(-1)^{k+1}$, but preserves the exterior normal direction to the sphere.]
- (b) Since the degree of the identity map is 1, when k+1 is odd, it is not homotopic to the antipodal map (whose degree in this case is -1). When k+1 is even, $z \mapsto e^{\pi i t} z$ provides the homotopy on $S^k = \{z \in \mathbf{C}^{(k+1)/2} \mid |z| = 1\}.$
- (c) According to some old exercise, when a sphere has a non-vanishing vector field, the antipodal map is homotopic to the identity. (To remind: one can move each point with speed 1 along the great circle in the direction of the vector during time π .) By (b), a vector field cannot exist on even-dimensional spheres, and on odd-dimensional ones, the velocity vector field of the flow $z \mapsto e^{it}z$) would do.
- (d) The mod-2 degree of the identity and antipodal map is the same, which therefore does not exclude the existence of non-vanishing vector fields on even-dimensional spheres.
- **3.3.19.** The point of this exercise is that intersections of $Z \times Z$ with $\Delta \subset Y \times Y$ occur on the diagonal in $Z \times Z$, and even after a small perturbation of $Z \subset Y$ remain in a small neighborhood of this diagonal, which is orientable even when Z is not. In fact such a neighborhood is diffeomorphic to a neighborhood of the zero section in $\pi : TZ \to Z$. There a tangent space $T_v(TZ)$ has subspace $T_{\pi(z)}Z$ with the quotient space also equal to $T_{\pi(v)}Z$. Therefore the reversal of an orientation

on $T_{\pi(v)}Z$ does not affect the orientation of $T_v(TZ)$ (again because – times – equals +).

Problem (*) A step of the Gram-Schmidt orthogonalization, which consists in normalizing a basis vector to the unit length and subtracting a multiple of it from subsequent basis vectors until they becomes orthogonal it, can be done *gradually*. This provides a deformational retraction of $GL_n(\mathbb{R})$ to O_n , and in particular identifies the connected components of the groups.

One way to show that SO_n (and hence $GL_n^+(\mathbb{R})$) is connected is based on studying the geometry of orthogonal transformation U. Its eigenvalues must have absolute value 1, and if not equal to ± 1 , must come in pairs $e^{\pm i\theta}$ of complex conjugates. The corresponding eigenvectors can be taken in the form $u\pm iv$, where $u,v\in\mathbb{R}^n$ span a U-invariant plane on which U acts as a rotation through the angle θ . The orthogonal complement to this plane is U-invariant, and one can continue this geometric analysis on U by descending induction on n. When an eigenvalue is ± 1 , the corresponding eigen-line can be taken real, whose orthogonal complement is still U-invariant (so our induction proceeds). Thus, in a suitable orthonormal basis the matrix of U is block diagonal with the $\cos \theta - \sin \theta$ blocks either ± 1 of size one, or size two of the form $\cos \theta$ | $\sin \theta$ Note that two blocks of size 1 both with the same eigenvalue ± 1 make one rotation block with $\theta = 0$ or π respectively. Consequently, in a suitable orthonormal basis the matrix of an orthogonal transformation with determinant +1 consists of the blocks of rotations through the angles $0 \le \theta_i \le \pi$ (and, for odd n, of one more block 1 of size one). Multiplying each θ_i by $t \in [0,1]$, we connect U to I by a curve of orthogonal transformations.

Another way consists of fibering O_n over S^{n-1} , with each fiber actually diffeomorphic to O_{n-1} , by associating to an orthogonal transformation U the unit vector Ue_1 (where e_1 is the 1st vector of the standard basis in \mathbb{R}^n). As in 3.3.2(a), we can gradually rotate \mathbb{R}^n about the orthogonal complement \mathbb{R}^{n-2} to a/the plane containing e_1 and Ue_1 until Ue_1 is transformed to e_1 . Calling the final rotation V, we thus obtain a curve in O_n connecting U with VU. The latter preserves e_1 and hence the orthogonal complement $Span(e_2,\ldots,e_n)$ on which VU still acts as a transformation from O_{n-1} . Thus O_n has no more components than O_{n-1} does, and this argument works as long as n remains greater than 1. Since $O_1 = \{\pm 1\}$ has two components so does O_n .