Answers to HW7

A. Given $\mathbb{R}^n \to \mathbb{R}^n : x \mapsto y = f(x)$ such that df_0 is invertible, introduce $F : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, (x,y) \mapsto z = f(x) - y$. It satisfies the hypothesis $\det(\partial z/\partial x)(0,0) \neq 0$ of the Implicit Function Theorem, and hence locally near (x,y) = (0,0) there exists $g : \mathbb{R}^n \to \mathbb{R}^n : y \mapsto g(x)$ such that f(g(y)) = y. To show that g(f(x) = x), we note that by the chain rule dg_0 is invertible, and hence by the same logic there exists a local map \tilde{f} such that $g(\tilde{f}(x)) = x$. Applying f, we conclude that $\tilde{f}(x) = f(x)$.

Conversely, given $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m, (x,y) \mapsto z = F(x,y)$ such that $\det(\partial z/\partial y)(0,0) \neq 0$, introduce $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \times \mathbb{R}^m$ by $(x,y) \mapsto (w,z) = (x,F(x,y))$. The Jacobi matrix of this map $\begin{bmatrix} I_n & 0 \\ F_x & F_y \end{bmatrix}$ at (x,y) = (0,0) satisfies the hypotheses $\det \neq 0$ of the Inverse Function Theorem. Therefore locally near (w,z) = (0,0) there exists the inverse map $(z,w) \mapsto (x,y) = (X(w,z),Y(w,z))$. In particular, at z=0, we have X(x,0) = x and F(x,Y(x,0)) = 0, i.e. g(x) := Y(x,0) is the function implicitly defined by F(x,y) = 0 and by g(0) = 0.

B. The velocity vector field $z \mapsto iz$ of the rotation flow in \mathbb{C}^n : $z \mapsto e^{it}z$ is tangent to the unit sphere |z|=1, nowhere vanishes, and being centrally-symmetric, descends to a nowhere vanishing vector field on $\mathbb{R}P^{2n-1}$. as a nowhere. The vector field in $\mathbb{C}^n \times \mathbb{R}$ given by the (same) formula $(z,x) \mapsto (iz,0)$ likewise descends to a vector field on $\mathbb{R}P^{2n}$ which has exactly one zero: on the axis (0,x) of the rotation $(z,x) \mapsto (e^{it}z,x)$. In the chart x=1 the vector field is defined by the invertible linear transformation $z \mapsto iz$. This assures transversality of the vector field as a section of the tangent bundle $T^{\mathbb{R}}P^{2n}$ to the zero section, and shows that the mod-2 self-intersection index of the zero section with itself equals 1. Since all vector fields on a manifold are homotopic to each other (since they form a vector space), any vector field on $\mathbb{R}P^{2n}$ must have zeroes (for otherwise the corresponding section would be transverse to the zero section and the have mod-2 intersection index with it equal 0).

C. In \mathbb{R}^{m+n+1} transverse linear subspaces \mathbb{R}^{m+1} and \mathbb{R}^{n+1} intersect along a 1-dimensional subspace. This translates into the fact that in $\mathbb{R}P^{m+n}$, the corresponding projective subspaces $\mathbb{R}P^m$ and $\mathbb{R}P^n$ (they consist of the 1-dimensional subspaces in those linear spaces) intersect transversally at one point. However, in S^{m+n} two compact submanifolds M^m and N^n of dimensions m, n < m + n would have mod-2 intersection index equal 0. Indeed, the stereographic projection from

a point p outside $M \cup N$ identifies $S^{m+n} - p$ with \mathbb{R}^{m+n} , where the compact submanifolds can be translated away from each other. The exception is the intersection index of the entire S^{m+n} with a point, which is equal to 1. Thus, when m+n>1, $\mathbb{R}P^{m+n}$ contains M^m and N^n with non-zero intersection index, while in S^{m+n} such submanifolds don't exist. This implies that $\mathbb{R}P^k$ and S^k are not diffeomorphic when k>1. For k=1, they are diffeomorphic (and for k=0 not).

- **2.4.3.** For $X \subset \mathbb{R}^N$, the map $F: X \times \mathbb{R}^N \to \mathbb{R}^N : (x,a) \mapsto x+a$ is obviously a submersion and hence is transverse to $Y \subset \mathbb{R}^N$. Thus, $Z:=F^{-1}(Y)$ is a submanifold in $X \times \mathbb{R}^N$. The regular values of its projection to \mathbb{R}^N are exactly those $a \in \mathbb{R}^N$ for which the translate X+a is transverse to Y. By Sard's lemma, such a form a full measure subset in \mathbb{R}^N .
- **2.4.13.** (a, c) In $Y = \mathbb{R}$, take $Z = \{x > 0\}$, X a point x_0 , and $W = \{x \leq x_0\}$. Then for $x_0 < 0$, we have $I_2(X, Z) = 0$ and for $x_0 > 0$, $I_2(X, Z) = 1$, despite that $X = \partial W$. (b,d) In $Y = \mathbb{R}^2$, two parallel lines X and Y can be deformed into crossing ones intersection at 1 point, although X is the boundary of the half-plane. (e) Take $W = \{x \leq 1\} \subset \mathbb{R} = Z = Y$.