Answers to HW2

- 1. (a) For g(u,v) := f(x(u,v),y(u,v)), by the chain rule we have $f_x dx + f_y dy = (f_x x_u + f_y y_u) du + (f_x x_v + f_y y_v) dv = g_u du + g_v dv$ for any smooth substitution x = x(u,v), y = y(u,v).
- (b) For x = u + v, y = v (using for shortness $\partial_x = \partial/\partial x$ and $\partial_y = \partial/\partial_y$ for shortness), we have: $\partial_u = x_u \partial_x + y_u \partial_y = \partial_x$, $\partial_v = x_v \partial_x + y_v \partial_y = \partial_x + \partial_y$, hence $g_u = f_x$, $g_v = f_x + f_y$, and therefore for the gradient vector fields

 $g_u \partial_u + g_v \partial_v = f_x \partial_x + (f_x + f_y)(\partial_x + \partial_y) = (2f_x + f_y)\partial_x + (f_x + f_y)\partial_y \neq f_x \partial_x + f_y \partial_y.$

- 2. $\partial_{\theta} = x_{\theta} \partial_{x} + y_{\theta} \partial_{y} = (-r \sin \theta) \partial_{x} + (r \cos \theta) \partial_{y} = -y \partial_{x} + x \partial_{y}$.
- **3.** The map $(t, \theta) \mapsto (e^t \cos \theta, e^t \sin th)$ will do. It parameterizes $\mathbb{R}^2 0$ by polar coordinates combined with the change $r = e^t$.
- 4. The differential of $t\mapsto (x,y,z)=(t^2,t^3,t^4)$ is $(dx,dy,dz)=(2t,3t^2,4t^3)dt$, which has rank 0 only at t=0. The range of the map satisfies the equations $y^2=x^3$ and $z=x^2$. Thus, it can be pictured as the graph of the 2-valued function $y=\pm x^{3/2}$ (which the graph is called the semicubical parabola, and has the shape of a curve with the cusp we've seen in the last lecture), lifted from the (x,y)-plane to the surface of the paraboloid $z=x^2$ in space. The functions $f(x,y,z)=y^2-x^3$ and $g(x,y,z)=z-x^2$ define a map $\mathbb{R}^3\to\mathbb{R}^2$ with the differential $df=(-3x^2)dx+2ydy+0dz, dg=(-2x)dx+0dy+1dz$. The rank of it drops from 2 to 1 only on the line x=y=0. which intersects our curve only at the origin x=y=z=0. Thus, this point excluded, the rest of the curve is parameterized by an immersion and is also a fiber of a submersion, hence a submanifold in \mathbb{R}^3 .
- **5.** It was done in class for n=3, but in the notation which serves all n. The group O(n) is the inverse image of the identity I under the map $f: U \mapsto U^t U$ from the space \mathbb{R}^{n^2} of all $n \times n$ -matrices to the space $\mathbb{R}^{n(n+1)/2}$ of symmetric $n \times n$ -matrices. Its linearization $df_I: T_I \mathbb{R}^{n^2} \to T_I \mathbb{R}^{n(n+1)/2}$ at U = I is given by

$$A \mapsto \frac{d}{d\epsilon}|_{\epsilon=0}(I+\epsilon A)^t(I+\epsilon A) = A^t + A.$$

The tangent space $T_IO(n)$ is the null-space of df_I , and is therefore the space of matrices A satisfying $A^t = -A$.

1