Answers to HW12

- **1.** By Stokes' formula, $\int_c d\alpha = \int_{\partial c} \alpha = 0$ since $\partial c = 0$, and likewise $\int_{\partial c} \omega = \int_c d\omega = 0$ since $d\omega = 0$.
- **2.** $d(\psi \wedge \beta) = (d\psi) \wedge \beta + (-1)^{\bar{\psi}} \psi \wedge d\beta = \alpha \wedge \beta$ when $\alpha = d\psi$ and $d\beta = 0$.
- **3.** The flow of v to preserve ω is equivalent to $L_v\omega=0$. By Cartan's homotopy formula and in the case at hands where $d\omega=0$, this means $di_v\omega=0$. By Poincare's Lemma, this is equivalent to $i_v\omega=-dH$, where H (in our case) is a function. For $\omega=\sum_i dp_i \wedge dq_i$, and $dH:=\sum_i (H_{p_i}dp_i+H_{q_i}dq_i)$ the relation $i_v\omega=-dH$ translates into $v=\sum_i (H_{p_i}\partial_{q_i}-H_{q_i}\partial_{p_i})$.
- 4. Since $V/|x|^n$ is invariants under $x \mapsto e^t x$, we have $L_E V/|x|^n = 0$, and since dV = 0, conclude from Cartan's homotopy formula that $i_E V/|x|^n$ is closed. By Stokes' formula, the integral over the boundary of the cube is equal to the integral over the boundary of a small (and hence any) ball centered at the origin. On the boundary |x| = 1 of the unit ball B, the integral reduces to $\int_{\partial B} i_E V = \int_B di_E V = n \int_B V$, i.e. n times the volume of the unit n-dimensional ball (i.e. the same as the n-1-dimensional "surface area" of the unit sphere).
- **5.** By the fundamental theorem of calculus, a 2π -periodic 1-form $\phi(x)dx$ on \mathbb{R} is the differential df of 2π -periodic function if and only if $\oint \phi(x)dx = 0$. Therefore integration over the circle establishes an isomorphism $H^1_{DR}(S^1) = \mathbb{R}$. We also have $H^0_{DR}(S^1) = \{\text{constant functions on } S^1\} = \mathbb{R}$.