Answers to HW11

1. Given a non-vanishing differential n-form ω on an n-dimensional manifold X, the following rule defines an orientation on X: A basis v_1, \ldots, v_n in $T_x X$ is right-oriented iff $\omega_x(v_1, \ldots, v_n) > 0$. (In a local chart, $\omega = \phi(x) dx_1 \wedge \cdots \wedge dx_n$, where ϕ is a non-vanishing smooth function. Therefore, if $\omega_x(\partial_1, \ldots, \partial_n) > 0$ at x = 0, it will be true for any other point x within the connected component of the chart.)

Conversely, given an orientation on X, take a partition of unity $1 = \sum_i \rho_i$ subordinate to an atlas of coordinate charts on X. For each i, let $\omega_i = dx_1 \wedge \ldots \wedge dx_n$ be the right-oriented volume form in a chart containing the support of ρ_i . Then $\omega := \sum_i \rho_i \omega_i$ (where each summand is extended by zero to a global n-form on X) is a nowhere vanishing n-form on X. Indeed, on each $T_x X$ it is the sum of exterior n-forms which are all non-negative proportional to each other, and of which at least one is non-zero (since $\sum_i \rho_i(x) = 1$).

- **2.** We have $dA = dp_1 \wedge dq_1 + \cdots + dp_n \wedge dq_n$, and consequently $A \wedge (dA)^{\wedge n} = (-1)^n n! du \wedge dp_1 \wedge dq_1 \wedge \cdots \wedge dp_n \wedge dq_n$, which is a constant-coefficient non-zero top degree form in \mathbb{R}^{2n+1} .
- **3.** In local coordinates, $F^1 = \sum_i \phi_i(x) dx_i$, and dF = 0 is equivalent to the "Clairaut constraints": $\partial_j \phi_i = \partial_i \phi_j$ for all i, i. These coincides with $L_u F(v) L_v F(u) = F([u, v])$ for $u = \partial_j$ and $v = \partial_i$ since $[\partial_j, \partial_i] = 0$. One way to prove the converse is to notice that $G(u, v) := L_u F(v) L_v F(u) F([u, v])$ is anti-symmetric in u, v and $C^{\infty}(X)$ -linear in each of them. Thus G is a differential 2-form $\sum_{i < j} g_{ij}(x) dx_i \wedge dx_j$, where $g_{ij} = G(\partial_j, \partial_i) = \partial_j \phi_i \partial_i \phi_j$.
 - **4.** On the one hand, $dF = (Q_x P_y) dx \wedge dy =$

$$(Q_x(x(u,v),y(u,v)) - P_y(x(u,v),y(u,v))) \det \begin{bmatrix} x_u & x_v \\ y_u & y_v \end{bmatrix} du \wedge dv.$$

On the other, $Pdx + Qdy = \mathcal{P}du + \mathcal{Q}dv$, where

$$\mathcal{P} = P(x(u, v), y(u, v))x_u + Q(x(u, v), y(u, v))y_u,$$

$$\mathcal{Q} = P(x(u, v), y(u, v))x_v + Q(x(u, v), y(u, v))y_v.$$

Therefore $dF = (\mathcal{Q}_u - \mathcal{P}_v) du \wedge dv$, where

$$Q_{u} - P_{v} = (P_{x}x_{u} + P_{y}y_{u})x_{v} + (Q_{x}x_{u} + Q_{y}y_{u})y_{v} - (P_{x}x_{v} + P_{y}y_{v})x_{u} - (Q_{x}x_{v} + Q_{y}y_{v})y_{u}$$

$$=Q_x (x_u y_v - x_v y_u) - P_y (y_v x_u - y_u x_v) = (Q_x - P_y) \det \begin{bmatrix} x_u & x_v \\ y_u & y_v \end{bmatrix}.$$

5. The flux is usually defied as $\int_D (w \cdot n) dA$, where the "exterior" normal vector $n = (r_u \times r_v)/|r_u \times r_v|$ (in terms of the radius-vector r = (x, y, z)), and the area element $dA = |r_u \times r_v| \ dudv$. Combining, we find the flux equal to

$$\int_{D} w \cdot (r_{u} \times r_{v}) \ dudv =$$

$$= \int_{D} \left(A \begin{vmatrix} y_{u} & y_{v} \\ z_{u} & z_{v} \end{vmatrix} + B \begin{vmatrix} z_{u} & z_{v} \\ x_{u} & x_{v} \end{vmatrix} + C \begin{vmatrix} x_{u} & x_{v} \\ y_{u} & y_{v} \end{vmatrix} \right) dudv$$

$$= \int_{r:D \to \mathbb{R}^{3}} (A \ dy \wedge dz + B \ dz \wedge dx + C \ dx \wedge dy)$$

$$= \int_{r:D \to \mathbb{R}^{3}} i_{A\partial_{x} + B\partial_{y} + C\partial_{z}} \ dx \wedge dy \wedge dz.$$