Answers to HW10

- 1. For a fixed $k \times n$ -matrix A, consider det AB as a k-linear totally anti-symmetric function F (i.e. as an exterior k-form) of the columns of the $n \times k$ -matrix B. Just as any such function, it is a linear combination $F = \sum_{I} F_{I} \det B_{I}$ with the coefficients $F_{I} = F(e_{i_{1}}, \ldots, e_{i_{k}}) = \det A_{I}$.
- **2.** Consider det A with fixed last n-k rows of the $n \times n$ -matrix A as an k-linear totally anti-symmetric function of the first k rows. Just as any such function it is a linear combination of $\det A_I$, $I = \{i_1 < \cdots < i_k\}$, with coefficients c_I which are the values of this function when the first k rows are (transposed) unit coordinate vectors e_{1_1}, \ldots, e_{i_k} . Performing $(i_1 1) + (i_2 1) + \cdots + (i_k 1)$ transpositions, move the columns i_1, \ldots, i_k to the positions $1, \ldots, k$. Then the matrix assumes the block-triangular form $\begin{bmatrix} I_k & 0 \\ * & A'_I \end{bmatrix}$ with the determinant equal to $\det A'_I$. Thus $c_I = (-1)^{|I|} \det A'_I$.

Remark: Another proof: $x_1 \wedge \cdots \wedge x_n = (x_1 \wedge \cdots \wedge x_k) \wedge (x_{k+1} \wedge \cdots \wedge x_n)$.

- **3.** Let α be a linear form taking value 1 on the vector v. Then for any exterior k-form ω , we have $i_v(\alpha \wedge \omega) = \omega \alpha \wedge (i_v\omega)$. Therefore, when $i_v\omega = 0$, we have $\omega = i_v(\alpha \wedge \omega)$.
 - **4.2.2.** WLOG, assume that $\phi_n = \sum_{i=1}^n c_i \phi_i$. Then

$$\phi_1 \wedge \cdots \wedge \phi_n = \sum_{i=1}^n c_i \phi_1 \wedge \cdots \wedge \phi_{n-1} \wedge \phi_i = 0$$

since the *i*th summand contains the wedge product $\phi_i \wedge \phi_i$.

- **4.2.6.** (a) If $v_i' = \sum_j a_{ij}v_j$, then $T(v_1', \ldots, v_k') = \det[a_{ij}]T(v_1, \ldots, v_k)$, i.e. the transition matrix between the bases has positive determinant whenever $T(v_1, \ldots, v_k)$ and $T(v_1', \ldots, v_k')$ have the same sign.
- (b) When V^k is oriented, declare a basis element T in the 1-dimensional space $\Lambda^k V^*$ right-oriented if $T(v_1, \ldots, v_k) > 0$ for right-oriented bases (v_1, \ldots, v_k) . Obviously the same condition holds for any positive multiple of T (instead of T), and by (a) for any right-oriented basis when it holds for one of them.
- (c) Conversely, given one of positive-proportional non-zero elements $T \in \Lambda^k V^*$, call a basis (v_1, \ldots, v_k) of V right-oriented if $T(v_1, \ldots, v_n) > 0$. By (a) the condition holds for all same-oriented bases when it holds for one of them.

1