
Prelimanary version

TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 29

A. GIVENTAL

Our goal for today is to sketch some applications of localization technique to
genus one G-W invariants.

1. Genus One Gromov-Witten Invariants

Define the genus one potential:

G(t) :=

∞∑

n=0

1

n!

∑

d∈Λ

qd(t, t, · · · , t)1,n,d,

where t =
∑

tαφα and (n, d) = (0, 0) term is defined to be zero. In genus one case,
what really matters is not the function G(t) but rather its differential (the reason
will be clear later) :

(1) dtG(t) =
∑

α

dtα

∞∑

n=0

(φα, t, · · · , t)1,n+1,d.

Now we want to express dG(t) in terms of the fundamental solution

Sαi =< φα, φi > +
∑

(n,d) 6=(0,0)

qd

n!
(φα, t, · · · , t,

φi

~ − c
)0,n+2,d.

In singularity theory (cf. lectures 14-16) we have Morse function ft(x) for generic
t. The extra data we have are:

u1, · · · , uN : critical points,
∆1, · · · , ∆N : Hessians at critical points,
R1, · · · , RN : ~ order term of diagonal components of the oscillating integrals,

(Ri = Rii in previous notation,

ωm,0
t : primitive form (of Saito).

The partial derivative of the oscillating integral is:

~
∂

∂ui

∫

Γi

eft(u)(x)/~ωm,0
t(u)

≈~
m/2 (const) eui/~(1 + ~Ri + o(~)) (stationary phase asymptotics).

Proposal.

dG :=
1

48

∑

i

d∆i(u)

∆i(u)
+

1

2

∑

i

Ri(u)dui.

Question. Does dG satisfy all axioms of g = 1 Gromov-Witten theory?
So far, no one has checked this. Now we will give the motivation of this proposal

in the context of Gromov-Witten theory.
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Motivation. Given a concave vector bundle E → X with a torus T action such
that X has isolated zero and one dimensional orbits. Let us define

U := diag(u1, · · · , uN), ui are canonical coordinates,
E := diag(e1, · · · , eN ), ei are the equivariant Euler classes EulerT (TiE),
δ1, · · · , δN : pi-type potentials, eiδ

2
i = ∆i, see lecture 28 for definition.

By theorem 2 in lectures 15-16 (in fact, slightly modified version in the case of
concave vector bundle), we have

(2) (Sαi) = (Ψj
α)(δji + ~Rji + o(~))eU/~E−1.

Compare this to the recursion relation we found in lecture 28,

Sαie
−ui/~ei =: sαi(~)(3)

= δαi +
∑

j 6=i

∞∑

m=1

C = (≡ 0 mod q)

xj
i + m~

,

where the numerator C has no poles at ~ = 0 and therefore can be expanded as
power series in ~. Define Rii := Riiinequation(2) ≡ 0 (mod q)1.

Theorem 1. Under usual assumptions, we have

(4) dtG(t) =
1

24

∑ dδi

δi
−

1

24

∑

i

c
(i)
−1dui +

1

2

∑

Riidui,

where

c
(i)
−1 : =

ctop−1(TiE)

ctop(TiE)

=
∑

χ: chracters of T : TiE

1

χ

and c∗ are the equivariant chern classes.

Remark. A similar formula holds for convex super-manifolds, but c
(i)
−1 should be

defined differently.

The relation of this theorem (in G-W theory) and the proposal (in singularity
theory) is2:

dtG =
1

48

∑ d∆i

∆i
+

1

2

∑

(Rii −
1

12
c
(i)
−1)

︸ ︷︷ ︸

Ri

dui.

Conjecture. The proposal is true for generic semisimple Frobenius structure of
compact symplectic manifolds.

Proof. (of the theorem) (Skech.) The proof will again be based on fixed point
localization technique. The fixed points of X1,n,d can be divided into two types.
The first type has an elliptic curve with n branches out, and the second type
contains one cycle of rational components:

1Rii are defined only up to constants. But the recursion relation can fix these constants.
2Here we might have to readjust the constant of Ri. But in all worked examples Ri = Rii −

1
12

c
(i)
−1.
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Case 1 case 2

Fig. 1

Our claim now is that the contribution of case 1 is the first two terms of (4) and
that of case 2 is the last term.

Case 1. The contribution of fixed points of case 2 type to dG is:

(5) e−1
i

∞∑

n=0

∫

M1,n

(1 − c
(i)
−1ω)T (c(1)) ∧ · · · ∧ T (c(n))

∫

M0,∗

· · ·

∫

· · · .

Here T (c) is some function of chern class as usual. ω is the first chern class of the
Hodge bundle H and the term (1 − ci

−1ω) comes from the obtruction part. The

obstruction is of the form H1(Ce, TiE) = TiE⊗H
∗ (Ce is the irreducible component

of genus one). The contribution of this to dG is of the form:

EulerT (TiE ⊗H)

EulerT (TiE)
=

chernT (TiE)(−ω)

EulerT (TiE)

(chernT (TiE)(−ω) is the chern polynomial with variable equal to − ω)

=
ctop + ctop−1(−ω)

ctop

=1 − c
(i)
−1ω.

Apart from the obstruction part, it looks very much like the potential ν(T ) =
1
24 ln δi(T ) (. The extra part from obstruction is of the form c

(i)
−1µ(T ) (see lecture 28

for definitions). Therefore we conclude that case 1 part is equal to 1
24 ln δi−

1
24c

(i)
−1ui

as claimed.
Case 2. If we cut the cycle in case 2 (Fig. 1) at a vertex which maps to fixed

point pi, we will end up with (for G)

φi

x−c

φi

y−c

n

∑

n
1
n
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Fig. 2

Here the factor 1/n comes from the choice of the cut vertices. But this series
is of the form like log function (

∑ 1
n ), it is not very convenient for computation.

Therefore we consider the partial derivative ∂G
∂tα

:

•

φα

∂G
∂tα

pi

Fig. 3

Then this part is related to the potential

Vij(x, y) =
∑

n=0

qd

n!
(

φi

x − c
.t, · · · , t,

φj

y − c
)0,n+2,d

which we defined in lecture 10. If we take the limit:

(6)
1

2

∂u

∂tα
lim

x,y→0
[Vii(x, y)e−[(ui/x)+(ui/y)]ei −

1

x + y
]

which is just ∂G
∂tα

(Fig. 3). From an exercise in lecture 10, we have:

(7) Vij(x, y) =
1

x + y

∑

α

Sαi(x)e−1
α Sαj(y).

Replace ~ in (2) by x, y respectively and substitute into (7). Use the obvious
identity

∑

α

Ψi
αe−1

α Ψj
α = eiδij

we then have

Vii =
eui(

1
x
+ 1

y
)

ei(x + y)
[1 + Rii(x + y) + · · · ]

⇒ lim
x,y→0

[Viie
ui/x+ui/yei −

1

x + y
] = Rii.

Combined with (6) this then implies that dG in case 2 is equal to
∑

i
1
2duiRii as

claimed.
�
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