
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 28

A. GIVENTAL

1. Quantum Potentials on Mg,n

Let us first introduce some potentials which we will use to

u(T ) =

∞∑
n=1

1

n!
< 1, T (c), · · · , T (c), 1 >n+2,(1)

s(T, ~) = 1 +

∞∑
n=1

1

n!
< 1, T (c), · · · , T (c),

1

~ − c
>n+2,(2)

v(T, x, y) =
1

x + y
+

∞∑
n=1

1

n!
<

1

x − c
, T (c), · · · , T (c),

1

y − c
>n+2,(3)

δ(T ) =

∞∑
n=0

1

n!
< 1, 1, 1, T (c), · · · , T (c),

1

y − c
>n+3,(4)

µ(T ) =

∞∑
n=1

1

n!
ω[T (c), · · · , T (c)]n,(5)

ν(T ) =

∞∑
n=1

1

n!
[T (c), · · · , T (c)]n,(6)

where ω is the first chern class of the Hodge bundle and

T (c) = c + t1c + t2c
2 + · · · ,

< · · · >n: =

∫
M0,n

· · · ,

ω[· · · ]n : =

∫
M1,n

ω · · · ,

[· · · ]n : =

∫
M1,n

· · · .

In order to make sense of our potentials, some requirements on the convergence
property of T (c) are necessary. In our case, we will require that T (c) =

∑
d qdRd(c)

where Rd(c) is a rational function of c with no pole at 0 and R0 = constant.
Thus t0 ∈ Q[[q]], t1, t2, · · · ∈ (q)Q[[q]]. The main properties of these potentials are
summarized in the following propostion:
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Proposition 1.

s = eu/~, v =
eu( 1

x
+ 1

y
)

x + y
,

δ =
1

1 − t1
, µ =

u

24
,

ν =
ln δ

24
.

Proof. Define

L := ∂0 − t1∂0 − t2∂1 − t3∂2 − · · · .

It’s easy to see that LT (c) = 1−
T (c) − T (0)

c
. By string equation LF is “essentially”

zero (F is any of the above potential), except for some beginning terms in genus
zero or one. The precise statements are:

Lemma 1. Lδ = 0, Lν = 0, Lu = 1, Lµ = 1
24

, Ls = s
~
, and Lv = ( 1

x
+ 1

y
)v.

Thus we can consider u as the time variable of the “flow of the vector field”
L. By the above lemma, we only need the initial values of the potentials. Our
potentials then look like:

δ(u) = δ(0), ν(u) = ν(0), µ(u) = µ(0) +
u

24
,

s = eu/~s(0), v = eu( 1
x
+ 1

y
)v(0).

Now our cliam is:

Claim. If T (c) =
∑

qdRd(c) = t0 + t1c + t2c
2 + · · · , (tn ∈ Q[[q]]) satisfies the

reqirements stated in the beginning of the lecture, then the flow of L is well defined.
Each trajectory (in the set of all such T ’s) crosses the plane t0 = 0 exactly once.

Proof. (of the claim) Let τ be the time. tn = tn(τ ) is a fuction of τ . The flow of L
is well defined bacause we can explicitly construct convergent power series for tn:

t0(τ ) = τ +

∞∑
n+0

tn(0)
(−τ )n

n!
,

t1(τ ) = 1 −
dt0(τ )

dτ
,

ti(τ ) = −
dti−1(τ )

dτ
, i ≥ 2.

The forms of ti(τ ) follow from the explicit form of L, and the convergence of t0(τ )
(over C[[q]]) follows from the conditions on T (c) (tn(0) is a convergent power series
in q) (exercise).

Remark. In fact, there are singular points of the flow, e. g. τ = t0 + c. But our
conditions on T (c) ecxclude these cases.

The second claim can be seen as follows. We want to find the solutions of

(7) 0 = t0(τ ) = τ +

∞∑
n+0

tn(0)
(−τ )n

n!
.
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Since R0(c) is constant, (7) is equal to τ+t0(0) = 0 (mod q) (recall that ti|q=0 = 0
is our condition). Therefore

τ = −t0(0) +

∞∑
k+1

?kqk.

Without loss of generality we may assume t0(0) = 0. Then (7) gives a recursion
relation of ?k. Hence, second claim is proved. �

As already noticed, we only need to find the initial values of these potentials
(now we take u as time variable again). First for u. By dimension reason, t0 = 0
implies u = 0. And the converse is also true by the claim. For δ:

(8) δ(0) =

∞∑
n=0

1

n!
< 1, 1, 1, t1c, · · · , t1c >n+3

where the terms involving tncn(n ≥ 2) all vanish due to dimensional reason. By
dilation equation, (8) is equal to

δ(0) =
∑

(nt1) < 1, 1, 1, t1c, · · · >n+2

=

∞∑
n=0

n!tn1
n!

< 1, 1, 1 >3

=
1

1 − t1
.

For ν :

ν(0) =
∑ 1

n!
[t1c, · · · , t1c]n

dilation
=

∑ tn1 (n − 1)!

n!
[c]1

=
1

24

∞∑
n=1

tn1
n

=
1

24
ln

1

1 − t1

=
1

24
ln δ.

µ(0) = 0 for dimension reason. For s(0) and v(0) all but initial term vanish,
therefore s(0) = 1, v(0) = 1

x+y
. This concludes our proof. �

2. Local Composition Laws and Fixed-point Localization

Recall the Gromov-Witten potential in genus zero is defined to be:

F =
∑
n,d

qd

n!
(t, · · · , t)0,n,d,

and the quantum multiplication is defined by Fα,β,γ . We will use degenaration
method to get another presentation of quantum multiplication. Let us choose a
generic cross ratio of five points on a component of a rational stable curve : (Con-
vention: in all the graphic presentations, we will always suppress the “exponential
sums”)
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=
1 1 φα

φβ
φγ

φα1 φβ φγ1

φα

φβ

φγ
= Fα,β,γ

Fig. 1

We assume that the manifold X has a torus action with isolated fixed points
pα’s and isolated one dimensional orbits. Let φα be the δ-functions at the fixed

points normalized as < φα, φβ >=
δαβ

eα
, where eα is the (equivariant) Euler class

of the tangent bundle at pα (product of characters e. g. eα =
∏

β 6=α(λα − λβ) on

CPn). A general cohomology element is written as t =
∑

tαφα

Observe that a stable map with n + 5 marked points in a given generic configu-
ration (i. e. with a given generic value of contraction map) must have an irreducible
component Cs (special component) in the underlying curve C, which contains con-
tains this given configuration (i. e. the marked points either sit on Cs or on a
branch connecting to Cs such that these marked points and intersection points
form the given configuration). This allows us to divide all fixed point components
of stable maps into types pi aacording to which fixed point Cs is mapped to. Thus

Fα,β,γ =
∑

i F
(i)
α,β,γ (we will reserve the index i for the type pi). Here we remark

that degree of F
(i)
αβγ = 3− dim(X) − 3− dim(X) = 0. According to Fig.1 our Fαβγ

can degenerate:

Cs

1
φα

φβ
φγ
1

1
φα

φβ

φγ

1

pi pi

Fig. 2

The degeneration of generic configuration is, in fact, a diagonalization of the
quantum multiplication φβ◦.

Remark. There are other degenerate configurations which are not the limits of
generic configurations. Our arguments show that they don’t contribute to Fαβγ .

We now define some quantities:
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pi

ui

ti

1

ei∂i∂iF

graph

name

mod q

homog.
deg.

∂βui

δβi

0

ei∂i∂i∂βFcontrib.
to

pi

φα

1

φα

pi

δαi

0

ei∂i∂α∂0F

pi

1

0

ei∂i∂i∂iF

Ψi
α δi

Theorem 1.

(1)Fαβγ =
∑

i

Ψi
α

∂βui

ei
Ψi

γ

(2)
∑

i

Ψi
αe−1

i Ψi
γ = δαγe−1

α

∑
α

Ψi
αeαΨj

α = δijei

(3)
∑
α

Ψi
α = δ−1

i

(4)Ψi
β = (

∑
α

Ψi
α)∂βui = δ−1

i ∂βui

Corollary 1. We have a materialization of Dubrovin’s canonical coordinate theory,
i. e. ui are the canonical coordinates and ∆i = eiδ

2
i is the Hessian in the singularity

theoretic picture (cf. lecture 14, 15).

3. Fundamental Solution Matrices in Canonical Coordinates

Recall our fundamental solution matrix is

Sαi =

∞∑
n=0

1

n!

∑
d∈Λ

qd(φα, t, · · · , t,
φi

~ − c
)0,n+2,d.

Graphically,
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.................

o o

1
~−c

CP
1

deg=m

−x
j
i :character

pi pjqdij

φα

Sαj(
−x

j
i

m
)

Decompose:

1

(x
j
i/m)−c

o o Coeffj
i (m)

1
~−c

eui/~

1
~−c

eui(1/~+m/x
j
i
)

~+
x

j
i

m

Repeat the same derivation of the recursion relation in flat coordinates, we will
arrive at the following:
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Theorem 2.

sαi(~) : = e−ui/~Sαi(~)ei

sαi(~) = δαi +
∑
j 6=i

∞∑
m=1

qdijme

(ui−uj )m

x
j
i

x
j
i + m~

sαj(−
x

j
i

m
).

The recursion relation determines (sαi) unambiguiously as a function of canonical
coordinates.

Problem. Solve this recursion relation.
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