
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 27

A. GIVENTAL

1. The Proof of Mirror Theorem (conclusion)

Our first goal today is to prove the equivalence of ~J and ~I.

Recall that we have already had (for ~J) :

1). Recurrsion relations:

(1) Jα(~, q) =
∑

d∈Λ

Pold,α(
1

~
)qd +

∑

β 6=α

∞∑

m=1

qmCoeffβ
α (m)

λα − λβ + m~
Jβ(

λβ − λα

m
, q).

2). Polynomiality:

(2)
∑

α

Jα(~, qe~z)eλαzJα(−~, q)
EulerG(Vα)

EulerG(Tα)
=

∑

d∈Λ

qdPSd(~, z),

where the symbol PS is some power series in ~ and z.
3). Asymptotic condition:

(3) Jα = 1 + o(
1

~
).

Also it is known that Iα satisfies (1) and (2), but maybe not (3).
What we want to prove today is the following theorem:

Theorem 1. e(t0+λα ln q)/~Iα is transformed to e(t0+λα ln q)/~Jα by changes of vari-

ables determined by the asymptotic property of Iα: Iα = A + B
~

+ o( 1
~
).

Proof. Our proof is divided into 2 steps. The first step is to prove that the changes
of variables transform polynomial solutions, i. e. the changes of variables respect
(2) (part 1) and (1) (part 2). The second step is to prove that a polynomial solution

satisfying 3) is unique. A good example to keep in mind is the toric manifold CP3:

m

α

β
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We will illustrate the proof only for the change of variables :

ln q 7→ ln q + f(q), f(0) = 0,

which is the most complicated case. The others are left to the reader.
Step I (part 1) : Recall q = eτ , t = τ + ~z. The change of variable:

q 7→ qef(q)(4)

z 7→ z +
f(qe~z )

~
.(5)

It is clear that series of q are mapped to series of q. But notice that the numerator
in(5) is divisible by ~, therefore a power series in z is transformed to a power series
in z, q, ~. We are done.

Step I (part 2):

Jα = e(−p ln q)/~ ~J |p=λα

7→ eλαf(q)/~Jα(~, qef(q))

=
∑

P̃ ol +
∑ ∑ qmCoeff

λα − λβ + m~
Jβ(

λβ − λα

m
, qef(q))e

λαf(q)
~

+mf(q)

But the last exponent
λαf(q)

~
+ mf(q) at ~ =

λβ−λα

m is equal to λβf(q) m
λβ−λα

. The

difference of these two is simply a polynomial and therefore can be absorbed into

P̃ ol.

Remark. Step I is actually a consequence of divisor equation. Because the changes
of variables are all of the form : q 7→ qet.

Step II : This part of proof is based on perturbation theory. Suppose we have
{

P̃ olα,m = Polα,m for m < d

P̃ olα,d = Polα,d + Rα( 1
~
)

where R is the discrepency. By recurssion relation, J̃α and Jα coincide up to degree
d − 1 (in q) inclusively. The qd term in (2)

(6)
∑

α

eλαz[Rα(
1

~
)ed~z + Rα(−

1

~
)]Eα

is a power series in ~, z. Now expand (6) in z and ~:
∑

Constkm,αzk~meλαzEα.

Since it is a power seires in ~, Constkm,α = 0 for m < 0 by the linear independence

of 1, z, z2, z3, . . ..
Conclusion:

(7) [Rα(
1

~
)ed~z + Rα(−

1

~
)]

is a power series (in ~) by itself.
Now our claim is: this conclusion will determine Rα uniquely up to the coeffi-

cients of 1 and 1
~
. To see this write R as A + B~−1 , A, B are polynomial functions

of ~−2. (7) is the same as

A(ed~z + 1) + B(
ed~z − 1

~
) = 2A + zdB + o(~−2k).
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This implies that if degree of A, B (in ~−2) are less or equal to k, then degree of (7)
is less than k−1 ((7) is a power series in ~). Thus A and B are constant. Therefore

if J̃ − J = O(~−2), then they are equal. This concludes our proof. �

2. Concave Vector Bundles

2.1. Formulation.

Definition. A concave bundle V (with total space E) over a (toric) manifold X is
a vector bundle isomorphic to a direct sum of negative line bundles.

For example,
V = ⊕k

j=1O(−lj)y

CPn−1.

In this setting, we can also define the vector function ~J, ~I:

~JE = e(t0+p ln q)/~[1 +
1

~

∑

d6=0

qdev∗
EulerT Ṽ ′

1,d

~ − c
]

where ev is the evaluation map X0,1.d → X, V ′
1,d|(Σ,x;f) = H1(Σ, f∗V (−x)) =

H0(Σ, f∗V ∗ ⊗ KΣ(x))∗, x is the marked point, c is the first chern class of the
universal cotangent line.

~IE = e(t0+p ln q)/~

∞∑

d=0

qd

∏k
i=1

∏lid−1
m=0 (−lip + λ′ − m~)

∏d
m=1(p + m~)n

with pn = 0.

Theorem 2. ~JE coincides with ~IE up to change of variables.

The proof of this theorem is the same as that of the convex vector bundle. We
left it to the reader.

Corollary 1. If dim(V ) = k > 1, then ~JE = ~IE.

Proof. Due of the appearance of m = 0 in the product of ~IE , it has the asymptotic
property 1 + o( 1

~
). �

Conjecture. (A. Givental) ~JΠE coincides with ~JE∗ up to change of variables.

2.2. Counting curves in quintic threefolds. First we consider the vector bundle
V ∼= O(−1) ⊕O(−1) over CP

1. The primitive kähler class of CP
1 will be denoted

by π, π2 = 0. In this case

IE = e(π ln q)/~

∞∑

r=0

Qr

∏r−1
m=0(π − λ′ + m~)2∏r

m=1(π + m~)2

= JE (by the above corollary)

Notice that we change the notations a little bit and reserve the usual ones for the
following case.

Consider another CP1 embedded in a quintic Calabi-Yau threefold X with degree
d. Denote p the hyperplane class of CP4, and denote q = et with t the coordinate
of p. We have p = dπ, Q = qd and [CP

1] is Poincare dual to the cohomology class
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dp2. Generically the normal bundle to this embedded CP1 is O(−1) ⊕O(−1). Let
E be the total space of the normal bundle. By our formulation∫

[E]

? =

∫

CP
1

1

(π − λ′)2
?

=

∫

X

dp2

π − λ′)2
?

(p4 = 0)

So the ~J = ~I for quintic X is equal to

~JX = e(p ln q)/~[5 +

∞∑

d=1

dp2
∞∑

r=1

qrd

(p
d

+ r~)2
]

= e(p ln q)/~[5 +

∞∑

d=1

d3p2
∞∑

r=1

qrd

(p + dr~)2
]

mod(p4 = 0)

Now the explanation of the “strange procedure” proposed by Candelas et. al. is
almost redundant. Denote

′ = ~q
d

dq
,

then

J ′′ = e(p ln q)/~p2 [5 +

∞∑

d=1

ndd
3 qd

1 − qd
]

︸ ︷︷ ︸
K(

J ′′

K

)′′

= p4 = 0

which is exactly the equation proposed by [COGP].
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