
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 23

A. GIVENTAL

1. Illustration of the Mirror Theorem for toric manifolds.

Let X be a toric manifold which corresponds to the matrix M . Recall from the

previous lecture that we had two generating functions ~I , and ~J on X with values
in the equivariant cohomology of X:

~I = e(t0+pt)/~
∑

d∈Λ

edt

∏0
m=∞(uj(p) + m~)

∏Dj(d)
m=−∞(uj(p) + m~)

~J = e(t0+pt)/~[1 +
1

~

∑

d6=0

edtev∗(
1

~ − c
)]

The Mirror Theorem (lecture 21) states that ~I = ~J after some change of variables.
There are two possible cases: c1(TX) > 0 (interior of the Kahler cone) and

c1(TX) ≥ 0 (boundary of the Kahler cone). The expansion of ~I in powers of 1/~ is
different in these cases:

~I = e(t0+pt)/~[1 + a1~−1(in the first case a1 = 0) + o(
1

~
)].

Let us look closely at each particular case:
Case 1. c1(TX) is in the interior of the Kahler cone.

In this case ~I = ~J . We don’t need any change of variables. Therefore we get the
following relations in quantum cohomology:

n
∏

j=1

uj(p)mij = qi, i = 1, . . . , r,

where uj(p) =
∑r

i=1 pimij .
Case 2. c1(TX) is on the boundary of the Kahler cone.
Here we possibly need some change of variables (we have to kill the term by ~−1

in the expansion of ~I).
Let us illustrate the second case in the examples of toric manifolds X1 and X2

constructed in the lecture 17.

Example. 1. Let X1 be a 3-dimensional toric manifold corresponding to the matrix

M1 =

[

1 1 0 −1 −1
0 0 1 1 1

]

X1 is the projectivization of the sum of trivial and two Hopf line bundles over CP 1.
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The image of the basis vectors under the projection R5
+ → R2 used in the

construction of X1 is shown in Figure 1. It is clear that c1(TX1
) = (0, 3) is on the

Figure 1. Image of basis vectors of R5
+ in R2.

boundary of the Kahler cone (case 2).
Using Kirwan’s theorem we compute the cohomology:

H∗(X1) = Z[p1, p2]/(p2
1, p2(p2 − p1)

2).

We compute the following formula:

~I(1) = e(t0+p1t1+p2t2)/~
∑

d1 ≥ 0
d2 ≥ 0

ed1t1+d2t2×

×
∏0

−∞(p2 − p1 + m~)2

∏d1

1 (p1 + m~)2
∏d2

1 (p2 + m~)
∏d2−d1

−∞ (p2 − p1 + m~)
=

= e(t0+p1t1+p2t2)/~(1 + o(
1

~
)).

Corollary. ~I = ~J .

Therefore ~I(1) is satisfied by the following system of differential equations:
{

D2
1
~I(1) = q1(D2 − D1)

2~I(1)

D2(D1 − D2)
2~I(1) = q2

~I(1)

Where Di = ~ d
dti

, qi = eti , i = 1, 2. Thus we get the relations in quantum cohomol-

ogy of X1:
{

p2
1 = q1(p2 − p1)

2

p2(p1 − p2)
2 = q2
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Example. 2. Let X2 be a 3-dimensional toric manifold corresponding to the matrix

M2 =

[

1 1 0 0 −2
0 0 1 1 1

]

X2 is the projectivization of the sum of two trivial bunles and the square of the
Hopf bundle. The image of the basis vectors under the projection R5

+ → R2 used
in the construction of X2 is shown in Figure 2. It is clear that c1(TX2

) = (0, 3) is

Figure 2. Image of basis vectors of R5
+ in R2.

on the boundary of the Kahler cone (case 2). Using Kirwan’s theorem we compute
the cohomology:

H∗(X2) = Z[p1, p2]/(p2
1, p2(p2 − 2p1)

2).

We note that it is the same as H∗(X1) (recall that X1 and X2 are equivalent
symplectic, but different complex manifolds). We compute the following formula:

~I(2) = e(t0+p1t1+p2t2)/~
∑

d1 ≥ 0
d2 ≥ 0

ed1t1+d2t2×
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×
∏0

−∞(p2 − 2p1 + m~)2

∏d1

1 (p1 + m~)2
∏d2

1 (p2 + m~)2
∏d2−2d1

−∞ (p2 − 2p1 + m~)
=

= e(t0+p1t1+p2t2)/~[1 +
2p1 − p2

~
f(et

1) + o(
1

~
)],

where the function f is given by the formula

f(Q) =
∞

∑

d1=1

(2d1 − 1)!

(d1!)2
Qd

1.

To make ~I and ~J equal we have to perform some change of variables. We are lucky
because f is quite simple, for example it satisfies the relation

Q
d

dQ
f =

1√
1 − 4Q

− 1,

so the change of variable is easy to compute. Let Qi (resp. qi) , i = 1, 2, be
the old variables (resp. new variables). The change of variables is given by the

formulas q1 = Q1e
2f(Q1 and q2 = Q2e

−f(Q1). The inverse change of variables is
Q1 = q1

(1+q1)2
, Q2 = q2(1 + q1).

Let’s denote D̃1 = ~Qi
d

dQi
. ~I(2)is annihilated by the following system of differ-

ential operators
{

D̃1(D̃2 − 2D̃1) − Q2

D̃2
1 − Q1(D̃2 − 2D̃1)(D̃2 − 2D̃1 − ~)

Exercise. Check that under the described change of variables the system of equa-
tions for X2 is transformed to the system of equations for X1.

This is due to the fact that X1 and X2 are holomorphicallydifferent, but symplec-
tically equivalent, and Gromov-Witten invariants are the invariants of symplectic
structure.

2. Idea for the proof of the Mirror Theorem.

Let us move toward the proof of the Mirror theorem. So far we have no idea why
~I and ~J should be related at all. To understand ”why?” let us forget everything and
approach the problem of counting rational curves on manifolds in a straightforward
way.

Problem: What is the number of rational curves of degree d on a quintic?
The direct way to approach the problem is to consider the maps

(x1(w) : · · · : x5(w)) : CP 1 → CP 4

of degree d with image on the quintic given by equation F (x1 : · · · : x5) = 0. Here
w is a coordinate on CP 1, xi(w)’s are relatively prime polynomials of maximal
degree d. Compactification of the set of such polynomials modulo C∗ forms the
space X = CP 5d+4. Substituting into F = 0 we get:

F (x(w)) = a0(x) + a1(x)w + · · ·+ a5d(x)w5d = 0.

Let Y ⊂ X be the solution of the above equation. Y parametrizes the maps from
CP 1 to quintic.
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Let P5d be the trivial bundle over X with fiber CP 5d+1. F (x) is then a section
of a bundle

O(5) ⊗P5d




y

CP 5d+4

and Y is the zero locus of this section. It follows that the dimension of Y is 3,
which is the correct number. We have:

5 +

∞
∑

d=1

ndd3qd

1 − qd
=< p ◦ p, p >=

∞
∑

d=0

qd

∫

CP5d+4

p3(5p)5d+1 =

=

∞
∑

d=0

qd55d+1 =
5

1 − 55q
.

Unfortunately this formula is incorrect. For example, it predicts the number of
straight lines to be 56 6= 2875 = 5323, which is known to be the correct number.

What’s wrong? We didn’t take into account that our cycle Y is invariant with
respect to the Moebius transformation group on CP 1.

Consider the action of the maximal torus S1 of SL2 on CP 1, φ ∈ S1 : w → eφw.
Computing the equivariant cohomology (which is the algebra over H∗(BS1) = Q[~]
we get:

H∗
S1(CP 5d+4) = Q[P, ~]/P 5(P − ~)5 · · · (P − d~)5

Therefore the generating function for Gromov-Witten invariants is
∫

[CP5d+4 ]

EulerS1(O(5) ⊗ P5d)e
Pz =

1

2πi

∮

5P (5P − ~) · · · (5P − 5d~)ePzdP

P 5(P − ~)5 · · · (P − d~)5
.

This is of Duistermaat-Heckman formula type.
Let us recall that periods of integrals of holomorphic forms on mirrors of quintics

are encoded in the formula

~It,~ = ept (5p + ~) · · · (5p + 5d~)

(p + ~)5 · · · (p + d~)5
.

We see the resemblence with the formula above.

Claim.
∞
∑

d=0

qd

∫

[CP5d+4 ]

EulerS1(O(5) ⊗P5d)e
Pz =< ~It,~, ~Iτ,−~ >

under the change of variables q = eτ , z = t−τ
~

. Here <, > is the intersection index

in H2∗(X3
(5)).

Proof. . The proof is a straightforward computation. The key step is when we
consider the integral near the pole P = d′~ in the left hand side we should do the
substitution p = P − d′~.

We can emphasize two conclusions of this section:
1. We used simpler model, got the wrong number of rational curves on quintics,

but we recovered the periods of mirror manifolds.

2.Let q = eτ , qez~ = et. Then ~I = eplnq/~( series in q, 1/~), but

< ~I(qez~, 1/~), ~I(q, 1/~) > is a series in variables q, z, ~ and not 1/~. This is a
polynomiality property of Duistermaat-Heckman formula.
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