TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY LECTURE 23

A. GIVENTAL

1. Illustration of the Mirror Theorem for toric manifolds.

Let X be a toric manifold which corresponds to the matrix M. Recall from the previous lecture that we had two generating functions \vec{I} , and \vec{J} on X with values in the equivariant cohomology of X:

$$\vec{I} = e^{(t_0 + pt)/\hbar} \sum_{d \in \Lambda} e^{dt} \frac{\prod_{m=\infty}^{0} (u_j(p) + m\hbar)}{\prod_{m=-\infty}^{D_j(d)} (u_j(p) + m\hbar)}$$
$$\vec{J} = e^{(t_0 + pt)/\hbar} [1 + \frac{1}{\hbar} \sum_{d \neq 0} e^{dt} ev_* (\frac{1}{\hbar - c})]$$

The Mirror Theorem (lecture 21) states that $\vec{I} = \vec{J}$ after some change of variables.

There are two possible cases: $c_1(T_X) > 0$ (interior of the Kahler cone) and $c_1(T_X) \ge 0$ (boundary of the Kahler cone). The expansion of \vec{I} in powers of $1/\hbar$ is different in these cases:

$$\vec{I} = e^{(t_0 + pt)/\hbar} [1 + a_1 \hbar^{-1} (\text{in the first case } a_1 = 0) + o(\frac{1}{\hbar})].$$

Let us look closely at each particular case:

Case 1. $c_1(T_X)$ is in the interior of the Kahler cone.

In this case $\vec{I} = \vec{J}$. We don't need any change of variables. Therefore we get the following relations in quantum cohomology:

$$\prod_{j=1}^{n} u_j(p)^{m_{ij}} = q_i, i = 1, \dots, r$$

where $u_j(p) = \sum_{i=1}^r p_i m_{ij}$.

Case 2. $c_1(T_X)$ is on the boundary of the Kahler cone.

Here we possibly need some change of variables (we have to kill the term by \hbar^{-1} in the expansion of \vec{I}).

Let us illustrate the second case in the examples of toric manifolds X_1 and X_2 constructed in the lecture 17.

Example. 1. Let X_1 be a 3-dimensional toric manifold corresponding to the matrix

$$M_1 = \left[\begin{array}{rrrr} 1 & 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right]$$

 X_1 is the projectivization of the sum of trivial and two Hopf line bundles over $\mathbb{C}P^1$.

Date: July 1, 2005.

Notes taken by Alexander Kogan.

The image of the basis vectors under the projection $\mathbb{R}^5_+ \to \mathbb{R}^2$ used in the construction of X_1 is shown in Figure 1. It is clear that $c_1(T_{X_1}) = (0,3)$ is on the

FIGURE 1. Image of basis vectors of \mathbb{R}^5_+ in \mathbb{R}^2 .

boundary of the Kahler cone (case 2).

Using Kirwan's theorem we compute the cohomology:

$$H^*(X_1) = \mathbb{Z}[p_1, p_2]/(p_1^2, p_2(p_2 - p_1)^2).$$

We compute the following formula:

$$\begin{split} \vec{I}_{(1)} &= e^{(t_0 + p_1 t_1 + p_2 t_2)/\hbar} \sum_{\substack{d_1 \ge 0 \\ d_2 \ge 0}} e^{d_1 t_1 + d_2 t_2} \times \\ &\times \frac{\prod_{-\infty}^0 (p_2 - p_1 + m\hbar)^2}{\prod_{1}^{d_1} (p_1 + m\hbar)^2 \prod_{1}^{d_2} (p_2 + m\hbar) \prod_{-\infty}^{d_2 - d_1} (p_2 - p_1 + m\hbar)} = \\ &= e^{(t_0 + p_1 t_1 + p_2 t_2)/\hbar} (1 + o(\frac{1}{\hbar})). \end{split}$$

Corollary. $\vec{I} = \vec{J}$.

Therefore $\vec{I}_{(1)}$ is satisfied by the following system of differential equations:

$$\begin{cases} D_1^2 \vec{I}_{(1)} = q_1 (D_2 - D_1)^2 \vec{I}_{(1)} \\ D_2 (D_1 - D_2)^2 \vec{I}_{(1)} = q_2 \vec{I}_{(1)} \end{cases}$$

Where $D_i = \hbar \frac{d}{dt_i}$, $q_i = e^{t_i}$, i = 1, 2. Thus we get the relations in quantum cohomology of X_1 :

$$\begin{cases} p_1^2 = q_1(p_2 - p_1)^2 \\ p_2(p_1 - p_2)^2 = q_2 \\ 2 \end{cases}$$

Example. 2. Let X_2 be a 3-dimensional toric manifold corresponding to the matrix

$$M_2 = \left[\begin{array}{rrrr} 1 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right]$$

 X_2 is the projectivization of the sum of two trivial bundles and the square of the Hopf bundle. The image of the basis vectors under the projection $\mathbb{R}^5_+ \to \mathbb{R}^2$ used in the construction of X_2 is shown in Figure 2. It is clear that $c_1(T_{X_2}) = (0,3)$ is

FIGURE 2. Image of basis vectors of \mathbb{R}^5_+ in \mathbb{R}^2 .

on the boundary of the Kahler cone (case 2). Using Kirwan's theorem we compute the cohomology:

$$H^*(X_2) = \mathbb{Z}[p_1, p_2]/(p_1^2, p_2(p_2 - 2p_1)^2).$$

We note that it is the same as $H^*(X_1)$ (recall that X_1 and X_2 are equivalent symplectic, but different complex manifolds). We compute the following formula:

$$\vec{I}_{(2)} = e^{(t_0 + p_1 t_1 + p_2 t_2)/\hbar} \sum_{\substack{d_1 \ge 0 \\ d_2 \ge 0}} e^{d_1 t_1 + d_2 t_2} \times$$

$$\times \frac{\prod_{-\infty}^{0} (p_2 - 2p_1 + m\hbar)^2}{\prod_{1}^{d_1} (p_1 + m\hbar)^2 \prod_{1}^{d_2} (p_2 + m\hbar)^2 \prod_{-\infty}^{d_2 - 2d_1} (p_2 - 2p_1 + m\hbar)} =$$
$$= e^{(t_0 + p_1 t_1 + p_2 t_2)/\hbar} [1 + \frac{2p_1 - p_2}{\hbar} f(e_1^t) + o(\frac{1}{\hbar})],$$

where the function f is given by the formula

$$f(Q) = \sum_{d_1=1}^{\infty} \frac{(2d_1-1)!}{(d_1!)^2} Q_1^d.$$

To make \vec{I} and \vec{J} equal we have to perform some change of variables. We are lucky because f is quite simple, for example it satisfies the relation

$$Q\frac{d}{dQ}f = \frac{1}{\sqrt{1-4Q}} - 1$$

so the change of variable is easy to compute. Let Q_i (resp. q_i), i = 1, 2, be the old variables (resp. new variables). The change of variables is given by the formulas $q_1 = Q_1 e^{2f(Q_1)}$ and $q_2 = Q_2 e^{-f(Q_1)}$. The inverse change of variables is $Q_1 = \frac{q_1}{(1+q_1)^2}, Q_2 = q_2(1+q_1)$.

Let's denote $\tilde{D}_1 = \hbar Q_i \frac{d}{dQ_i}$. $\vec{I}_{(2)}$ is annihilated by the following system of differential operators

$$\left\{ \begin{array}{l} \tilde{D}_1 (\tilde{D}_2 - 2\tilde{D}_1) - Q_2 \\ \tilde{D}_1^2 - Q_1 (\tilde{D}_2 - 2\tilde{D}_1) (\tilde{D}_2 - 2\tilde{D}_1 - \hbar) \end{array} \right.$$

Exercise. Check that under the described change of variables the system of equations for X_2 is transformed to the system of equations for X_1 .

This is due to the fact that X_1 and X_2 are holomorphically different, but symplectically equivalent, and Gromov-Witten invariants are the invariants of symplectic structure.

2. Idea for the proof of the Mirror Theorem.

Let us move toward the proof of the Mirror theorem. So far we have no idea why \vec{I} and \vec{J} should be related at all. To understand "why?" let us forget everything and approach the problem of counting rational curves on manifolds in a straightforward way.

Problem: What is the number of rational curves of degree d on a quintic?

The direct way to approach the problem is to consider the maps

$$(x_1(w):\cdots:x_5(w)):\mathbb{C}P^1\to\mathbb{C}P^4$$

of degree d with image on the quintic given by equation $F(x_1 : \cdots : x_5) = 0$. Here w is a coordinate on $\mathbb{C}P^1$, $x_i(w)$'s are relatively prime polynomials of maximal degree d. Compactification of the set of such polynomials modulo \mathbb{C}^* forms the space $X = \mathbb{C}P^{5d+4}$. Substituting into F = 0 we get:

$$F(x(w)) = a_0(x) + a_1(x)w + \dots + a_{5d}(x)w^{5d} = 0.$$

Let $Y \subset X$ be the solution of the above equation. Y parametrizes the maps from $\mathbb{C}P^1$ to quintic.

Let \mathcal{P}_{5d} be the trivial bundle over X with fiber $\mathbb{C}P^{5d+1}$. F(x) is then a section of a bundle $\mathcal{O}(5) \otimes \mathcal{P}_{5d}$

$$\mathcal{O}(5)\otimes\mathcal{P}_{5d}$$
 \downarrow
 $\mathbb{C}P^{5d+4}$

and Y is the zero locus of this section. It follows that the dimension of Y is 3, which is the correct number. We have:

$$5 + \sum_{d=1}^{\infty} \frac{n_d d^3 q^d}{1 - q^d} = \langle p \circ p, p \rangle = \sum_{d=0}^{\infty} q^d \int_{\mathbb{C}P^{5d+4}} p^3 (5p)^{5d+1} =$$
$$= \sum_{d=0}^{\infty} q^d 5^{5d+1} = \frac{5}{1 - 5^5 q}.$$

Unfortunately this formula is incorrect. For example, it predicts the number of straight lines to be $5^6 \neq 2875 = 5^323$, which is known to be the correct number.

What's wrong? We didn't take into account that our cycle Y is invariant with respect to the Moebius transformation group on $\mathbb{C}P^1$.

Consider the action of the maximal torus S^1 of SL_2 on $\mathbb{C}P^1$, $\phi \in S^1 : w \to e^{\phi}w$. Computing the equivariant cohomology (which is the algebra over $H^*(BS^1) = \mathbb{Q}[\hbar]$ we get:

$$H_{S^1}^*(\mathbb{C}P^{5d+4}) = \mathbb{Q}[P,\hbar]/P^5(P-\hbar)^5 \cdots (P-d\hbar)^5$$

Therefore the generating function for Gromov-Witten invariants is

$$\int_{[\mathbb{C}P^{5d+4}]} \operatorname{Euler}_{S^1}(\mathcal{O}(5) \otimes \mathcal{P}_{5d}) e^{Pz} = \frac{1}{2\pi i} \oint \frac{5P(5P - \hbar) \cdots (5P - 5d\hbar) e^{Pz} dP}{P^5(P - \hbar)^5 \cdots (P - d\hbar)^5}.$$

This is of Duistermaat-Heckman formula type.

Let us recall that periods of integrals of holomorphic forms on mirrors of quintics are encoded in the formula

$$\vec{I}_{t,\hbar} = e^{pt} \frac{(5p+\hbar)\cdots(5p+5d\hbar)}{(p+\hbar)^5\cdots(p+d\hbar)^5}.$$

We see the resemblence with the formula above.

Claim.

$$\sum_{d=0}^{\infty} q^d \int_{[\mathbb{C}P^{5d+4}]} \operatorname{Euler}_{S^1}(\mathcal{O}(5) \otimes \mathcal{P}_{5d}) e^{Pz} = <\vec{I}_{t,\hbar}, \vec{I}_{\tau,-\hbar} >$$

under the change of variables $q = e^{\tau}$, $z = \frac{t-\tau}{\hbar}$. Here \langle , \rangle is the intersection index in $H^{2*}(X^3_{(5)})$.

Proof. . The proof is a straightforward computation. The key step is when we consider the integral near the pole $P = d'\hbar$ in the left hand side we should do the substitution $p = P - d'\hbar$.

We can emphasize two conclusions of this section:

1. We used simpler model, got the wrong number of rational curves on quintics, but we recovered the periods of mirror manifolds.

2.Let $q = e^{\tau}$, $qe^{z}\hbar = e^{t}$. Then $\vec{I} = e^{plnq/\hbar}$ (series in $q, 1/\hbar$), but

 $< \vec{I}(qe^{z\hbar}, 1/\hbar), \vec{I}(q, 1/\hbar) >$ is a series in variables q, z, \hbar and not $1/\hbar$. This is a polynomiality property of Duistermaat-Heckman formula.