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TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURES 21-22

A. GIVENTAL

In Lecture 21, we reviewed the supermanifold construction from the previous
lecture, described an analogue for nonconvex bundles, and formulated a mirror
theorem for toric complete intersections. In Lecture 22, we applied the mirror
theorem in specific instances to obtain enumerative results consistent with what we
already knew, and discussed a reformulation of the mirror theorem in terms of an
integral that makes it look somewhat more like the original mirror conjecture.

1. Review of “supermanifolds”

Denote by V a vector bundle over the compact Kähler manifold X with total
space E. In this section, we assume that V is convex (generated by global sections).

In the previous lecture, we defined “relative” Gromov-Witten invariants of a
complete intersection Y contained in X, that is, the zero locus of a section s of E
transverse to the zero section. These differed from the ordinary Gromov-Witten
invariants of Y in that they were defined on classes of X. To be precise:

A(T1(c1), . . . , Tn(cn))ΠE
0,n,d =

∫

[X0,n,d]

ct∗(A) ∧∗
1 (T1)(c1) ∧ · · · ∧∗

n (Tn)(cn) ∧ (V0,n,d)

∑
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In this setting, we construct Gromov-Witten invariants in nonzero degrees as
follows:

A(T1(c1), . . . , Tn(cn))E
g,n,d

=

∫

[Xg,n,d]

ct∗(A) ∧ (∗1T1)(c1) ∧ · · · ∧ (∗nTn)(cn) ∧ S1(Wg,n,d).

Again, the action of S1 is fibrewise on Wg,n,d.
An example where one uses this construction is the Calabi-Yau threefold, where

we need to account for multiple covers. For a given generic1 sphere, we can study the
multiple covers of that sphere by working within its normal bundle. The normal
bundle is generically O(−1) ⊕ O(−1), which is precisely the situation described
above.

The associated Frobenius structure in this setting lives on H∗(X, (λ)) with
Poincaré pairing

〈φ, ψ〉 =

∫

φ ∧ ψ ∧ −1
S1 (W )

and the diagonal form
∑

ηαβφα ⊗ φβ = (Poincaré dual of diagonal) · S1(W ).

Exercise. Derive the above formulae by modifying Kontsevich’s modified WDVV
construction for the convex case.

We note in passing that while the Gromov-Witten invariants for d nonzero are a
priori integral, which was not the case in the convex case (because the formula for
the Euler class of V0,n,d has a denominator), the Poincaré pairing is not integral-
valued on the trivial class.

For grading purposes, the degree of the supermanifold ΠE is given by

c1(ΠE) = c1(TY ) = c1(TX) − c1(V ),

while in the concave case the appropriate term is

c1(TE) = c1(TX) + c1(V ).

3. The Mirror Theorem

We are now ready to state the mirror theorem for complete intersections in toric
manifolds. That is, after we introduce some notation.

We first recall our standard construction of a toric manifold. Equip n with the
standard action of the n-dimensional (real) torus Tn, and consider the moment
map µ :n → Content− Length : 23772Status : RO

1I didn’t quite catch what generic means here; the holomorphic spheres occur discretely, so we

don’t mean general position.
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bbRn
+. We then choose an integer matrix M = (mij) which maps Content −

Length : 23772Status : RO
bbRn

+ down to Content− Length : 23772Status : RO
bbRr, or more invariantly, to the dual of the Lie algebra of the r-dimensional

torus T r . Another way of putting this is that M is the map induced on duals of
Lie algebras by the embedding of T r into Tn; this makes it clear that M ◦ µ is the
moment map of the torus action of T r . Now choose a Kähler cone K (a maximal
cone not containing the image of any of the basis vectors of Content − Length :
23772Status : RO

bbRn
+) and let X be the quotient of (M ◦ µ)−1(K) under the action of the

complexified torus T r.
We computed the Tn-equivariant cohomology of X previously:

H∗
T n(X) =

u1, . . . , un, p1, . . . , pr, λ1, . . . , λn]

(uj =
∑

i pimij − λj, some monomials in ui)
.

To describe a complete intersection of codimension ℓ, we choose an integer matrix
lik and consider the equivariant line bundles on X with first Chern classes

∑

i pilik
for k = 1, . . . , ℓ. (Equivalently, we could have specified the torus characters induced
by the line bundles.)

Let the torus T ℓ act on the sum of the line bundles by (componentwise) scalar
action on the fibres. Then the G = (Tn × T ℓ)-equivariant cohomology of X is
obtained from its Tn-equivariant cohomology by tensoring with λ′1, . . . , λ

′
ℓ); in this

notation, the G-equivariant first Chern class of the k-th line bundle is

vk =

r
∑

i=1

pilik − λ′k.

The mirror theorem will relate the H∗
G-valued generating function ~J (operators

annihilating which yield relations in quantum cohomology) to another function ~I
defined in terms of the combinatorial data (the matrices mij and lik).

We first introduce the analogue, in the relative setting, of the first row of the
fundamental solution of the “Frobenius structure equation”:

~J = e(t0+p1t1+···+prtr)/~



1 +
1

~

∑

d∈Λ−{0}

ed1t1+···+drtr
∗

(

G(V ′
0,1,d)

~ − c

)





Notational reminders:

• Λ is the cone of degrees (first Chern classes) of holomorphic curves (or
rather, of coordinates of such degrees with respect to the basis t1, . . . , tr of
H2(X));

• :X0,1,d → X is evaluation at the marked point;
• c is the universal cotangent line at the marked point;
• V ′

0,1,d is the bundle over X0,1,d whose fibre at (Σ, f) is the set of global

sections of f∗(V ) vanishing at the marked point (which differs topologically
from the space of all global sections by a copy of V itself).

Now set Dj(d) =
∑

i dimij and Lk(d) =
∑

i dilik, and define

~I = e(t0+
P

piti)/~
∑

d∈Λ

e
P

diti

∏Lk

m=1(vk +m~)
∏

m=1 Dj(uj +m~)
.
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Beware that Dj can be negative (though not in many cases of interest); in this case,

by
∏Dj

m=1(uj +m~) we actually mean
∏

m=Dj
−1(uj +m~)−1 , or more suggestively,

∏

m=−∞ 0(uj +m~)
∏

m=−∞Dj(uj +m~)
.

No such trouble arises for Lk, which is always nonnegative.

Theorem 1. Assume that vk ∈ K for k = 1, . . . , r, and that
∑

j uj −
∑

k vk ∈ K.

(That is, the line bundles are convex, and the first Chern class of the complete

intersection is nonnegative.) Then ~I(t0, ti) = ~J(tnew
0 , tnew

i ) for a unique weighted
homogeneous triangular change of variables:

tnew
0 = t0 + f0(q)~ +

∑

j

λjgj(q) +
∑

j

λ′jg
′
j(q) + h(q)

tnew
i = ti + fi(q).

In case you have as much trouble remembering term degrees as I do:

deg ti = 0, deg t0 = deg ~ = deg λj = deg λ′j = 1, deg qi =
∑

j

mij −
∑

k

lik.

The uniqueness of the change of variables follows from writing out the first-order

asymptotics of ~I and ~J in 1/~. Namely,

~J = e(t0+pt)/~

[

1 + o

(

1

~

)]

,

while (calculation omitted!)

~I = e(t0+pt)/~ef0(q)

[

1 +
h(q)

~
+
∑ λjgj(q)

~
+
∑ λ′kgk(q)

~
+
∑ pifi(q)

~
+ o

(

1

~

)]

.

Explicitly determining the individual series fi, gj, g
′
k, h can be tricky in practice,

but one case is easy:

ef0(q) =
∑

d∈Λ

∑

P

Lk=
P

Dj

qd

∏

Lk!
∏

Dj !
.

4. Some examples

We now apply the mirror theorem in some concrete examples, and verify that the
results so obtained agree with what we already know. Specifically, let X = P n−1

and let V be the line bundle O(ℓ) over X, where 0 < ℓ ≤ n. The bounds on ℓ
ensure that V is convex, and that its first Chern class is nonnegative. We use the
mirror theorem to deduce enumerative results about a hypersurface Y which is the
zero locus of a section of V transverse to the zero section.

Let p denote the Tn-equivariant first Chern class of O(1); modulo the relation
(p− λ1) · · · (p− λn) = 0, we have

~I = e(t0+pt)/~

∞
∑

d=0

edt

∏ℓd
m=1(ℓp− λ′ +m~)

∏n
j=1

∏d
m=1(p− λj +m~)

.
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Since we’re interested in non-equivariant cohomology, we may as well set all of
the λj , and λ′, equal to 0. (Although this is the case in essentially all enumera-
tive applications, actually proving the mirror theorem requires using equivariant
cohomology.)

To apply the mirror theorem, we need to determine the change of coordinates

taking ~I to ~J . As described in the previous section, we do this by computing the

first-order asymptotics of ~I in 1/~. Namely,

~I = e(t0+pt)/~

∞
∑

d=0

edt
~
(ℓ−n)d

[

series in 1
~

]

.

The discussion now splits into three cases.

Case 1: ℓ < n − 1. In this case, the only term in ~I which is not o(1/~) is the

d = 0 term. Therefore no change of variables is needed: ~I = ~J . (This is true even
without setting λ = 0.) In other words,

~J = e(t0+pt)/~

∞
∑

d=0

edt

∏ℓd
m=1(ℓp+m~)

∏d
m=1(p+m~)n

.

Since ~J is the first row of the fundamental solution of the usual differential equation,

we’d like to say that the symbols of operators annihilating ~J give relations in the
quantum cohomology of Y . However, there is a catch!

The catch is that the mirror theorem only refers to classes of Y pulled back from
X, which means we are missing the middle cohomology classes. More precisely,
the (ordinary) cohomology of Y decomposes into a direct sum of p]/(pn−1) and its
orthogonal complement. Fortunately, a vanishing theorem of G. Tian (based on the
hard Lefschetz theorem) applies in this case,2 to show that (ordinary) multiplication
by p acts separately on p]/(pn−1) and the complement, while multiplication by
elements of the complement interchanges the two.

Therefore if we can write down a differential equation for ~I , the relation in quan-
tum cohomology we extract will be true (not just true modulo middle cohomology).
In fact, we can write down such an equation.

(1)

(

~
d

dt

)n−1

~I = ℓet

(

ℓ~
d

dt
+ ~

)

· · ·

(

ℓ~
d

dt
+ (ℓ− 1)~

)

~I.

2Tian’s theorem probably would still apply if we were working in codimension greater than 1,

but the discussion of this point ended inconclusively.
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This is easier to verify, or even derive, than it looks. (It’s even easier if, unlike me,
you’re familiar with hypergeometric functions.)

(

~
d

dt

)n−1

~I = e(t0+pt)/~
∑

d

edt(p + d~)n−1

∏ℓd
m=1(ℓp+m~)

∏d
m=1(p+m~)n

= ete(t0+pt)/~
∑

d

edt(p + (d+ 1)~)n−1

∏ℓ(d+1)
m=1 (ℓp +m~)
∏d+1

m=1(p+m~)n

= ete(t0+pt)~
∑

d

edt
d+ℓ−1
∏

m=1

(ℓd + ℓd~ +m~)

∏ℓd
m=1(ℓp+m~)

∏d
m=1(p+m~)n

= ℓet

(

ℓ~
d

dt
+ ~

)

· · ·

(

ℓ~
d

dt
+ (ℓ − 1)~

)

~I.

Note that the factor (ℓp+ℓ(d+1)~) cancels a factor of p+(d+1)~ in the denominator,
which saves us one differentiation on each side.

By replacing operators with their symbols in (4) and then setting ~ = 0, we pull
off the relation

(2) pn−1 = ℓℓpℓ−1q

in the quantum cohomology of Y . In applying this result, we must remember that
the classes in (2) come from X and are indexed as such, which usually does not
match the natural indexing on Y .

Example. Let Y = P 1 × P 1 be a quadric surface in P 3, so that ℓ = 2. Then
QH∗(Y ) has the relations p2

1 = q1, p
2
2 = q2 (see exercise below). The hyperplane

section p pulls back to p1 +p2 on Y (draw a plane meeting the quadric in two lines),
and

(p1 + p2)
3 = p1q1 + 3p2q1 + 3p1q2 + p2q2.

Also, straight lines on Y embed as straight lines inX, so when we pass to “relative”
quantum cohomology, we must set q = q1 = q2. Thus we get the relation p3 = 4pq,
agreeing with (2). Note that since H2(X) → H2(Y ) is not surjective, the mirror
theorem doesn’t even give us a full description of the small quantum cohomology
of Y .

Exercise. Show that for arbitrary X1 and X2, we have an equality in small quan-
tum cohomology

QH∗(X1 ×X2) = QH∗(X1) ⊗ QH∗(X2).

Note that this relation does not generally hold in large quantum cohomology!

Example. Let Y = G(4, 2) be the Grassmannian of 2-planes in 4, embedded as
a quadric surface in P 5 (so again ℓ = 2). Let c1, c2 and c̃1, c̃2 denote the Chern
classes of the two tautological line bundles on Y . In Lecture 8, we computed that
these four classes generate QH∗(Y ) subject to the relations

(x2 + c1x+ c2)(x
2 + c̃1x+ c̃2) = x4 + q,

whereas the mirror theorem predicts the relation p5 = 4qp, where p = −c1 = c̃1.
We may derive this as follows:

c51 = c1(c1c̃1)
2 = c1(−c2 − c̃2)

2 = (c2 + c̃2)(2c1c̃2) = 2c1c2c̃2 − 2c̃1c2c̃2 = 4c1q.

Of course, the mirror theorem says nothing about the middle cohomology class c2.
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Case 2: ℓ = n−1. In this case, the d = 0 and d = 1 terms of ~I will both contribute
to the first-order asymptotics in 1/~:

~I = e(t0+pt)/~

(

1 + et

∏ℓ
m=1(ℓp+m~)

∏n
j=1

∏1
m=1(p+m~)

+ o

(

1

~

)

)

= e(t0+pt)/~

(

1 +
etℓ!

~
+ o

(

1

~

))

Hence the change of variables in this case is tnew
0 = t0 + etℓ!/~. That is,

~J = e−ℓ!et/~~I.

This means that the differential equation satisfied by ~J should be precisely the
equation obtained from by replacing ~

d
dt with ~

d
dt +ℓ!et. Consequently, the relation

we get in quantum cohomology (plugging in ℓ = n− 1) is

(3) (p + (n− 1)!q)n−1 = (n− 1)n−1q(p+ (n− 1)!q)n−2.

Example. Let Y 2
(3) denote a cubic surface in P 3 (also known as P 2 blown up at

six points); the mirror theorem gives us the relation (p+ 6q)3 = 27(p+ 6q)2 in the
(non-middle) quantum coholomogy. Since 〈p ◦ p, 1〉 = 〈p, p〉 = 3 + O(q) (the 3 is
the number of times the intersection of two hyperplanes meets the cubic surface),
we have

〈p ◦ p, p〉 = 〈p◦3, 1〉

= 9q〈p, p〉+ O(q2) = 27q +O(q2).

Hence the Gromov-Witten invariant (p, p, p)0,3,1 equals 27; in other words, there
are 27 lines on the cubic surface (since prescribing 3 marked points to lie at the
intersections of a line with the three hyperplanes has no enumerative effect).

Example. Consider P 1 embedded as a conic in P 2. Then (3) gives the relation
(p + 2q)2 = 4q(p + 2q), or p2 = 4q2 in quantum cohomology. This doesn’t look
right because p here is the pullback of the hyperplane section, which is twice the
class of a point in P 1; likewise, the exponent of q counts degrees in multiples of
the hyperplane section, so q represents what we would call q2 in the quantum
cohomology of P 1. Relabeling in terms of P 1 gives us the more familiar relation
p2 = q.

Case 3: ℓ = n (Calabi-Yau). As you may have guessed by now, this case is the
messiest because the change of coordinates involves all of the terms in the series.
We limit our attention to a single example.

Example. Let Y be a quintic hypersurface in P 4. Modulo the relation p4 = 0,

~I = e(t0+pt)/~

∞
∑

d=0

edt (5p+ ~) · · · (5p+ 5d~)

(p+ ~)5 · · · (p+ d~)5

= e(t0+pt)/~

[

F0(e
t) +

p

~
F1(e

t) + o

(

1

~

)]

,
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where F0(q) =
∑

d q
d(5d)!/(d!)5. In this case, we make the substitutions

tnew
0 = t0 + log(F0(e

t)~)

tnew = t+
F1(e

t)

F0(et)

and conclude that ~I = ~J(tnew
0 , tnew). This agrees with the prediction made in

Lecture 9.

5. Mirror theorem on the wall, why so named by Givental?

Why do we call Theorem 1 a “mirror theorem”? In this section, we construct

an oscillatory integral corresponding to ~I which makes the mirror theorem look
somewhat more like the standard mirror conjecture. We will only obtain a mirror
manifold of the right dimension in a special case.3

Consider the integral

I =

∫

Γ

e(
P

uj−
P

vk)/~u
λ1/~

1 · · ·uλn/~

n v
λ′

1
/~

1 · · ·v
λ′

ℓ/~

ℓ

du1

u1

∧ · · · ∧ dun

un
∧ dv1 ∧ · · · ∧ dvℓ

dq1

q1

∧ · · · ∧ dqr

qr

over a cycle Γ contained in the variety defined by the relations

(4)

n
∏

j=1

u
mij

j = qi

ℓ
∏

k=1

vlik

k i = 1, . . . , r.

Define the differential operators

∂j =
∑

i

mij~qi
∂

∂qi
− λj , ∂′k =

∑

i

lik~qi
∂

∂qi
− λ′k

and write as before Dj(d) =
∑

i dimij and Lk(d) =
∑

i dilik. Then

∆d =
∏

j

Dj−1
∏

m=0

(∂j −m~) − qd
∏

k

Lk
∏

m=1

(∂′k +m~)

annihilates both the series ~I and the integral I, for every d ∈ Λ such that Dj and
Lk are nonnegative (otherwise the definition of ∆d does not make sense). Although
this looks like infinitely many differential equations, they all follow formally from
some finite subcollection.

Exercise. Show that ∆dI = 0. It may help to substitute ui = eUj , vk = eVk ; in
these variables, applying ∆d gives a form which is actually zero, not just exact.

This suggests that ~I = I for a suitable choice of the cycle Γ. In fact, since the
integrand does not depend on the choice of the Kähler cone, different cycles could
represent different toric manifolds.

While this equality looks somewhat like the mirror conjecture, the integration
runs over too many variables. Let us see how to fix this (hereafter setting λ = λ′ =
0) in the special case

lik =







0 · · · 0 1 · · · 1 0 · · · 0
...

...
. . .

...
0 · · · 0 0 · · · 0 1 · · · 1






.

3My apologies for rendering this discussion somewhat sketchier than it was to begin with.
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Let v0 denote the sum of the first few ui which have no 1 in their corresponding
columns. Then v1 is the sum of the next few ui, v2 the sum of a few after that,
and so on. The integral reduces to

I =

∫

ev0(u)/~ du1

u1

∧ · · · ∧ dun

un

(1 − v1(u)) · · · (1 − vℓ(u))
dq1

q1

∧ · · · ∧ dqr

qr

.

The integrand has a first-order pole along the plane where the denominators are
equal to 1, so we may use the residue theorem to reduce even further:

I =

∫

ev0(u)/~ du1

u1

∧ · · · ∧ dun

un

dq1

q1

∧ · · · ∧ dqr

qr
∧ d(1− v1(u)) ∧ · · ·d(1 − vℓ(u))

,

where now the integration takes place over the variety (of dimension n − l − ℓ =
dimY , as desired) defined by (4) and

v1(u) = · · · = vℓ(u) = 1.

The moral of the story (as best I could interpret it) is, to construct a mirror object,
you should do something like take the spectrum of an algebra generated by certain
cohomology classes.
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