TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY LECTURE 18

A. GIVENTAL

Let G be a Lie group. Consider a topological space X on which G acts continuously. This lecture reveals the basic properties of the so-called equivariant cohomology $H^*_G(X)$ of X. It respects both the topology of the space X and the action of G. For more details the reader may consult Hsiang's book Cohomology Theory of Topological Transformation Groups, Audin's recent book The Topology of Torus Action, and Atiyah-Bott's paper The Moment Map and Equivariant Cohomology in Topology **23** (1984) 1–28.

1. Definition and basic properties of Equivariant Cohomology

As usually the universal G-bundle will be denoted by $EG \rightarrow BG$.

Definition 1. The equivariant cohomology of a *G*-space *X* is the usual cohomology of the space $X_G = (X \times EG)/G$:

$$H^*_G(X) = H^*(X_G).$$

Example. When the action of G on X is free X_G is a fiber bundle over X/G with simply connected fiber EG. Therefore X_G is homotopically equivalent to X/G and $H^*_G(X) = H^*(X_G) = H^*(X/G)$.

Example. If X is a point $X_G = EG/G = BG$ – the classifying space for the universal G-bundle EG (it is unique up to weak homotopy equivalence) and

$$H^*(pt) = H^*(BG).$$

Example. In the case of the simplest Lie group $G = S^1$, $EG = S^{\infty}$, $BG = \mathbb{CP}^{\infty}$ and $EG \to BG$ is the Hopf bundle $S^{\infty} \to \mathbb{CP}^{\infty}$.

$$H_S^*(pt) = H^*(BS^1) = \mathbb{Z}[\lambda]$$
 and $\deg \lambda = 2$.

More generally

$$H^*_{S^r}(pt) = \mathbb{Z}[\lambda_1, \lambda_2, \dots, \lambda_r], \quad \deg \lambda_1 = \deg \lambda_2 = \dots = \deg \lambda_r = 2$$

Return to the general case. X_G is a bundle over BG. The fiber is X because the action of G on EG is free. So $H^*_G(X)$ is a natural $H^*_G(pt) = H^*(BG)$ module, i.e. $H^*(BG)$ is the coefficient ring for the theory. By the same reason a continuous equivariant map $\phi : X \to Y$ between two G spaces X and Y induces a pull back morphism $\phi^* : H^*_G(Y) \to H^*_G(X)$ of $H^*(BG)$ modules.

Exercise. Suppose that the action of G on X is free. Then $H^*(X/G) = H^*_G(X)$ will have a structure of a $H^*(BG)$ module. Describe this structure.

Date: Oct. 23, 1997.

Notes taken by M. Yakimov.

Hint In this case X is a G bundle over X/G and one can consider the characteristic classes of this bundle.

Corollary. The following inequality holds:

$$\operatorname{rk} H^*(X) \ge \operatorname{rk} H^*_G(X),$$

where $\operatorname{rk} H^*(X)$ is the rank of $H^*(X)$ considered as a \mathbb{Q} vector space and $\operatorname{rk} H^*_G(X)$ is the rank of $H^*_G(X)$ considered as a vector space over the field of fractions of $H^*(BG)$ (i.e. localized).

Suppose that X has finite cohomological dimension (that is for any open subset U of X the cohomology groups $H^{l}(U)$ vanish for l large enough) and consider the case when G is a torus T^{r} . X^{T} will denote the fixed point set of the action. We have the equivariant embedding

$$i: X^T \to X,$$

which induces a homomorphism $i^*: H^*_T(X) \to H^*_T(X^T) = H^*(X^T) \otimes \mathbb{Q}[\lambda_1, \lambda_2, \cdots, \lambda_n]$.

Theorem 1. (Borel localization theorem) i^* is an isomorphism over $\mathbb{Q}(\lambda_1, \lambda_2, \dots, \lambda_n)$ (after localization), i.e. the kernel and the cokernel of i^* are torsion modules.

Sketch of the proof $E_2^{p,q}$ for the Leray spectral sequence of $(X - X^T)_T \to (X - X^T)/T$ vanishes for $q \neq 0$ and one gets that $H_T^*((X - X^T)_T) = H^*((X - X^T)/T)$. So $H_T^*((X - X^T)_T)$ is a torsion module and the theorem follows from the exact T equivariant sequence of the pair (X, X^T) .

Remark. The assumption that the space X is cohomologically finite dimensional is essential as shows the example with X = EG, $EG^G = \emptyset$, but $H^*_G(EG) = H^*(BG) \neq 0$.

As a consequence of the Borel localization theorem and the previous unequality we obtain:

Corollary. Smith's unequality. Under the same assumption

$$\operatorname{rk}_{\mathbb{Q}}H^*(X) \ge \operatorname{rk}_{\mathbb{Q}(\lambda_1,\lambda_2,\dots\lambda_n)}H^*(X^T).$$

Exercise. Prove that the number of the connected components of a real curve of genus g is not greater than g + 1.

Hint Generalize the previous results for \mathbb{Z}^2 actions.

Similarly to the usual case one can associate to an equivariant map $f: N \to M$ between two compact G spaces N and M a push forward morphism

$$f_*: H^*(N) \to H^{*-\dim N + \dim M}(M).$$

(One considers finite dimensional approximations EG_n of EG and defines push forward morphism for the induced maps $f_n: X \times EG_n \to Y \times EG_n$, using Poincare pairing.) It also will be interpreted as integration along the fibers of the map f. The image of $\varphi \in H^*_G(X)$ under the map $X \to pt$ will be denoted by

$$\int_{[X]} \varphi \in H^*(BG)$$

Consider again a torus T acting on a space X. One proves that

$$i^*i_*\psi = \psi \wedge E_T(N), \text{ for } \psi \in H^*_T(X^T)$$

where N is the normal bundle to X^T in X and $E_T(N)$ is its equivariant Euler class. Equivalently:

(1)
$$i_* \frac{i^* \varphi}{E_T(N)} = \varphi \text{ for } \varphi \in H_T^*(X)$$

Example. If X^T is discrete (1) can be rewritten in a very explicit way. Suppose $x \in X^T$, then the action of T on X induces an action of T on T_xX (T fixes x). Every finite dimensional complex representation of T is a direct sum of one dimensional representations given by N characters $\chi_1(\lambda), \chi_2(\lambda), \ldots, \chi_N(\lambda)$, and (1) reads:

$$\sum_{x \in X^T} \frac{(i^* \varphi)(\lambda)}{\chi_1(\lambda)\chi_2(\lambda)\dots\chi_N(\lambda)} = \int_{[X]} \varphi, \ \varphi \in H^*_T(X).$$

In general $E_T(N) \in H^*(X^T) \otimes H^*(BT)$ has a nonzero term of degree 0 in the $H^*(X^T)$ grading. The remaining part of it is nilpotent and therefore it is invertible after localization by $\mathbb{C}[\lambda_1, \lambda_2, \ldots, \lambda_n] = H^*(BG, \mathbb{C})$. This explains the notation in (1).

2. Duistermaat-Heckman formula

Consider a Hamiltonian action of a torus T^r on a symplectic manifold (X, ω) . The corresponding Hamiltonians are denoted by H_1, \ldots, H_r . The set of fixed points X^T is supposed to be finite. The principle term in the asymptotic expansion of the oscillating integral

$$\int_X e^{\lambda_1 H_1 + \dots + \lambda_r H_r} \frac{\omega^{\wedge N}}{n!} \quad \text{is} \quad \sum_{p \in X^T} \frac{e^{\sum \lambda_i H_i(p)}}{\sqrt{\text{Hessian}(\sum \lambda_i H_i)(p)}}.$$

The formula of Duistermaat-Heckman says that the latter is the precise value of this integral. Later this fact was nicely explained by Berline-Vergne and Atiyah-Bott in terms of the equivariant cohomology of X. They constructed a de Rham type complex with cohomology $H_T^*(X)$:

The space is $\Omega^*(X)^T[\lambda_1, \lambda_2, \dots, \lambda_r]$ (*T* invariant forms with values in $\mathbb{R}[\lambda_1, \lambda_2, \dots, \lambda_r]$.) The differential is $D = d + \sum \lambda_j i_{v_{H_j}}$ (deg $\lambda_i = 2$).

The form $p = \omega + \lambda_1 H_1 + \cdots + \lambda_r H_r$ is equivariantly closed (this is just another way of saying that v_{H_i} are vector fields with Hamiltonians H_i) and

$$\int_{[X]} e^p = \int_{[X]} e^{\sum \lambda_i H_i} \frac{\omega^{\wedge N}}{N!}$$

where the first integration is equivariant and the second is "usual". One gets the Duistermaat–Heckman formula applying to e^p the Borel localization formula (1).

Exercise. Consider a Hamiltonian action of S^1 on a symplectic manifold (X, ω) with a hamiltonian H. X^{S^1} is assumed to be finite. Prove that H is a perfect Morse function (*perfect* means that in the associated Morse complex the boundary operator should be trivial).

Hint Apply Smith and Morse inequalities.

The mirror partner of this statement is the following one: If f is a holomorphic function on a complex manifold then $\Re f$ is a perfect Morse function.

Corollary. In the above setting

$$\left(\int_{[X]}\varphi\right)\Big|_{\lambda=0} = \int_{[X]}\varphi|_{\lambda=0}$$

where in LHS the integration is equivariant and in RHS it is the usual one. Moreover the usual cohomology of X is "restriction" of the equivariant to $\lambda = 0$:

$$H^*(X) = H^*_T(X)/(\lambda_1, \dots, \lambda_r).$$

Proof The first statement follows from the commutative diagram

$$\begin{array}{cccc} X & \longrightarrow & X_T \\ \downarrow & & \downarrow \\ pt & \longrightarrow & BT \end{array}$$

In addition the first row gives a map $H_T^*(X) \to H^*(X)$. It descends to a map $H_T^*(X)/(\lambda_1, \ldots, \lambda_r) \to H^*(X)$. The latter is an isomorphism and this can be seen from Borel's localization theorem.

Exercise. Consider the standard action of T^r on \mathbb{C}^r defined by:

$$(e^{it_1}, \dots, e^{it_r})(x_1, \dots, x_r) = (e^{it_1}x_1, \dots, e^{it_r}x_r)$$

This action descends to an action of T^r on \mathbb{CP}^{r-1} . Then

$$H_{T^r}^*(\mathbb{CP}^{r-1}) = \mathbb{Z}[p, \lambda_1, \dots, \lambda_r]/(p - \lambda_1, \dots, p - \lambda_r),$$

where p is the equivariant first Chern class of the dual to the Hopf bundle. Prove also that for $\varphi \in H_T^*(\mathbb{CP}^{r-1})$ the equivariant integration on the fundamental cycle of \mathbb{CP}^{r-1} is given by:

$$\int_{[\mathbb{CP}^{r-1}]} \varphi(p,\lambda) = \frac{1}{2\pi i} \int_{\text{circle around}\lambda_1,\dots\lambda_r} \frac{\varphi(p,\lambda)dp}{(p-\lambda_1)\dots(p-\lambda_r)}.$$