
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 17

A. GIVENTAL

The last time we discussed the mirror conjecture for CP4 and quintics in CP4.
The formulas which we mentioned can be extended to the case of complete inter-
sections in toric varieties.

1. Definitions

The basic definition is as follows.

Definition 1. An n-dimensional compact complex manifold X is called toric if it
is equipped with an action of an n-dimensional complex torus Tn

C
s. t. there exists

a dense orbit isomorphic to Tn
C

.

Consider Cn with coordinates x1, x2, . . . , xn and the standard symplectic form
Ω = − 1

2i
(
∑n

j=1 dxj ∧dx̄j) on it. There is a natural action of the real n-dimensional
torus Tn on Cn, namely the diagonal action

diag(eit1 , . . . , eitn)(x1, . . . , xn) = (eit1x1, . . . , e
itnxn).

Recall that:

Definition 2. A vector field v on a symlpectic manifold (M, Ω) is called Hamil-
tonian if there exists a function H s. t.:

Ω + dH = 0.

H is called a Hamiltonian function of v. An action of a Lie group G on M is
called Hamiltonian if the vector fields corresponding to the elements of LieG are
Hamiltonian.

The above mentioned action of Tn on Cn is Hamiltonian and the associated
moment map J̃ : Cn → Rn

+ ⊂ Lie∗Tn is given by:

J̃(x1, . . . , xn) = (|x1|
2, . . . , |xn|

2).

(We fix coordinates on Lie∗T ).
Consider a subtorus T r ⊂ Tn. The moment map J for its action on Cn fits in

the following commutative diagram:

Cn −−−−→ Rn
+

where Rr
+ ⊂ Rr = Lie∗T r and the map M is determined by the projection Lie∗Tn →

Lie∗T r. A point ω ∈ ImM ⊂ Rr will be called generic if it is not situated on the
image under M of any r− 1-dimensional coordinate subspace in Rn. For such an ω
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consider J−1(ω) ⊂ Cn. It is invariant w.r.t. Tn and one can consider the quotient
Xn−r

J,ω
= J−1(ω)/T r . There is a natural action of Tn−r = Tn/T r on Xn−r

J,ω
.

Example. If T ⊂ Tn is the diagonal embedding eit 7→ diag(eit, . . . , eit), t ∈ R then

J(x1, . . . , xn) = |x1|
2 + · · ·+ |xn|

n,

ω is generic if ω 6= 0 and J−1(ω)/T 1 = CPn−1.

The form Ω is degenerated on J−1(ω) (along the orbits of T r) but on the quotient
Xn−r

J,ω it is symplectic. The action of Tn−r on Xn−r
J,ω is Hamiltonian w.r.t. this form.

So far Xn−r
J,ω is only a real manifold. It is not clear at all that it can be equipped

with a compatible complex structure. But let us consider the connected component
of {R

r\ images of r − 1-dimensional coordinate subspaces in R
n}, containing ω.

Denote it K and also let us denote

J−1(K) = C
n\ ∪ (Coordinate subspaces which miss K under J)

(here the inverse is only formal). Then J−1(K) is Tn
C

-invariant and the quotient

J−1(K)/T r
C

is isomorphic to Xn−r
J,ω (as real a manifold). Besides this obviously it

comes equipped with an action of Tn−r
C

.

2. Main Properties

In this section we will collect some properties of the the toric manifolds Xn−r
J,ω .

2.1 Compactness. The following theorem answers the question when Xn−r
J,ω is

compact.

Theorem 1. Xn−r
J,ω is compact iff one of the following 3 equivalent conditions holds:

1.) M−1(0) = 0
2.) M−1(ω) is compact
3.) J(Cn) fits into a half space in Rr

2.2 Smothness. In general Xn−r
J,ω

is a nonsingular orbifold (it is nonsingular
because ω does not lie on the images under M of the r − 1 dimensional coordinate
subspaces of Rn and therefore it is a regular value of J). Let the embedding of T r

in Tn be given by a matrix

M = (mij)i=1,...,r;j=1,...,n.

This is also the matrix of the projection M and that is why we use the same letter,
hoping that it will not cause any confusion. Consider all r-dimensional faces RI

of Rn
+, I ⊂ {1, . . . , n} |I| = r, whose image under M contains K. Each such face

determines a point on Xn−r
J,ω (or rather on its complex version) whose stabilizer in T r

C

has order | detM I|. Here M I is the minor associated with the subset I ⊂ {1, . . . , n}.
This implies the next theorem.

Theorem 2. Xn−r
J,ω is a manifold, i.e. not an orbifold iff | detM I | = 1 for all

minors M I , I ⊂ {1, . . . , n} |I| = r, s.t. M(RI
+) contains K.

2.3 Minimal representation of a toric manifold. Here we will show that ar-
bitrary Kähler toric manifold can be obtained by Hamiltonian reduction, described
in Sect. 1. Suppose Xm is such a manifold, on which acts the complex torus Tm

C
.

Averaging the Kähler form of X along the orbits of Tm
C

one gets an invariant Kähler
form on X.
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It is not difficult to prove that the action of Tm
C

is Hamiltonian w.r.t. it. Indeed
suppose that H is a Hamiltonian function of a vector field corresponding to an
element of LieTm

C
which is multivalued along a closed curve. The complement in X

of the open orbit of Tm
C

isomorphic to Tm
C

has a real codimension 2 and the curve
can be deformed to lie entirely on this orbit. If we restrict the Kähler form of X to
this orbit we will get a translationally invariant Kähler form on Tm

C
for wihich the

action of Tm
C

on itself is not Hamiltonian, which is impossible.
The image under the associated moment map of X is an m-dimensional convex

polyhidron (Atiyah, Bott). It can be embedded in R
n
+ for sufficiently large n and

for those n’s X can be obtained by Hamiltonian reduction from Cn. The minimal
possible n gives a minimal representation of X.

2.4 H2(Xn−r
J,ω , Z) and the Kähler cone of Xn−r

J,ω . Recall the construction of

Xn−r
J,ω = J−1(ω)/T r . To each character of T r one can associate a line bundle on

Xn−r
J,ω

glueing the trivial bundle over J−1(ω) using this character. The Chern classes
of these bundles can be identified with the the integer points in the standard lattice
in Rr = Lie∗T r. So H2(Xn−r

J,ω , Z) coincides with this lattice and

H2(Xn−r
J,ω , R) = Lie∗T r.

The Kähler cone of Xn−r
J,ω is precisely K.

2.5 c1(TX). It is given by the formula

c1(TX) = Me1 + · · ·+ Men,

where the RHS is viewed as an element in H2(Xn−r
J,ω , Z) (cf. the previous subsec-

tion).
Consider n − r coordinate vectors e∗j1 , . . . , e

∗

jn−r

in LieTn ∼= (Rn)∗, that form a

basis in LieTn/LieT r. They correspond to n − r vector fields ∂1, . . . , ∂n−r on the
toric variety Xn−r

J,ω . The wedge product ∂1∧· · ·∧∂n−r is a section of the anticanon-

ical bundle on Xn−r
J,ω . ∂1, . . . , ∂n−r are linearly independent on an open subset of

Xn−r
J,ω

and the the pull back of the divisor where the above section is 0 on J−1(ω)
is a union of hyperplanes. The homology class of this divisor can be identified with
the RHS of the formula for c1(TX).

2.6 The cohomology algebra H∗(Xn−r
J,ω , C). Here we will give a description of

H∗(Xn−r
J,ω , C) which is due to Kirwan. It is multiplicatively generated by H2(Xn−r

J,ω , C).
First we need some notation. Denote by Σ the union of all n−r-dimensional coordi-
nate subspaces in LieTn which are orthogonal complements to those r-dimensional
subspaces of Lie∗Tn whose image under M contains K. By C[u1, . . . un] will be
denoted the algebra of polynomial functions on the complecsification (LieTn)C of
LieTn and by C[p1, . . . , pr] the algebra of polynomials functions on (LieT r)C. De-
note by IΣ the ideal of Σ in C[u1, . . . un] and let I be the ideal in C[u1, . . . un, p1, . . . , pr]
generated by

uj −

r∑

i=1

pimij j = 1, . . . n.
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Then the formula of Kirwan says that

H∗(Xn−r
J,ω , C) =

C[u1, . . . un, p1, . . . , pr]

I + IΣ

There is also a more explicit description of IΣ. It coincide with the ideal J in
C[u1, . . .un] generated by all monomials uj1 , . . . , ujs

s.t. Mej1 , . . . , Mejs
is a max-

imal coordinate subset whose convex hull does not intersect K.
Finally one can see that the Kirwan formula respects the fact that we men-

tioned: that H∗(Xn−r
J,ω , C) is generated by H2(Xn−r

J,ω , C). In view of Subsect. 2.5

H∗(Xn−r
J,ω , C) should be a quotient of C[p1, . . . , pr] and that is the case because

using the relations from I we can express u variables in terms of p variables and
also the monomials generating J as polynomials in p.

The proofs of the facts in this Subsection will be given in Lect. 19.
2.7 Example. Consider two toric manifolds X1 and X2 which are projectvizations
of the bundles O⊕O(−1)⊕O(−1) and O⊕O⊕O(−2) respectivly over CP1. The
matrices of the minimal representation of these two toric varieties are

M1 =
1 1 0 −1 −1
0 0 1 1 1

and

M2 =
1 1 0 0 −2
0 0 1 1 1

where the first row comes from the induced action of T 1 on the basis CP1 and the
second from the diagonal action on the fiber. The projections of the coordinate
vectors in R5 = Lie∗T 5 on R2 and the cone K in the two cases are as follows:

(Here e1, . . . , e5 and f1, f2 are the coordinate vectors in R5 and R2 respec-
tively.),i.e.

Case 1: e1 7→ f1, e2 7→ f1, e3 7→ f2, e4 7→ f1 − f2, e5 7→ f1 − f2,

Case 2: e1 7→ f1, e2 7→ f1, e3 7→ f2, e4 7→ f1 − 2f2, e5 7→ f1 − 2f2.

The cone K is exactly as shown because when we forget the second row of M
this construction must give CP1. One easely computes that I1 is generated by
the equations u1 = u2 = p1, u3 = p2, u4 = u5 = p2 − p1 and I2 is generated by
u1 = u2 = p1, u3 = p2, u4 = u5 = p2 − 2p1. In both cases IΣ is generated by u1u2

and u3u4u5. Expressing the u variables in terms of the p variables using the above
equations and applying the Kirwan’s formula we get:

H∗(X1, C) = C[p1, p2]/(p2
1, p2(p2 − p1)

2

and
H∗(X1, C) = C[p1, p2]/(p2

1, p2(p2 − 2p1)
2.

One can prove that X1 and X2 are symplecticly equivalent but not isomorphic as
complex manifolds.
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