TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY
LECTURE 17

A. GIVENTAL

The last time we discussed the mirror conjecture for CP* and quintics in CP*.
The formulas which we mentioned can be extended to the case of complete inter-
sections in toric varieties.

1. DEFINITIONS
The basic definition is as follows.

Definition 1. An n-dimensional compact complex manifold X is called toric if it
is equipped with an action of an n-dimensional complex torus T¢ s. t. there exists
a dense orbit isomorphic to T¢'.

Consider C™ with coordinates x1, x9, ..., 2, and the standard symplectic form
Q= _%(Z?ﬂ dxzj Adz;) on it. There is a natural action of the real n-dimensional
torus 7™ on C", namely the diagonal action

diag(e™,...,e"")(z1,...,2,) = (e"'xq,... ¢
Recall that:

Definition 2. A vector field v on a symlpectic manifold (M, ) is called Hamil-
tonian if there exists a function H s. t.:

Q+dH =0.

H is called a Hamiltonian function of v. An action of a Lie group G on M is
called Hamiltonian if the vector fields corresponding to the elements of LieG are
Hamiltonian.

The above 1~nentioned action of T" on C™ is Hamiltonian and the associated
moment map J : C" — R’ C Lie*T" is given by:

J(x1,. . oxn) = (2. za]?).
(We fix coordinates on Lie*T).

Consider a subtorus 77 C T™. The moment map J for its action on C” fits in
the following commutative diagram:

C" —— RY}

where R, C R" = Lie"T" and the map M is determined by the projection Lie*T™ —
Lie*T". A point w € ImM C R” will be called generic if it is not situated on the
image under M of any r — 1-dimensional coordinate subspace in R™. For such an w
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consider J~(w) C C™. Tt is invariant w.r.t. T™ and one can consider the quotient
X" = J Y (w)/T". There is a natural action of 7"~" = T"/T" on X}_".

Example. If T C T" is the diagonal embedding e +— diag(e®, ..., e'), t € R then
J(:Ela .- 'axn) = |$1|2 +eeet |xn|na
w is generic if w # 0 and J~*(w)/T" = CP" 1.

The form (2 is degenerated on J~1(w) (along the orbits of T") but on the quotient
X" itissymplectic. The action of 7"~" on X7 " is Hamiltonian w.r.t. this form.

So far X7 " is only a real manifold. It is not clear at all that it can be equipped
with a compatible complex structure. But let us consider the connected component
of {R"\ images of r — 1-dimensional coordinate subspaces in R™}, containing w.
Denote it K and also let us denote

J71(K) = C™\ U (Coordinate subspaces which miss K under .J)

(here the inverse is only formal). Then J~!(K) is T¢-invariant and the quotient
JH(K)/T¢ is isomorphic to X" (as real a manifold). Besides this obviously it
comes equipped with an action of T2 ™".

2. MAIN PROPERTIES

In this section we will collect some properties of the the toric manifolds X7 )"

2.1 Compactness. The following theorem answers the question when X7 " is
compact.

Theorem 1. XZ;T is compact iff one of the following 3 equivalent conditions holds:
1.) M—1(0)=0
2.) M~Y(w) is compact
3.) J(C™) fits into a half space in R”

2.2 Smothness. In general X'/ " is a nonsingular orbifold (it is nonsingular
because w does not lie on the images under M of the » — 1 dimensional coordinate
subspaces of R™ and therefore it is a regular value of J). Let the embedding of 7"
in T™ be given by a matrix
M = (myj)i=1,...rij=1,...n-

This is also the matrix of the projection M and that is why we use the same letter,
hoping that it will not cause any confusion. Consider all r-dimensional faces RY
of R, I C {1,...,n} |I| = r, whose image under M contains K. Each such face
determines a point on X7 " (or rather on its complex version) whose stabilizer in 7¢

has order | det M!|. Here M7 is the minor associated with the subset I C {1,...,n}.
This implies the next theorem.

Theorem 2. X7 " is a manifold, i.e. not an orbifold iff | det M| =1 for all
minors M1, I C {1,....n} |I| =r, s.t. M(R.) contains K.

2.3 Minimal representation of a toric manifold. Here we will show that ar-
bitrary Kahler toric manifold can be obtained by Hamiltonian reduction, described
in Sect. 1. Suppose X™ is such a manifold, on which acts the complex torus T¢".
Averaging the Kéhler form of X along the orbits of T one gets an invariant Kéhler
form on X.
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It is not difficult to prove that the action of 7{** is Hamiltonian w.r.t. it. Indeed
suppose that H is a Hamiltonian function of a vector field corresponding to an
element of LieT#"* which is multivalued along a closed curve. The complement in X
of the open orbit of T{%* isomorphic to 7" has a real codimension 2 and the curve
can be deformed to lie entirely on this orbit. If we restrict the Kahler form of X to
this orbit we will get a translationally invariant Kahler form on 7" for wihich the
action of T¢" on itself is not Hamiltonian, which is impossible.

The image under the associated moment map of X is an m-dimensional convex
polyhidron (Atiyah, Bott). It can be embedded in R for sufficiently large n and
for those n’s X can be obtained by Hamiltonian reduction from C". The minimal
possible n gives a minimal representation of X.

2.4 H*(X)",Z) and the Kiéhler cone of X ". Recall the construction of
Xy, = “!(w)/T". To each character of T" one can associate a line bundle on
X"~" glueing the trivial bundle over J~!(w) using this character. The Chern classes

of these bundles can be identified with the the integer points in the standard lattice
in R” = Lie"T". So H*(X}_",Z) coincides with this lattice and

H*(X} " R) = Lie"T".
The Kihler cone of X )" is precisely K.

2.5 ¢1(Tx). It is given by the formula
a(Tx)=Me1 +---+ Me,,

where the RHS is viewed as an element in H*(X ", Z) (cf. the previous subsec-
tion).

Consider n — r coordinate vectors e} ,...,e; in LieT™ = (R")*, that form a
basis in LieT™/LieT". They correspond to n — r vector fields 01, ..., d,—, on the
toric variety X 7};’”. The wedge product 9y A- - <A 0y, is a section of the anticanon-
ical bundle on X7 ". O1,...,0,, are linearly independent on an open subset of
X, and the the pull back of the divisor where the above section is 0 on J “H(w)
is a union of hyperplanes. The homology class of this divisor can be identified with
the RHS of the formula for ¢;(Tx).

2.6 The cohomology algebra H*(X; ", C). Here we will give a description of
H*(X7 ", C) which is due to Kirwan. It is multiplicatively generated by H? (X575 0).
First we need some notation. Denote by ¥ the union of all n —r-dimensional coordi-
nate subspaces in LieT™ which are orthogonal complements to those r-dimensional
subspaces of Lie*T™ whose image under M contains K. By Clug,...u,] will be
denoted the algebra of polynomial functions on the complecsification (LieT™)¢ of
LieT™ and by C|[py,...,p,] the algebra of polynomials functions on (LieT")c. De-
note by Iy, the ideal of ¥ in Cluq, . . . u,,] and let I be the ideal in Cluy, . . . up, p1, - - -, Dy
generated by

T
uj—Zpimij ]:1,?7,
=1
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Then the formula of Kirwan says that
C[ula <o Un, P1y - apT]

HY (X5, C) =

I+ Is
There is also a more explicit description of Is. It coincide with the ideal J in
Clua, . . .uy] generated by all monomials u;j,, ..., u;, s.t. Mej,, ..., Me;, is a max-

imal coordinate subset whose convex hull does not intersect K.

Finally one can see that the Kirwan formula respects the fact that we men-
tioned: that H*(X7_",C) is generated by H*(X’",C). In view of Subsect. 2.5
H*(X7 ", C) should be a quotient of Clpy,...,p,] and that is the case because
using the relations from I we can express u variables in terms of p variables and
also the monomials generating J as polynomials in p.

The proofs of the facts in this Subsection will be given in Lect. 19.

2.7 Example. Consider two toric manifolds X; and Xs which are projectvizations
of the bundles O © O(—1) @ O(—1) and O & O & O(—2) respectivly over CP'. The
matrices of the minimal representation of these two toric varieties are

110 -1 -1

Mi=g 01 1 1

and
1 100 =2
Ma=g 911 1

where the first row comes from the induced action of T on the basis CP' and the
second from the diagonal action on the fiber. The projections of the coordinate
vectors in R® = Lie*T® on R? and the cone K in the two cases are as follows:

(Here e1,...,e5 and fi, fo are the coordinate vectors in R® and R? respec-
tively.),i.e.

Case 1: e1 = fi,ea— fi,e3— fa,ea— f1 — fa,e5 — f1 — fa,

Case 2: e1— fi,e2— fi,e3— fa,ea > f1 —2fz,e5 — f1 = 2fs.
The cone K is exactly as shown because when we forget the second row of M
this construction must give CP'. One easely computes that I; is generated by
the equations w1 = us = p1, ug = p2, ug = us = pz — p1 and Iy is generated by
Ul = Ug = P1, U3 = P2, Ug = U5 = p2 — 2p1. In both cases Iy is generated by ujus
and uguqus. Expressing the u variables in terms of the p variables using the above
equations and applying the Kirwan’s formula we get:

H*(X1,C) = Clp1, pa]/(pT, p2(p2 — p1)?
and

H*(X1,C) = Clp1, p2)/ (03, p2(p2 — 2p1)*.

One can prove that X; and X, are symplecticly equivalent but not isomorphic as
complex manifolds.



