

TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 17

A. GIVENTAL

The last time we discussed the mirror conjecture for $\mathbb{C}\mathbf{P}^4$ and quintics in $\mathbb{C}\mathbf{P}^4$. The formulas which we mentioned can be extended to the case of complete intersections in toric varieties.

1. DEFINITIONS

The basic definition is as follows.

Definition 1. An n -dimensional compact complex manifold X is called toric if it is equipped with an action of an n -dimensional complex torus $T_{\mathbb{C}}^n$ s. t. there exists a dense orbit isomorphic to $T_{\mathbb{C}}^n$.

Consider \mathbb{C}^n with coordinates x_1, x_2, \dots, x_n and the standard symplectic form $\Omega = -\frac{1}{2i}(\sum_{j=1}^n dx_j \wedge d\bar{x}_j)$ on it. There is a natural action of the real n -dimensional torus T^n on \mathbb{C}^n , namely the diagonal action

$$\text{diag}(e^{it_1}, \dots, e^{it_n})(x_1, \dots, x_n) = (e^{it_1}x_1, \dots, e^{it_n}x_n).$$

Recall that:

Definition 2. A vector field v on a symplectic manifold (M, Ω) is called Hamiltonian if there exists a function H s. t.:

$$\Omega + dH = 0.$$

H is called a Hamiltonian function of v . An action of a Lie group G on M is called Hamiltonian if the vector fields corresponding to the elements of $\text{Lie}G$ are Hamiltonian.

The above mentioned action of T^n on \mathbb{C}^n is Hamiltonian and the associated moment map $\tilde{J} : \mathbb{C}^n \rightarrow \mathbb{R}_+^n \subset \text{Lie}^*T^n$ is given by:

$$\tilde{J}(x_1, \dots, x_n) = (|x_1|^2, \dots, |x_n|^2).$$

(We fix coordinates on Lie^*T).

Consider a subtorus $T^r \subset T^n$. The moment map J for its action on \mathbb{C}^n fits in the following commutative diagram:

$$\mathbb{C}^n \longrightarrow \mathbb{R}_+^n$$

where $\mathbb{R}_+^r \subset \mathbb{R}^r = \text{Lie}^*T^r$ and the map M is determined by the projection $\text{Lie}^*T^n \rightarrow \text{Lie}^*T^r$. A point $\omega \in \text{Im}M \subset \mathbb{R}^r$ will be called generic if it is not situated on the image under M of any $r - 1$ -dimensional coordinate subspace in \mathbb{R}^n . For such an ω

Date: Oct. 21, 1997.

Notes taken by M. Yakimov.

consider $J^{-1}(\omega) \subset \mathbb{C}^n$. It is invariant w.r.t. T^n and one can consider the quotient $X_{J,\omega}^{n-r} = J^{-1}(\omega)/T^r$. There is a natural action of $T^{n-r} = T^n/T^r$ on $X_{J,\omega}^{n-r}$.

Example. If $T \subset T^n$ is the diagonal embedding $e^{it} \mapsto \text{diag}(e^{it}, \dots, e^{it})$, $t \in \mathbb{R}$ then

$$J(x_1, \dots, x_n) = |x_1|^2 + \dots + |x_n|^n,$$

ω is generic if $\omega \neq 0$ and $J^{-1}(\omega)/T^1 = \mathbb{CP}^{n-1}$.

The form Ω is degenerated on $J^{-1}(\omega)$ (along the orbits of T^r) but on the quotient $X_{J,\omega}^{n-r}$ it is symplectic. The action of T^{n-r} on $X_{J,\omega}^{n-r}$ is Hamiltonian w.r.t. this form.

So far $X_{J,\omega}^{n-r}$ is only a real manifold. It is not clear at all that it can be equipped with a compatible complex structure. But let us consider the connected component of $\{\mathbb{R}^r \setminus \text{images of } r-1\text{-dimensional coordinate subspaces in } \mathbb{R}^n\}$, containing ω . Denote it K and also let us denote

$$J^{-1}(K) = \mathbb{C}^n \setminus \cup (\text{Coordinate subspaces which miss } K \text{ under } J)$$

(here the inverse is only formal). Then $J^{-1}(K)$ is $T_{\mathbb{C}}^n$ -invariant and the quotient $J^{-1}(K)/T_{\mathbb{C}}^r$ is isomorphic to $X_{J,\omega}^{n-r}$ (as real a manifold). Besides this obviously it comes equipped with an action of $T_{\mathbb{C}}^{n-r}$.

2. MAIN PROPERTIES

In this section we will collect some properties of the the toric manifolds $X_{J,\omega}^{n-r}$.

2.1 Compactness. The following theorem answers the question when $X_{J,\omega}^{n-r}$ is compact.

Theorem 1. $X_{J,\omega}^{n-r}$ is compact iff one of the following 3 equivalent conditions holds:

- 1.) $M^{-1}(0) = 0$
- 2.) $M^{-1}(\omega)$ is compact
- 3.) $J(\mathbb{C}^n)$ fits into a half space in \mathbb{R}^r

2.2 Smoothness. In general $X_{J,\omega}^{n-r}$ is a nonsingular orbifold (it is nonsingular because ω does not lie on the images under M of the $r-1$ dimensional coordinate subspaces of \mathbb{R}^n and therefore it is a regular value of J). Let the embedding of T^r in T^n be given by a matrix

$$M = (m_{ij})_{i=1, \dots, r; j=1, \dots, n}.$$

This is also the matrix of the projection M and that is why we use the same letter, hoping that it will not cause any confusion. Consider all r -dimensional faces \mathbb{R}^I of \mathbb{R}_+^n , $I \subset \{1, \dots, n\}$ $|I| = r$, whose image under M contains K . Each such face determines a point on $X_{J,\omega}^{n-r}$ (or rather on its complex version) whose stabilizer in $T_{\mathbb{C}}^r$ has order $|\det M^I|$. Here M^I is the minor associated with the subset $I \subset \{1, \dots, n\}$. This implies the next theorem.

Theorem 2. $X_{J,\omega}^{n-r}$ is a manifold, i.e. not an orbifold iff $|\det M^I| = 1$ for all minors M^I , $I \subset \{1, \dots, n\}$ $|I| = r$, s.t. $M(\mathbb{R}_+^I)$ contains K .

2.3 Minimal representation of a toric manifold. Here we will show that arbitrary Kähler toric manifold can be obtained by Hamiltonian reduction, described in Sect. 1. Suppose X^m is such a manifold, on which acts the complex torus $T_{\mathbb{C}}^m$. Averaging the Kähler form of X along the orbits of $T_{\mathbb{C}}^m$ one gets an invariant Kähler form on X .

It is not difficult to prove that the action of $T_{\mathbb{C}}^m$ is Hamiltonian w.r.t. it. Indeed suppose that H is a Hamiltonian function of a vector field corresponding to an element of $\text{Lie}T_{\mathbb{C}}^m$ which is multivalued along a closed curve. The complement in X of the open orbit of $T_{\mathbb{C}}^m$ isomorphic to $T_{\mathbb{C}}^m$ has a real codimension 2 and the curve can be deformed to lie entirely on this orbit. If we restrict the Kähler form of X to this orbit we will get a translationally invariant Kähler form on $T_{\mathbb{C}}^m$ for which the action of $T_{\mathbb{C}}^m$ on itself is not Hamiltonian, which is impossible.

The image under the associated moment map of X is an m -dimensional convex polyhedron (Atiyah, Bott). It can be embedded in \mathbb{R}_+^n for sufficiently large n and for those n 's X can be obtained by Hamiltonian reduction from \mathbb{C}^n . The minimal possible n gives a *minimal representation* of X .

2.4 $H^2(X_{J,\omega}^{n-r}, \mathbb{Z})$ and the Kähler cone of $X_{J,\omega}^{n-r}$. Recall the construction of $X_{J,\omega}^{n-r} = J^{-1}(\omega)/T^r$. To each character of T^r one can associate a line bundle on $X_{J,\omega}^{n-r}$ glueing the trivial bundle over $J^{-1}(\omega)$ using this character. The Chern classes of these bundles can be identified with the integer points in the standard lattice in $\mathbb{R}^r = \text{Lie}^*T^r$. So $H^2(X_{J,\omega}^{n-r}, \mathbb{Z})$ coincides with this lattice and

$$H^2(X_{J,\omega}^{n-r}, \mathbb{R}) = \text{Lie}^*T^r.$$

The Kähler cone of $X_{J,\omega}^{n-r}$ is precisely K .

2.5 $c_1(T_X)$. It is given by the formula

$$c_1(T_X) = M e_1 + \cdots + M e_n,$$

where the RHS is viewed as an element in $H^2(X_{J,\omega}^{n-r}, \mathbb{Z})$ (cf. the previous subsection).

Consider $n-r$ coordinate vectors $e_{j_1}^*, \dots, e_{j_{n-r}}^*$ in $\text{Lie}T^n \cong (\mathbb{R}^n)^*$, that form a basis in $\text{Lie}T^n/\text{Lie}T^r$. They correspond to $n-r$ vector fields $\partial_1, \dots, \partial_{n-r}$ on the toric variety $X_{J,\omega}^{n-r}$. The wedge product $\partial_1 \wedge \cdots \wedge \partial_{n-r}$ is a section of the anticanonical bundle on $X_{J,\omega}^{n-r}$. $\partial_1, \dots, \partial_{n-r}$ are linearly independent on an open subset of $X_{J,\omega}^{n-r}$ and the pull back of the divisor where the above section is 0 on $J^{-1}(\omega)$ is a union of hyperplanes. The homology class of this divisor can be identified with the RHS of the formula for $c_1(T_X)$.

2.6 The cohomology algebra $H^*(X_{J,\omega}^{n-r}, \mathbb{C})$. Here we will give a description of $H^*(X_{J,\omega}^{n-r}, \mathbb{C})$ which is due to Kirwan. It is multiplicatively generated by $H^2(X_{J,\omega}^{n-r}, \mathbb{C})$. First we need some notation. Denote by Σ the union of all $n-r$ -dimensional coordinate subspaces in $\text{Lie}T^n$ which are orthogonal complements to those r -dimensional subspaces of Lie^*T^n whose image under M contains K . By $\mathbb{C}[u_1, \dots, u_n]$ will be denoted the algebra of polynomial functions on the complexification $(\text{Lie}T^n)_{\mathbb{C}}$ of $\text{Lie}T^n$ and by $\mathbb{C}[p_1, \dots, p_r]$ the algebra of polynomial functions on $(\text{Lie}T^r)_{\mathbb{C}}$. Denote by I_{Σ} the ideal of Σ in $\mathbb{C}[u_1, \dots, u_n]$ and let I be the ideal in $\mathbb{C}[u_1, \dots, u_n, p_1, \dots, p_r]$ generated by

$$u_j - \sum_{i=1}^r p_i m_{ij} \quad j = 1, \dots, n.$$

Then the formula of Kirwan says that

$$H^*(X_{J,\omega}^{n-r}, \mathbb{C}) = \frac{\mathbb{C}[u_1, \dots, u_n, p_1, \dots, p_r]}{I + I_\Sigma}$$

There is also a more explicit description of I_Σ . It coincide with the ideal \mathcal{J} in $\mathbb{C}[u_1, \dots, u_n]$ generated by all monomials u_{j_1}, \dots, u_{j_s} s.t. $Me_{j_1}, \dots, Me_{j_s}$ is a maximal coordinate subset whose convex hull does not intersect K .

Finally one can see that the Kirwan formula respects the fact that we mentioned: that $H^*(X_{J,\omega}^{n-r}, \mathbb{C})$ is generated by $H^2(X_{J,\omega}^{n-r}, \mathbb{C})$. In view of Subsect. 2.5 $H^*(X_{J,\omega}^{n-r}, \mathbb{C})$ should be a quotient of $\mathbb{C}[p_1, \dots, p_r]$ and that is the case because using the relations from I we can express u variables in terms of p variables and also the monomials generating \mathcal{J} as polynomials in p .

The proofs of the facts in this Subsection will be given in Lect. 19.

2.7 Example. Consider two toric manifolds X_1 and X_2 which are projectvizations of the bundles $\mathcal{O} \oplus \mathcal{O}(-1) \oplus \mathcal{O}(-1)$ and $\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(-2)$ respectivly over \mathbb{CP}^1 . The matrices of the minimal representation of these two toric varieties are

$$M_1 = \begin{matrix} 1 & 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{matrix}$$

and

$$M_2 = \begin{matrix} 1 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 1 & 1 \end{matrix}$$

where the first row comes from the induced action of T^1 on the basis \mathbb{CP}^1 and the second from the diagonal action on the fiber. The projections of the coordinate vectors in $\mathbb{R}^5 = \text{Lie}^*T^5$ on \mathbb{R}^2 and the cone K in the two cases are as follows:

(Here e_1, \dots, e_5 and f_1, f_2 are the coordinate vectors in \mathbb{R}^5 and \mathbb{R}^2 respectively.),i.e.

Case 1: $e_1 \mapsto f_1, e_2 \mapsto f_1, e_3 \mapsto f_2, e_4 \mapsto f_1 - f_2, e_5 \mapsto f_1 - f_2,$

Case 2: $e_1 \mapsto f_1, e_2 \mapsto f_1, e_3 \mapsto f_2, e_4 \mapsto f_1 - 2f_2, e_5 \mapsto f_1 - 2f_2.$

The cone K is exactly as shown because when we forget the second row of M this construction must give \mathbb{CP}^1 . One easely computes that I_1 is generated by the equations $u_1 = u_2 = p_1, u_3 = p_2, u_4 = u_5 = p_2 - p_1$ and I_2 is generated by $u_1 = u_2 = p_1, u_3 = p_2, u_4 = u_5 = p_2 - 2p_1$. In both cases I_Σ is generated by u_1u_2 and $u_3u_4u_5$. Expressing the u variables in terms of the p variables using the above equations and applying the Kirwan's formula we get:

$$H^*(X_1, \mathbb{C}) = \mathbb{C}[p_1, p_2]/(p_1^2, p_2(p_2 - p_1)^2)$$

and

$$H^*(X_2, \mathbb{C}) = \mathbb{C}[p_1, p_2]/(p_1^2, p_2(p_2 - 2p_1)^2).$$

One can prove that X_1 and X_2 are symplectically equivalent but not isomorphic as complex manifolds.