
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURES 15-16

A. GIVENTAL

Inspired by last lecture’s dictionary between quantum cohomology and singular-
ity theory, we may be tempted to ask if there is a Frobenius structure on the space
Λ of miniversal deformations of our function f . This question was (essentially) first
asked by K. Saito and answered by M. Saito:

Theorem 1. There exists a volume form ωλ = v(z, λ)dz1 ∧ · · · ∧ dzm (called the
“primitive form”) such that the corresponding residue pairing

< φ, ψ >λ=
1

(2πi)m

∮

φ(z)ψ(z)
∂fλ

∂z1

· · · ∂fλ

∂zm

ωλ

induces a flat metric on Λ.

The modern formulation of this is that the residue pairing <,>λ defined by the
primitive form and the product induced by the identification TλΛ = Qλ form a
Frobenius structure on Λ. This then begs the question - what is the counterpart
of the connection1 ∇~ = ~d−

∑

φα ◦ dtα from quantum cohomology in singularity
theory?

1. Oscillating Integrals

Let f : (Cm, 0) → (C, 0) be the germ of a holomorphic function, λ be a point in
Λ, fλ be the corresponding miniversal deformation, and ωλ be a primitive form as
supplied by Saito’s theorem. Now consider the integral

I(λ) :=

∫

Γ

efλ(z)/~ωλ.

Before we can make sense of this we need to define Γ, a real m-dimensional region
in Cm. Let z ∈ Cm be a non-degenerate critical point of fλ and let w ∈ C be the
corresponding critical value. Now choose a path γ in C which starts at w, which
avoids all critical values thereafter, and whose real part approaches −∞. Over γ
and near w, the fibers of fλ form a one-(real-)dimensional family of degenerating
complex (m− 1)-spheres (since z is a non-degenerate critical point) and inside this
is a family of real (m− 1)-spheres degenerating to z. The total space of this family
is then m-dimensional and is what we call Γ. Note that although Γ is not compact,
the integral I(λ) converges since the integrand decreases rapidly enough at infinity.
Of course the value of the integral depends on the choices of γ and Γ, but only
through the homology class of Γ. This will come up again later.
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Notes taken by Jim Borger.
1
∇~ is obviously not really a connection but a differential operator which is ~ times a

connection.
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This brings us to the counterpart of ∇~ in singularity theory. Let L = Spec(TH)
(where the algebra structure on TH is that given by the Frobenius structure). The
algebra map S·(TH) → TH realizes L as a Lagrangian subvariety of the cotangent
bundle T ∗H . Now we can think of a miniversal deformation fλ as a function on
the cotangent space at λ. Under this identification, the critical points of fλ are the
points of the fiber Lλ of L over λ.

Now fix λ ∈ Λ, let {φα} be a basis of Qλ = TλH , and let {Γβ} be the cycles
around the points of Lλ constructed above2. Then define the functions

Sαβ(λ, x) =

∫

Γβ

efλ(z)/~φα(x, λ)ωλ

on Lλ, i.e. in Qλ. A consequence of Saito’s work (but not of the theorem quoted
above) is that the Sαβ form a fundamental solution set to the differential equation
~∂iS = φi◦S (where the ∂i denote differentiation with respect to the flat coordinates
on Λ guaranteed by the theorem quoted above).3 In particular, the “first row” of
(Sαβ) is

I =

∫

Γβ

efλ(z)/~ωλ.

Exercise. Show that
∫ 1

−1

(α+ βx + · · · )e−ax2−bx3−···dx

is asymptotically
√

~

2πa
(α+ O(~)).

Theorem 2. (Dubrovin) Suppose H is a manifold with conformal Frobenius struc-
ture and λ is a semi-simple point of H. Let u1, ..., uN be the branches near λ of the
critical value function and let U be diag(u1, ..., uN). Then in a neighborhood of λ,
the fundamental solution S of ∇~S = 0 can be written in the form

S = ψ(1 + ~R + ~2R(2) + ~3R(3) + · · · )eU/~.

where ψ,R, and R(∗) are n × n matrices whose entries are germs at λ of sections
of the Frobenius algebra TH .

Remark. The explicit form given by the theorem is visibly analogous to the expan-
sion

Sαβ :=

∫

Γm
β

efλ(z)/~φdz = ~m/2efλ(0)/~
φ(a)

∆(a)1/2
(1 + o(1)).

in singularity theory.

The proof of this theorem proceeds by finding a list differential equations the
unknown matrices must satisfy and then showing certain integrability conditions
are satisfied. We will now analyze some of these differential equations.

Restricting to a neighborhood of the semi-simple point λ, we can assume that
the Frobenius structure on the entire manifold is semi-simple, i.e. the algebra TH

is the product of n copies of the function algebra of H . Said another way, the
Lagrangian submanifold L of T ∗H is the disjoint union of n copies of h. Since

2It appears that these should be chosen in a coherent manner, so this can only be done

generically and locally
3It is easy to see using the stationary phase approximation that the S are solutions to the first

approximation in ~.
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the pairing <,> is non-degenerate, we can normalize the characteristic functions
of the connected components to produce a list of functions v1, ..., vn (on L) which
is orthonormal with respect to <,>, i.e. < vi, vj >= δij . In particular, the vi form
a simultaneous eigenbasis for the multiplication maps v◦.

Now, the usual presentation ∇~ = ~d+A1 is in <,>-flat coordinates, but it will
be more useful to work with coordinates in which A1 is diagonalizable, so let ψ be
the transition matrix from the <,>-flat basis of TH to the orthonormal basis of v’s.
Then ψ−1A1ψ = −dU where U is the diagonal matrix whose entries are u1, ..., un,
the branches of the potential function restricted to L. The u’s form a coordinate
system and are what Dubrovin calls the “canonical coordinates”.

We can now deduce some of the necessary conditions alluded to above by substi-
tuting the explicit representation given in the theorem into the differential equation
~dS = A ∧ S. Considering the ~0 terms, we see immediately that A ∧ ψ = ψdU .
From the ~1 terms, we get

dψ + ψR · dU = A ∧ ψR = ψ · dU · R so dψ = ψ[R, dU ].

This differential equation is under-determined, but we can change this. Let D
be the differential operator d + ψ(dψ) and let E be the Euler field given by the
conformal structure. Then D2 = 0 and LER = −R (since the degree of R is -1).
These two are the additional constraints which make the system well-determined,
and they can put into a familiar form.

Define V ∈ soN by Vij = (ui − uj)Rij and

Hi =
1

2

∑

i 6=j

VijVji

ui − uj
.

Theorem 3. (Dubrovin) For all i, j, m, n, {Hi, Hj} = 0 and ∂
∂ui

Vmn = {Hi, Vmn}

Now we briefly return to quantum cohomology.

Conjecture 1. (Givental) Let X be a compact Kähler manifold and write H for
H∗(X). Define the function G : H∗(X) → C by

G(t) =
∞

∑

n=0

∑

d∈Λ

(t, ..., t)1,n,d.

If the Frobenius structure on H is generically semi-simple (for example flag mani-
folds), then

dG =
1

48

∑

i=1

N
d∆i

∆i
+

1

2

N
∑

i=1

Riidui

at semi-simple points. Here the ∆i are the Hessians at the critical points defined in
lecture 14, and the Rii are the diagonal entries of the matrix R given by Dubrovin’s
theorem.

Exercise. Check this conjecture for CP1.

2. The Mirror Conjecture

The mirror conjecture loosely says that the Gromov-Witten invariants of a man-
ifold X should correspond to oscillating integrals of singularity theory type on
another manifold Y , called the “mirror partner” of X.

Examples.
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(1) X = CPm−1. We know from lecture 8 that

QH∗(X) = Q[p, q]/(p◦m − q)

and from lecture 10 that the differential operator (hq d
dq )m−q annihilates ~J ,

the “first row” of the matrix S of fundamental solutions to the differential
operator ∇~. Now for a complex variable q, define the integral

I(q) =

∫

Γ⊂(z1···zm=q)

e(z1+···+zm)/~
dz1 ∧ · · · ∧ dzm

dq
.

As described above, Γ is an appropriately chosen non-compact (m−1)−cycle
Γ in the subvariety z1 · · ·zm = q of Cm. Each possible Γ is based at some
critical point of (z1 + · · · + zm) restricted to the subvariety z1 · · ·zm =
q, and it is easy enough to find these using Lagrange multipliers. (Let
log(z1)+ · · ·+ log(zm)− log(q) be the constraint function and p denote the
multiplier. Then 1 = p/zi, so pm = q.) It turns out that I satisfies the

same differential equation that ~J does. (Exercise.) In fact, for each of the
m critical points, we get a Γ, hence an I, and this list of functions I makes

up the entries of ~J .
(2) X is a quintic threefold in CP

4. In lecture 9, we had the notation

K(q) = 5 +

∞
∑

n=0

nd
d3qd

1 − qd
,

where the (nd) are determined by some differential equations, one of which
is

D4I = 5q(5D + 1)(5D + 2)(5D + 3)(5D+ 4)I,

where D = q d
dq . The classical mirror conjecture from physics states that

these (nd) are in fact the same (nd) determined by Gromov-Witten theory
(see the very end of lecture 8).

Now let Xλ be the family of quintic threefolds in CP4 defined by the
homogeneous equation X1 · · ·X5 = λ1/5(X5

1 + · · ·X5
5 ). (Assume λ varies

over a region where we can choose a branch of the fifth root function.)
Since Xλ is a projective hypersurface, the Lefschetz theorems tell us the
off-diagonal entries on the Hodge diamond. Since it’s Calabi-Yau, we know
h3,0 = h0,3 = 1. Finally, h2,1 = h1,2 = 126 − 25 = 101, the number
of quintic coefficients minus the dimension of projective transformations.
Therefore the complete Hodge diamond is

1 0 0 1
0 101 1 0
0 1 101 0
1 0 0 1

.

Now G = (Z/5)4 acts on Xλ by multiplication by roots of unity. There
is a Calabi-Yau desingularization Yλ of Xλ/G with Hodge diamond

1 0 0 1
0 1 101 0
0 101 1 0
1 0 0 1

.
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If we let ω3,0
λ be the volume form on Yλ, then each solution I to the above

differential equation satisfies

I(λ) =

∫

∂3

ω3,0
λ

for appropriate choice of a 3-cycle ∂3.
This brings us to a more general version of the mirror conjecture: Let

Xm be a compact Kähler manifold. Then there should be a family Y m
λ

of manifolds with holomorphic volume forms ωm,0
λ and global functions fλ

such that the entries of the ~J from Gromov-Witten theory are the functions

I(λ) =

∫

Γ⊂Yλ

efλ(z)/~ωm,0
λ

given by the various choices of Γ.
In the case X is Calabi-Yau, we expect in addition that the Yλ are

compact Calabi-Yau manifolds. Then ωm,0
λ is just a multiple of the volume

form and fλ is constant, so (up to multiplication by constants) the volume
form and function don’t give us any additional information. For those
interested only in Calabi-Yau manifolds, the only important information is
then the family of manifolds itself, and this why the extra data of the volume
form and complex-valued function, which are necessary in the general case,
were not seen by physicists.

(3) Now what about functoriality of the mirror process? Especially, in our
motivating example of quintic threefolds, how does the mirror relate to
the mirror of the ambient projective space? The mirror of CP

4 is the
hypersurface of C5 defined by the equation z1 · · · z5 = q with function
f(z) = z1 + · · · + z5 and volume form ω = dz1∧···∧dz5

dq
. We can rewrite

I (for CP4) by first integrating along the fibers of f :

I =

∫ −∞

c=crit.val.
ec/~dc

∫

Yq,f(z)=c

dz1 ∧ · · · ∧ dz5
d(z1 · · ·z5) ∧ d(z1 + · · ·+ z5)

.

If we now denote the inner integral as IX(q), then it satisfies the differential
equation

D4IX = 5q(5D + 1)(5D + 2)(5D + 3)(5D + 4)IX

so we might hope that it’s closely related to I(λ) of the previous example.
We can rewrite the defining equation of Xλ as

λ1/5x5
1

x1 · · ·x5
+ · · ·+

λ1/5x5
5

x1 · · ·x5
= 1.

So setting zi = λ1/5x5
i /x1 · · ·x5, we see that an affine open piece of Xλ

is described as a subvariety of C5 by the equations z1 + · · · + z5 = 1 and
z1 · · ·z5 = λ. Then

dz1 ∧ · · · ∧ dz5
d(z1 · · ·z5) ∧ d(z1 + · · ·+ z5)

.

is a holomorphic volume form on Xλ, and it descends to volume form on
Xλ/G which can then be pulled back to a volume form on Yλ. It therefore

agrees with ω3,0
λ up to a constant multiple, and this implies that I and IX

also agree up to a constant multiple.
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