
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 14

A. GIVENTAL

1. Frobenius structures

Let us now go back to studying quantum cohomology in general. We shall
introduce an axiomatic approach, due to Dubrovin, to studying Gromov-Witten
invariants by way of Frobenius structures, which will provide a geometric way of
thinking about the WDVV equation, allow us to explore analogies between GW
theory and singularity theory, leading to the ideas of mirror symmetry.

Definition 1. A Frobenius algebra is a commutative associative algebra A with
unit 1 equipped with a linear functional α : A→ C such that the pairing
< a, b >:= α(ab) is nondegenerate.

Example. (not used in the sequel) The representation ring of a finite group.

Definition 2. AFrobenius structure on a manifold H is a Frobenius structure on
each tangent space TtH such that

(1) The metric <,> is flat (∇2 = 0)
(2) The vector field 1 is covariantly constant (∇1 = 0)
(3) The system of PDE’s

~∇ws = w ◦ s

is integrable ∀~ 6= 0, where w and s are vector fields and ◦ denotes the
Frobenius multiplication. In ∇-flat coordinates {tα}, this means that the
family of connections ∇~ := ~d − Aα(t)dtα∧ is flat for all ~ 6= 0, where
Aα = ∂α◦.

A Frobenius structure is called conformal of dimension D if H is equipped with a
vector field E(uler) such that 1, ◦ and <,> are eigenvectors of the Lie derivative
operator LE with eigenvalues -1, 1 and 2 −D, respectively.

Example. For X compact Kähler, let H = H∗(X)/2πiH2(X,Z). Then H is a
Frobenius manifold of conformal dimension D = dimC X. Here ◦ is the quantum
cup product, <,> is the Poincaré pairing, α - integration over the fundamental
cycle, 1 the fundamental class, and

E = t0
∂

∂t0
+

r
∑

i=1

ci
∂

∂ti
+

∑

α:deg tα<0

(deg tα)tα
∂

∂tα
,

where t0 is the coordinate on H0, ti on H2, tα on H>2, ci the components of
c1(TX), and deg tα = 1 − 1

2 deg φα.
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There exists a clasification of semi-simple Frobenius structures due to Dubrovin.
Let us now examine analogies between GW theory and singularity theory in the

framework of Frobenius structures.

(0) In GW theory, the basic object is an almost Kähler manifold X; in singu-
larity theory it is f : Cm

,0 → C,0 – a germ of a holomorphic function at an
isolated critical point. Normal forms of simple singularities correspond to
simple Lie algebras of types A, D and E:

Aµ ↔ xµ+1
1 +

m
∑

i=2

x2
i

Dµ ↔ x2y − yµ−1

E6 ↔ x3 + y4

E7 ↔ x3 + xy3

E8 ↔ x3 + y5

(1) The analogue of H∗(X) in singularity theory is the local algebra of a critical

point:

Q = C[[z]]/(
∂f

∂z1
, . . . ,

∂f

∂zm

)

Example. For singularity of type A2 with m = 1, f(x) = x3, and Q =
C[[x]]/(x2) =< 1, x >, x2 = 0.

(2) Corresponding to the Poincaré pairing on H∗, in singularity theory one has
the residue pairing:

〈φ, ψ〉 =
1

(2πi)m

∮

˛

˛

˛

∂f
∂zj

˛

˛

˛
=ǫj

φ(z)ψ(z)dz1 · · ·dzm

∂f
∂z1

· · · ∂f
∂zm

Example. For A2, the pairing is

〈φ, ψ〉 =
1

2πi

∮

φ(x)ψ(x)dx

3x2

so 〈1, 1〉 = 〈x, x〉 = 0, 〈1, x〉 6= 0.

(3) The Frobenius manifold in GW theory is H = H∗(X)/2πiH2(X,Z); in
singularity theory it is the base of miniversal deformation Λ: in the space
of germs of holomorhic functions, we pick a transverse slice to the orbit of
f under local diffeomorphisms; Λ is the paramater space for this slice. In
other words, a miniversal deformation of f is

f(z, λ) = f(z) + λ1φ1(z) + · · ·+ λµφµ(z),

where {φi} = { ∂f
∂λi

∣

∣

∣

λ=0
} is a basis of the local algebra Q. Thus dimΛ =

dimQ.

Example. For A2, f(z, λ) = f(z) + λ1x+ λ0

(4) The singularity-theory analogue of quantum cup product ◦ : TtH×TtH →
TtH is the multiplication in the algebra of functions on the critical set of
fλ(z) = f(z, λ): Qλ = C[z]/(∂fλ

∂z
). We map TλΛ to Qλ by ∂

∂λi
7→ ∂fλ

∂λi
. This

turns out to be an isomorphism.
2



Example. In A2 case, ∂
∂λ0

7→ 1, ∂
∂λ1

7→ x, and so ∂
∂λ1

◦ ∂
∂λ1

= −λ1

3
∂

∂λ0

(5) Instead of Poincaré pairing on TtH , in singularity theory we have the
residue pairing on TλΛ ∼= Qλ:

〈φ, ψ〉λ =
1

(2πi)m

∮

φ(z)ψ(z)dz1 · · ·dzm

∂fλ

∂z1

· · · ∂fλ

∂zm

=
∑

z∈Cr(fλ)

φ(z)ψ(z)

det
(

∂2fλ

∂zi∂zj
(z)

)

Now, let’s turn around and look for GW analogues of some well-known concepts in
singularity theory:

(6) In singularity theory, a very important role is played by the Hessian: for
those values of λ for which fλ has only nondegenerate critical points we can
define ∆ : Cr(fλ) → C to be

∆(z) = det

(

∂2fλ

∂zi∂zj

(z)

)

On the GW side, let t ∈ H be such that the Frobenius algebra (TtH, ◦t) is
semisimple. Then we can define ∆ : Specm(TtH) → C by the formula

〈φ, ψ〉t =
∑

p∈Specm(TtH)

φ(p)ψ(p)

∆(p)

(compare with the formula in 5)
(7) A miniversal deformation f(z, λ) generates an immersed Lagrangian sub-

manifold L ⊂ T ∗Λ as follows. Let Σ = {(z, λ)| ∂f
∂z

= 0} be the fibre-critical
set of f (Cm × Λ fibers over Λ). Then the mapping Σ → T ∗Λ given by

(z, λ) 7→ (λ, ∂f
∂λ

) gives our Lagrangian immersion.

Example. For A2,
∂f(x,λ)

∂x
= 3x2 + λ1,

∂f
∂λ1

= x, ∂f
∂λ0

= 1, hence L ⊂ T ∗Λ is
given by equations

3p2 + 1 = 0

p2 = 1

In GW theory, the corresponding Lagrangian submanifold is defined to
be T ∗H ⊃ L =

⋃

t Specm(TtH). Another description of L is given as
follows: let A =

∑

α Aα(t)dtα be the connection 1-form as in the definition
of Frobenius structure. We have dA = A ∧A = 0. Then

det(A−
∑

α

pαdtα) = 0

gives a system of equations defining L. The above is a polynomial in
dt1, . . . , dtN , N = dimH∗(X); the condition A ∧ A = 0 guarantees that
L exists, while dA = 0 implies that it is Lagrangian (at least at semisimple
points). However, L may be singular.

Yet another description of L can be given in terms of the large quantum
cohomology ring:

C[L] =

C

[

t1, . . . , tN
p1, . . . , pN

]

(rel’s betw. p’s and t’s)
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