
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 13

A. GIVENTAL

1. Quantum cohomology of flag manifolds (cont’d)

1.1. Notation. Let us finish up calculating relations in the quantum cohomology
ring of a flag manifold X = G/B, where G is a semisimple Lie group, B a Borel
subgroup.

Let g′ be the Langlands dual to g = Lie(G). We fix a Cartan decomposition of
g′:

g′ = n− ⊕ h ⊕ n+

basis (e-vectors of adh) {Yα} {pi} {Xα}
roots (e-values) −α 0 α

Here α ∈ h∗ runs over all positive roots. We will denote by {αi} the set of simple
roots; they form a basis of h∗ dual to {pi}. We set b− = n− ⊕ h, b+ = h ⊕ n+.

Let Z be the center of Ug′ , the universal enveloping algebra, W the Weyl group.

1.2. Representation of Z. Recall that we were about to construct a represen-
tation of Ug′ in differential operators on the maximal torus T of G which, when
restricted to Z, will yield, after some modification, a set of commuting differential
operators satisfying Kim’s lemma. Their symbols will then give us the relations in
the quantum cohomology of X. These operators are the integrals of the quantum
Toda system.

The representation is constructed as follows. First, we pick a 1-dimensional
representation L+ of Un+

:

Xα 7→

{

ci if α = αi simple
0 otherwise

Next, we factorize Ug′ = Ub−
Un+

, i.e. we represent each element of Ug′ as a sum

of monomials of the form ~Y
~k~p

~l ~X ~m (it is always possible to order the monomials in
this way by using the relation xy − yx = [x, y]). Then we project thus factorised
Ug′ onto Ub−

along the kernel of L+, and finally, we map Ub−
to the differential

operators on the torus by:

Yα 7→

{

qi if α = αi simple
0 otherwise

pi 7→ qi
∂

∂qi

Notice that this map is consistent with the commutation relations in Ub−
and

Diff(T ), and hence gives a well-defined algebra homomorphism. Therefore, the
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composition

Z ⊂ Ug′ = Ub−
Un+

ker L+
−→ Ub−

−→ Diff(T )

yields the sought-after representation of Z. It sends the generators ∆1, . . .∆r to
commuting differential operators D1, . . .Dr.

1.3. Properties of Di’s.

1.3.1. Polynomiality. It is clear from our construction that the resulting operators
will be polynomial in q (no negative powers of q will occur).

1.3.2. W -invariance. Unfortunately, our operators will not, in general, have a W -
invariant constant coefficient part. For instance, the Casimir element

∆ =
∑

i,j

Qijpipj +
∑

α>0

yαxα + xαyα

< xα, yα >
∈ Z

will be mapped to an operator of the form

D =
∑

i,j

Qij(qi

∂

∂qi

)(qj

∂

∂qj

) +
∑

k

λkqk +
∑

k

µkqk

∂

∂qk

because we have to rewrite YαXα +XαYα = 2YαXα + [Xα, Yα], where [Xα, Yα] ∈ h

So let us investigate the W -invariance properties of our operators Di. By the

Harish-Chandra isomorphism theorem, each ∆i =
∑ ~Y

~k~p
~l ~X ~m is uniquely deter-

mined by the part ~k = ~m = 0 (the Cartan part). In particular, commutativity of
∆ with h implies that

∑

(kαi
(−αi) + mαi

αi) = 0 for each monomial involving only
simple roots (the others don’t matter as they are annihilated in our representation),
hence kαi

= mαi
as {αi} form a basis of h∗. So we see that the operators in the

image of Z will have constant coefficients if and only if we choose L+ = 0, since
the surviving monomials will have as many X’s as Y ’s.
Verma modules. For every λ ∈ h∗ there exists a Ug′-module Vλ, called Verma

module, characterized by the following property: ∃v ∈ Vλ such that

• n+v = 0
• hv = (λ + ρ)(h)v, ∀h ∈ h, where ρ = 1

2

∑

α<0 α is the Weyl vector
• Vλ is freely generated by the action of Un−

on v

It is easy to see that Vλ is what is called infinitesimally irreducible, i.e each ∆ ∈ Z
acts on it by a scalar. It follows because, by definition of Vλ and the remark
ending the preceding paragraph, the action of ∆ is determined by its Cartan part
∆Cartan(pi), a polynomial in pi. Hence, v is an eigenvector of ∆ with eigenvalue
∆Cartan((λ+ρ)(pi)). But since ∆ ∈ Z, it acts on all of Vλ in this way, by definition
of Vλ.

The nontrivial fact about Verma modules we shall make use of is the following:
if λ is a dominant weight (i.e. lies on a lattice point in a Weyl chamber), then Vwλ

is a submodule of Vλ ∀w ∈ W (for generic λ, Vλ is irreducible). It follows that,
for λ dominant, ∆ acts by the same scalar on all Vwλ, i.e.

∆Cartan(wλ + ρ) = ∆Cartan(λ + ρ) ∀w ∈ W

Now, as we have established, the constant-coefficient part of the operator D corre-
sponding to ∆ ∈ Z is ∆Cartan(−qi

∂
∂qi

). Therefore,

D(q
∂

∂q
, 0) exp(µ(ln q)) = ∆Cartan(µ) exp(µ(ln q)) ∀µ ∈ h∗,
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where µ(ln q) =
∑

µ(pi) ln qi. From this we conclude that the operator
exp(−ρ(ln q))D exp(ρ(ln q)) will have a W -invariant constant-coefficient part. For
instance, the Casimir element will go to the Hamiltonian of the Toda lattice under
this correspondence.
References:
B. Kostant (Invent. 1928)
Semenov-Tian-Shansky (Encyclopedia of Math. Sciences)

1.4. Open questions related to QH∗(G/B). We have just calculated a presen-
tation of QH∗(G/B) in terms of generators and relations; as we learned in an earlier
lecture, it is not enough. Here is a list of things we don’t know about the quantum
cohomology of flag manifolds:

1.4.1. All structure constants in a linear basis, except in the following special
cases:

SL: Known due to (S. Gelfand, S. Fomin and A. Postnikov).
SOodd: Conjecture by Maeno.

In particular, we can’t apply Kontsevich-Manin to calculate the large QH∗.

1.4.2. Even for SL - what is the meaning of the representation-theoretic formulas
(Toda lattices) and what is the ”actual” relation between QH∗(G/B) and the
representation theory of g′?

1.4.3. Partial flag manifolds. These are homogeneous spaces of the type G/P where
P is a parabolic subgroup.

Example. G = SLN . A partial flag is a flag of the form

{0} ⊂ C
n0 ⊂ C

n0+n1 ⊂ · · · ⊂ C
n0+n1+···nk = C

N ,

where ni are fixed positive integers adding up to N . The manifold of such flags is
a homogeneous space X = G/P where P is the subgroup of block-upper-triangular
matrices with blocks of size ni. Complete flags correspond to all ni = 1.

The (ordinary) cohomology ring of X is computed in a similar fashion to that
of a complete flag manifold. We have k + 1 tautological C

ni-bundles over X whose
Chern polynomials

pni
(x) = xni + c

(i)
1 xni−1 + · · ·+ c(i)

ni

satisfy the relation

PN(x) =
∏

i

pni
= xN

by virtue of the sum of the tautological bundles being trivial of rank N . Then

H∗(X) is multiplicatively generated by the Chern classes c
(i)
j subject to the above

relation.
In the quantum deformation of H∗(X) there are k additional generators q1, . . . , qk,

and the relation is given by PN(x, q) = xN , where PN is determined by

pn0
+

q1

pn1
+

q2

. . . +
qk

pnk

=
PN(x, q)

QN−n0
(x, q)
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In particular, the case k = 1 corresponds to Grassmanians, for which the relation
is

pn0
pn1

+ q1

pn1

=
xn0+n1

pn1

,

as we computed before.

References:

Astashkevich-Sadov, B. Kim (heuristic)
Ciocan-Fontaine, B. Kim (proof)
D. Peterson (QH∗(G/P ) in geometrical terms of Toda lattices)

1.4.4. Flag manifolds associated to loop groups. If G is a Lie group, its loop group

is LG = Maps(S1 → G), where by ”maps” one usually means smooth, analytic or
polynomial ones. In what follows we shall restrict ourselves to the special case of
G = SLn.

Let us consider the vector space H = H− ⊕ H+ of Laurent polynomials in one
variable z, where H− =< . . . , z−2, z−1 >, H+ =< 1, z, z2, . . . >. The semi-infinite

Grassmanian G 1

2
∞

consists of subspaces of H spanned by Laurent polynomials

whose degree is bounded below:

G 1
2
∞

= {W ⊂ H |zkH+ ⊂ W ⊂ z−kH+ for some k}

We shall be interested in flags of the form

· · · ⊃ W−2 ⊃ W−1 ⊃ W0 ⊃ W1 ⊃ W2 ⊃ · · ·

where all Wi ∈ G 1
2
∞

, dimWi/Wi+1 = 1 and Wi+n = znWi. Flags of this type form

a flag manifold of LSLn.
Observation (Atiyah): Fixed degree compact holomorphic curves passing through
a given point in this flag manifold come in finite parametric families (in contrast,
in CP

∞ there is an infinite-dimensional family of straight lines). As in studying
holomorphic spheres in ordinary flag manifolds, we look at the fibrations

W0 ⊃ · · · ⊃ Wi ⊃ · · · ⊃ Wn = znW0






y

CP1

W0 ⊃ · · ·Wi−1 ⊃ Wi+1 · · · ⊃ Wn = znW0

As in the ordinary case, the only curves of degree equal to that of a fibre are
the fibres themselves, hence there is an infinite-dimensional space of such curves.
However, if we require the curve to pass through a given point, only one fibre will
remain (degrees are different for different i’s). Thus one is motivated to define
quantum multiplication as

< φα ◦ φβ, φ∨

γ >=
∑

~q
~dnd

where φα and φβ are cycles of finite codimension, φ∨

γ is a cycle of finite dimension,

and nd = #((CP1, 0, 1,∞) → (X, φα, φβ, φ∨

γ )). By Atiyah’s observation, this makes
sense, and so we can define quantum multiplication even in the absence of Poincaré
pairing. The resulting computation will be related to another integrable system,
the periodic Toda lattice.

Remark (A. Kogan). This flag manifold is a limit of finite-dimensional ones, so
perhaps one can count curves lying completely within finite-dimensional pieces.
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