TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY
LECTURE 7

A. GIVENTAL

1. Notation

As usual, let X be a compact connected Kéhler manifold. In order to simplify
commutativity issues we will also assume H*(X) = H®V*"(X). We will also assume
H*(X,Z) is free, {¢a}o will denote a basis for H*(X), and 1,5 will represent the
intersection number < ¢, ¢3 > of the Poincaré duals. We may also have occaison
to use the inverse of the matrix (1,5). Its entries n°7 give the decomposition of the
Poincaré dual of the diagonal in X x X in terms of the basis {¢3 @ ¢,}5,. The
canonical generator of H°(X) will be written 1.

2. Genus zero potential

Ezercise. (t1,...,tn)o.n.d is morally the number of rational curves in X passing
through ¢4,...,¢,. Show that all this information allows us to reconstruct the
Gromov-Witten invariants.

In order to analyze the structure of these, we introduce the genus zero poten-
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for t € H*(X), ¢ a formal parameter, and d ranging over Ho(X,Z), that is we
consider F'(t) as an element of the formal group ring Q[[H2(X,Z)]]. Since we're
assuming Ho (X, Z) is free, say with generators ¢, ...q, then we could think of F(t)
as lying in Q[[qlﬂ, ..., @71]] but would then have a problem with multiplication, so let
A be the semi-group generated by all d such that there exists an n with [Xg 4] # 0.
For any such d, fE w > 0 where w is a symplectic form on X. Furthermore, any such
w can be deformed in any direction, so A is contained in some semi-simplicial cone.
So if we take ¢1, ..., ¢- to be a basis for this cone, then F' € Q[[q1, .., ¢-]]. Finally, if
we write t =Y toda, then the coefficient of ¢, - - - to, in F is (¢, -, Pa,)-

Now let p1, ..., pr be a basis of H? dual to qu, ..., ¢ and write t = (to) + (t1p1 +
< tepr) + (D2, ta®a), where the terms are the parts of degree zero, two, and at
least four.

Here are some facts which are essentially restatements of some material in pre-
vious lectures.

(1) modulo ¢: F(t,0)= ¢ [(tAtAL

Proof. Xono =X x Mo and [y 5z " =0 unless n = 3. O
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(2) The String Equation: aitoF = % <t t>

Proof. By #1, %F(t, 0) = 1 < t,t >, so we need only show this partial
vanishes for the higher ¢ terms. So take d > 0 and write t = to1 + t'.

Then (t, ceey t)O,n,d = to(t, e by l)O,n,d + (t, v by t/)O,n,d- Since d > 0, what
was previously called the string equation implies the first term is zero.
Applying this repeatedly, we see (¢, ...,t)0,n,da = (t',...,t")o.n,a, but this does
not depend on tg, so its tg -partial is zero. O

(3) The Divisor Equation: (%F = Qia%iF + 3 [ypintAtfori>1

Proof. Using #1 again, it is easy to check the ¢° terms agree. For d > 0,
we can apply what used to be called the divisor equation (for any n > 0)
to conclude that aiti(t, vy t)omtrd = di(n + 1)(t, ..., t)0.n,a. The divisor
equation then follows. O

(4) The WDVV Equation: Put Fogy = 575 57-F. Then 3, . Fagen®™ Feys
is totally symmetric in a, 3,7, 6.

Proof. By the composition law,
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Since the left side is totally symmetric, so is the right. But
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so the expression in question is totally symmetric. ]

(5) Grading: Put degt, = 1 — 2 deg¢, and degq? =< ¢1(Tx),d > (so if
c1(Tx) = Y cWp;, then degq; = ¢®). Then F is homogeneous of degree
3 — dim¢ X.

Proof. Consider the monomial

thal ot / eV Gy N+ A evs o, -
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It’s equal to 0 unless %Zdeg ¢; = RR —dimXypqa =< a1(Tx),d >
+dim¢c Xp + n — 3, so all non-zero terms have degree < ¢;(Tx),d >
+3(1— deg ¢;) = 3 — dime X. O

Define the operation o by < ¢q 0 ¢g, oy >= Fopy, 1.€. ¢a 095 =" Fapenf® ¢-.

Proposition 1. o is a symmetric, associative deformation of the cup-product with
identity 1.

Proof. Tt is symmetric because taking partials commutes. The other three are (once
again) essentially restatements of the above properties. Here are two in detail.
Identity: < 1 o ¢g, ¢, >= F13, which by the above form of the string equation
is just %%8% <t t>=<¢g,py > for all ¢, so 1o ¢g = ¢pg.
Deformation: < ¢q © @8, 0y > |g=0 = Fapylg=0 = %%%8{% th AtANt =
Jx ba Nbg N by =< da U dg, ¢y > for all ¢, 50 a © glg=0 = da U @ O
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Remark. By the divisor equation, F,z, depends only on gie'*, ..., ge'", so the
parameter space is really H*(X,C)/2miH?(X,Z), i.e. o is formally a multiplication
in each tangent space.

Examples:

(1)

X = CP? = a point:

(t1, ..., t1)g na= / (t1)" =0

Mo, n,d

unless n = 3 in which case it’s 3, so F' = 7.

X = CP': Let p € H?(X,Z) denote the class of a hyperplane section and
write t = tp1 4 t1p. Then F is a function of ¢y, ¢;, and ¢, and these have
degrees 1,0, and 2. The ¢° term is simply ¢ [, < t,t,t >= 3t3t; so the
rest is a function (divisible by ¢) of ge’* and ty. Since F' is homogeneous
of degree 3 — dimc X = 2 and the degrees of ¢ and ¢y are 2 and 1, there is
some constant N such that F' = %t%tl +Nge't. But N, being the coefficient
of the ¢ term in F, is just ( Jo,01 = [, 1=1.

X = CP?% Write t = tg1 +t1p+7p?, where p is again the hyperplane class.
The degrees of ¢, t1, 7, and ¢ are 1,0,-1, and 3, and the homogeneous degree
of F is 1. As before, we can easily calculate the ¢° term; it’s %totf + %t%r
The string equation tells us that ¢y never occurs as a multiplier of ¢, so
since F' is homogeneous of degree 1,

Ny
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d>0
where Ny = (p?,...p%)0.34—-1.4 = the number of degree d rational curves
passing through 3d—1 generic points. (To see the expression for N4, expand
the exponential and look at the ¢¢739~! term.)

We know N; = 1, and, amazingly, with the help of the WDVV equation,
this is all we need to calculate all the Ny’s. Indeed, it is easy to see that
(n°¢) is the anti-diagonal matrix. Putting « = =7 and v = § = 3, the
WDVYV equation is

Frrto Frivty + Frrey Froty + Fror Frotey =
FrivtoFrrt, + Frioe, Fiorty + Friyr Figre, -
Using the explicit representation we found for F', this simplifies to

FTTtlFtltltl + fTTT = FTtltlFtthla

$0 Frrr = F2 , —Frr4, Fiyi,1, . Now, considering the coefficient of (ge’)?r39~1
in both sides, we get
Na _ Z Ndl d% Ndz d% _ Nd1 dy ng d%
Bd-41 2= (Bd-2)(3d-2) (3 - 3) (3dy— D!’
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(Set Ny = 0 for non-positive d.) The first four values of Ny are 1, 1,12, and
620.



