
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 7

A. GIVENTAL

1. Notation

As usual, let X be a compact connected Kähler manifold. In order to simplify
commutativity issues we will also assume H∗(X) = Heven(X). We will also assume
H∗(X, Z) is free, {φα}α will denote a basis for H∗(X), and ηαβ will represent the
intersection number < φα, φβ > of the Poincaré duals. We may also have occaison
to use the inverse of the matrix (ηαβ). Its entries ηβγ give the decomposition of the
Poincaré dual of the diagonal in X × X in terms of the basis {φβ ⊗ φγ}β,γ . The
canonical generator of H0(X) will be written 1.

2. Genus zero potential

Exercise. (t1, ..., tn)0,n,d is morally the number of rational curves in X passing
through t1, ..., tn. Show that all this information allows us to reconstruct the
Gromov-Witten invariants.

In order to analyze the structure of these, we introduce the genus zero poten-

tial

F (t, q) =

∞∑
n=0

1

n!

∑
d

qd(t, ..., t)0,n,d

for t ∈ H∗(X), q a formal parameter, and d ranging over H2(X, Z), that is we
consider F (t) as an element of the formal group ring Q[[H2(X, Z)]]. Since we’re
assuming H2(X, Z) is free, say with generators q1, ...qr, then we could think of F (t)
as lying in Q[[q±1

1 , ..., q±1
r ]] but would then have a problem with multiplication, so let

Λ be the semi-group generated by all d such that there exists an n with [X0,n,d] 6= 0.
For any such d,

∫
Σ

ω ≥ 0 where ω is a symplectic form on X. Furthermore, any such
ω can be deformed in any direction, so Λ is contained in some semi-simplicial cone.
So if we take q1, ..., qr to be a basis for this cone, then F ∈ Q[[q1, ..., qr]]. Finally, if
we write t =

∑
tαφα, then the coefficient of tα1

· · · tαn
in F is (φα1

, ..., φαn
).

Now let p1, ..., pr be a basis of H2 dual to q1, ..., qr and write t = (t0) + (t1p1 +
· · · trpr) + (

∑
α tαφα), where the terms are the parts of degree zero, two, and at

least four.
Here are some facts which are essentially restatements of some material in pre-

vious lectures.

(1) modulo q: F (t, 0) = 1
6

∫
X

t ∧ t ∧ t

Proof. X0,n,0 = X ×M0,n and
∫

X×M0,n
t∧n = 0 unless n = 3. �
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(2) The String Equation: ∂
∂t0

F = 1
2 < t, t >

Proof. By #1, ∂
∂t0

F (t, 0) = 1
2 < t, t >, so we need only show this partial

vanishes for the higher q terms. So take d > 0 and write t = t01 + t′.
Then (t, ..., t)0,n,d = t0(t, ..., t, 1)0,n,d + (t, ..., t, t′)0,n,d. Since d > 0, what
was previously called the string equation implies the first term is zero.
Applying this repeatedly, we see (t, ..., t)0,n,d = (t′, ..., t′)0,n,d, but this does
not depend on t0, so its t0 -partial is zero. �

(3) The Divisor Equation: ∂
∂ti

F = qi
∂

∂qi
F + 1

2

∫
X

pi ∧ t ∧ t for i ≥ 1

Proof. Using #1 again, it is easy to check the q0 terms agree. For d > 0,
we can apply what used to be called the divisor equation (for any n ≥ 0)
to conclude that ∂

∂ti
(t, ..., t)0,n+1,d = di(n + 1)(t, ..., t)0,n,d. The divisor

equation then follows. �

(4) The WDVV Equation: Put Fαβγ = ∂
∂tα

∂
∂tβ

∂
∂tγ

F . Then
∑

ǫ,ǫ′ Fαβǫη
ǫǫ′Fǫ′γδ

is totally symmetric in α, β, γ, δ.

Proof. By the composition law,

1

k!
δ1234(φα, φβ, φγ , φδ, t, ..., t)0,4+k,d =

∑ 1

k′!k′′!
(φα, φβ, t, ...t, φǫ)0,3+k′,d′ηǫǫ′(φǫ′ , t, ..., t, φγ, φδ)0,3+k′′,d′′ .

Since the left side is totally symmetric, so is the right. But∑
ǫ,ǫ′

Fαβǫηǫǫ′Fǫ′γδ =
∑
d,k

qdRHS,

so the expression in question is totally symmetric. �

(5) Grading: Put deg tα = 1 − 1
2 deg φα and deg qd =< c1(TX), d > (so if

c1(TX) =
∑

c(i)pi, then deg qi = c(i)). Then F is homogeneous of degree
3 − dimC X.

Proof. Consider the monomial

qdtα1
· · · tαn

∫
[X0,n,d]vir

ev∗1φα1
∧ · · · ∧ ev∗nφαn

.

It’s equal to 0 unless 1
2

∑
deg φi = RR − dimX0,n,d =< c1(TX), d >

+dimC Xp + n − 3, so all non-zero terms have degree < c1(TX), d >
+

∑
(1 − 1

2 deg φi) = 3 − dimC X. �

Define the operation ◦ by < φα ◦ φβ, φγ >= Fαβγ , i.e. φα ◦ φβ =
∑

Fαβǫη
ǫγφγ .

Proposition 1. ◦ is a symmetric, associative deformation of the cup-product with

identity 1.

Proof. It is symmetric because taking partials commutes. The other three are (once
again) essentially restatements of the above properties. Here are two in detail.

Identity: < 1 ◦ φβ, φγ >= F1βγ which by the above form of the string equation

is just 1
2

∂
∂tβ

∂
∂tγ

< t, t >=< φβ , φγ > for all φγ so 1 ◦ φβ = φβ.

Deformation: < φα ◦ φβ, φγ > |q=0 = Fαβγ |q=0 = 1
6

∂
∂tα

∂
∂tβ

∂
∂tγ

∫
X

t ∧ t ∧ t =∫
X

φα ∧ φβ ∧ φγ =< φα ∪ φβ, φγ > for all φγ , so φα ◦ φβ|q=0 = φα ∪ φβ. �
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Remark. By the divisor equation, Fαβγ depends only on q1e
t1 , ..., qre

tr , so the
parameter space is really H∗(X, C)/2πiH2(X, Z), i.e. ◦ is formally a multiplication
in each tangent space.

Examples:

(1) X = CP0 = a point:

(t1, ..., t1)0,n,d =

∫
M0,n,d

(t1)∧n = 0

unless n = 3 in which case it’s t3, so F = 1
6
t3.

(2) X = CP1: Let p ∈ H2(X, Z) denote the class of a hyperplane section and
write t = t01 + t1p. Then F is a function of t0, t1, and q, and these have
degrees 1,0, and 2. The q0 term is simply 1

6

∫
X

< t, t, t >= 1
2
t20t1 so the

rest is a function (divisible by q) of qet1 and t0. Since F is homogeneous
of degree 3 − dimC X = 2 and the degrees of q and t0 are 2 and 1, there is
some constant N such that F = 1

2 t20t1 +Nqet1 . But N , being the coefficient

of the q term in F , is just ( )0,0,1 =
∫

pt.
1 = 1.

(3) X = CP2: Write t = t01+ t1p+ τp2, where p is again the hyperplane class.
The degrees of t0, t1, τ, and q are 1,0,-1, and 3, and the homogeneous degree
of F is 1. As before, we can easily calculate the q0 term; it’s 1

2t0t
2
1 + 1

2t20τ .
The string equation tells us that t0 never occurs as a multiplier of t, so
since F is homogeneous of degree 1,

F =
1

2
t0t

2
1 +

1

2
t20τ +

∑
d>0

(qet)dτ3d−1 Nd

(3d− 1)!

where Nd = (p2, ...p2)0,3d−1,d = the number of degree d rational curves
passing through 3d−1 generic points. (To see the expression for Nd, expand
the exponential and look at the qdτ3d−1 term.)

We know N1 = 1, and, amazingly, with the help of the WDVV equation,
this is all we need to calculate all the Nd’s. Indeed, it is easy to see that
(ηǫǫ′) is the anti-diagonal matrix. Putting α = β = τ and γ = δ = t1, the
WDVV equation is

Fττt0Fτt1t1 + Fττt1Ft1t1t1 + Fτττ Ft0t1t1 =

Fτt1t0Fττt1 + Fτt1t1Ft1τt1 + Fτt1τFt0τt1 .

Using the explicit representation we found for F , this simplifies to

Fττt1Ft1t1t1 + fτττ = Fτt1t1Ft1τt1 ,

so Fτττ = F 2
τt1t1

−Fττt1Ft1t1t1 . Now, considering the coefficient of (qet)dτ3d−1

in both sides, we get

Nd

(3d − 4)!
=

∑
d1+d2=d

Nd1
d2
1

(3d1 − 2)!

Nd2
d2
2

(3d2 − 2)!
−

Nd1
d1

(3d1 − 3)!

Nd2
d3
2

(3d2 − 1)!
.

(Set Nd = 0 for non-positive d.) The first four values of Nd are 1, 1, 12, and
620.
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