TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY LECTURE 6

A. GIVENTAL

1. INTRODUCTION

Today we shall discuss several examples of Gromov–Witten invariants, as well as some identities among them. We let X be a compact (almost-) Kähler manifold, and let $X_{g,n,d}$ denote the moduli space of stable degree d maps into X of genus g curves with n marked points (q.v. the notes from previous lectures).

Let us assume that we know what to make of $[X_{g,n,d}]$; as described last time, constructing the space $X_{g,n,d}$ and defining its virtual fundamental class are quite nontrivial tasks.

The Gromov–Witten invariants are introduced as follows: choose (t_1, \ldots, t_n) , with $t_i \in H^*(X)$, pull them back to $X_{g,n,d}$, take the cup product, and evaluate over the fundamental class:

$$X_{g,n,d} \xrightarrow{\operatorname{ct}} \overline{\mathcal{M}}_{g,n}$$

$$\downarrow^{\operatorname{ev}_1,\ldots,\operatorname{ev}_n}_X$$

$$(t_1,\ldots,t_n)_{g,n,d} := \int_{[X_{g,n,d}]} \operatorname{ev}_1^* t_1 \wedge \cdots \wedge \operatorname{ev}_n^* t_n.$$

Interpretation. Number of genus g, degree d curves in X passing through the generic cycles Poincaré dual to t_1, \ldots, t_n . [This is not precisely literally true, because of complicated transversality conditions that must be taken into account, but it is our interpretation.]

In addition, if $\alpha \in H^*(\overline{\mathcal{M}}_{g,n})$, then

$$\alpha(t_1,\ldots,t_n)_{g,n,d} := \int_{[X_{g,n,d}]} \operatorname{ct}^* \alpha \wedge \operatorname{ev}_1^*(t_1) \wedge \cdots \wedge \operatorname{ev}_n^*(t_n),$$

which has the same interpretation, with the addition that $(\Sigma, \varepsilon_1, \ldots, \varepsilon_n) \in PD(\alpha)$ in $\overline{\mathcal{M}}_{g,n}$.

For example, let $\delta = \text{PD}(\text{pt})$ in $\overline{\mathcal{M}}_{g,n}$. Then $\delta(t_1, \ldots, t_n) =$ number of maps $(\Sigma, \varepsilon) \xrightarrow{f} X$ such that $f(\varepsilon_i) \in \text{PD}(t_i)$.

Date: 11 September 1997.

Notes taken by Noam Shomron.

Example. Say we want to count the number of $(\mathbb{C}\mathbf{P}^1, z_1, \ldots, z_n) \xrightarrow{f} X$ with $f(z_i) \in t_i$. The total degree of the curve can be distributed between the components in any way, but it doesn't matter:

We get the same answer because of the definition of Gromov–Witten invariants (they depend only on the cohomology classes).

Automorphisms (of the maps f) do not play a part in this computation, since parametrized maps, by definition, have no automorphisms.

2. Gravitational descendants

They are defined as follows. Consider the universal stable map

 $\begin{array}{ll} X_{g,n+1,d} \xrightarrow{\operatorname{ev}_{n+1}} X & \quad l_i \ = \ \text{universal cotangent lines at the} \\ \varepsilon_1 \Big\langle \cdots \Big\langle \varepsilon_n \Big\rangle_{\operatorname{ft}_{n+1}} & & \\ X_{g,n,d} & \quad c_i = c_1(l_i) \end{array}$

(Here $l_i|_{[(\Sigma,\varepsilon)\to X]} = T^*_{\varepsilon_i}\Sigma$, and c_1, \ldots, c_n are the 1st Chern classes of these.)

Definition 1.
$$\alpha(t_1c_1^{d_1},\ldots,t_nc_n^{d_n})_{g,n,d} = \int_{[X_{g,n,d}]} \operatorname{ct}^* \alpha \wedge \operatorname{ev}_1^* t_1 \wedge \cdots \wedge \operatorname{ev}_n^* t_n c_1^{d_1} \cdots c_n^{d_n}$$

[the enumerative meaning of such invariants is subtle].

It is convenient to introduce the notation

Notation. $T(c) = t^{(0)} + t^{(1)}c + t^{(2)}c^2 + \cdots$, where $t^{(i)} \in H^*(X)$.

An example is given by the $t_i c^{d_i}$ in the above definition. With this notation, we can introduce the more general definition

Definition 2.

$$\alpha(T_1,\ldots,T_n)_{g,n,d} = \int_{[X_{g,n,d}]} \operatorname{ct}^* \alpha \wedge \bigwedge_{i=1}^n (\operatorname{ev}_i^* T_i)(c_i).$$

Next, we consider some identities among Gromov–Witten invariants.

3. The string equation

$$(T_1, \ldots, T_n, 1)_{g,n,d} = \sum_{i=1}^n (T_1, \ldots, DT_i, \ldots, T_n)_{g,n,d},$$

where $DT := \frac{T(c) - T(0)}{c}$ (shifts the sequence of coefficients by 1).

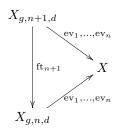
This is analogous to the string equation in Deligne–Mumford theory; the proof is the same as for $\overline{\mathcal{M}}_{g,n}$.

Notation. $\tilde{c}_i := c_i \big|_{X_{g,n+1,d}}, \ c_i := \mathrm{ft}_{n+1}^* \big(c_i \big|_{X_{g,n,d}} \big).$

Compare $\tilde{c}_i, i \leq n$, and c_i . Then the relationship is $\tilde{c}_i = c_i + [\varepsilon_i]$. There is a geometric reason for the above relationship:

Note. These c_i 's are not the same as $\operatorname{ct}^*(c_i|_{\overline{\mathcal{M}}_{q,n}})$.

The following diagram commutes:



A particular case of the identity:

Corollary 1. $(t_1, \ldots, t_n, 1)_{g,n+1,d} = 0$

This has a clear geometrical meaning:

Remark. This is rigorous only when the foundation is established, i.e., d = 0, g = 0 and $n \leq 2$, or d = 0, g = 1, n = 0. There exists much confusion in the literature.

One more comment: we can put in any α , and have $\alpha(T_1, \ldots, T_n, 1)$, but then α should be pulled back to $\overline{\mathcal{M}}_{g,n+1}$.

4. The dilation equation

 $(T_1, \ldots, T_n, c_{n+1})_{g,n+1,d} = (2g - 2 + n)(T_1, \ldots, T_n)_{g,n,d}$

 $(c_{n+1} \text{ gets integrated over the fibre}).$

5. Divisor equation

Start with minimal generality: let $p \in H^2(X)$.

Theorem 1. $(t_1, ..., t_n, p)_{g,n+1,d} = \langle p, d \rangle (t_1, ..., t_n)_{g,n,d}$.

Proof. Pull back $X_{g,n+1} \xrightarrow{\text{ev}_{n+1}} X$ and integrate over the fibre: get $\langle p, d \rangle$ (depends only on the homology class of the point).

Enumerative meaning:

More generally,

$$(T_1, \ldots, T_n, p)_{g,n+1,d} = \langle p, d \rangle (T_1, \ldots, T_n)_{g,n,d} + \sum_{i=1}^n (T_1, \ldots, pDT_i, \ldots, T_n)_{g,n,d}$$

6. WDVV EQUATION (COMPOSITION LAW)

Let us begin with an example that shows the idea of this relation: say we want to count curves of genus 0 passing through 4 cycles, in a given configuration: So we can count these different objects, which we consider as

Consider the diagonal $\Delta \subseteq X \times X$. Let $\{\phi_{\alpha}\}$ be a basis in $H^*(X)$; then $\{\phi_{\alpha} \otimes \phi_{\beta}\}$ is a basis of $H^*(X \times X)$. Let $\eta_{\alpha\beta} = \langle \phi_{\alpha}, \phi_{\beta} \rangle$. Then $\text{PD}(\Delta) = \sum_{\alpha,\beta} \eta^{\alpha\beta} \phi_{\alpha} \otimes \phi_{\beta}$ (this gives the diagonal constraint).

With this notation, what we are describing (for $\overline{\mathcal{M}}_{0,4}$) is

$$\delta(t_1, t_2, t_3, t_4)_{0,4,d} = \sum_{\alpha, \beta} \sum_{d'+d''=d} (t_1, t_2, \phi_\alpha) \eta^{\alpha\beta}(\phi_\beta, t_3, t_4).$$

The argument for respelling diagonal constraints like this is very general.

Proof. (scheme; we can make it rigorous in the convex case) Start with

$$X_{0,4,d} \\ \downarrow \\ \overline{\mathcal{M}}_{0,4} \ni [\lambda]$$

If $\lambda \to \infty$, the preimage is $X_{0,4,d}^{[\infty]} \subseteq X_{0,4,d}$

Splitting the curve into 2 parts

$$\coprod_{d'+d''=d} X_{0,3,d'} \times X_{0,3,d''} \xrightarrow{\operatorname{ev}'_{(\circ)} \times \operatorname{ev}''_{(\circ)}} X \times X$$

The preimage of Δ will make $f'(\circ) = f''(\circ)$. This gives

$$\coprod_{d'+d''=d} X_{0,3,d'} \times_{\Delta} X_{0,3,d''}$$

$$\downarrow gluing map$$

$$X_{0,4,d}^{[\infty]}$$

The gluing map is not an isomorphism of varieties, but at a generic point it is a local isomorphism, since there is only one way to break up the curve. In any case, we will get an identification of the fundamental classes. \Box

7. GENERALIZATION

Describe some formulas arising from generalizations of the above: we can replace $X_{0,4,d}$ by $X_{0,4+k,d}$ (i.e., require that the first 4 points be in some fixed cross ratios). There will be several ways of dividing up the marked points between the components:

$\delta_{1,2,3,4}(t_1, t_2, t_3, t_4, t, \dots, t)_{0,4+k,d} =$

$$\sum_{\alpha,\beta} \sum_{d'+d''=d} \sum_{k'+k''=k} \frac{k!}{k'!k''!} (t_1, t_2, t, \dots, t, \phi_{\alpha})_{0,k',d'} \eta^{\alpha\beta} (\phi_{\beta}, t, \dots, t, t_3, t_4)_{0,k'',d''}.$$

Here $\delta \in \overline{\mathcal{M}}_{0,4+k}$ is the pullback $\pi^*(\delta)$ of $[\lambda] = \delta \in \overline{\mathcal{M}}_{0,4}$, where $\pi : \overline{\mathcal{M}}_{0,4+k} \to \mathbb{C}$ $\overline{\mathcal{M}}_{0,4}$.

We can also put gravitational descendants in there:

$$\delta_{1,2,3,4}(T_1,\ldots,T_4,T,\ldots,T)_{0,4+k,d}$$
 = as above.

The idea behind all this is that $\overline{\mathcal{M}}_{g,n}{}^{\Gamma} \sim \prod \overline{\mathcal{M}}_{g_{\alpha},n_{\alpha}}$ [strata]. Let's try to explain what the general reduction formula looks like. Pick $\alpha_{\Gamma} = \text{PD}[\overline{\mathcal{M}}_{g,n}{}^{\Gamma}]$; recall that Γ is represented by some graph, and if we cut an edge, the graph may or may not remain connected.

$$\alpha_{\Gamma}(T,\ldots,T)_{g,n,d} = \begin{cases} \sum_{\alpha,\beta} \alpha_{\tilde{\Gamma}}(T,\ldots,T,\phi_{\alpha},\phi_{\beta})_{g-1,n+2,d} \eta^{\alpha\beta} & \text{if } \tilde{\Gamma} \text{ is connected}, \\ \sum_{d'+d''=d} \alpha_{\Gamma_{1}}(T,\ldots,T,\phi_{\alpha})_{g_{1},k_{1}+1,d'} \eta^{\alpha\beta} \alpha_{\Gamma_{2}}(\phi_{\beta},T,\ldots,T)_{g_{2},k_{2}+1,d''} & \text{if } \tilde{\Gamma} = \Gamma_{1} \coprod \Gamma_{2} \end{cases}$$

 $(g_1 \text{ and } g_2 \text{ correspond to } \Gamma_1 \text{ and } \Gamma_2).$

We can start with any stratum and inductively knock out the edges of the graph, (recursively) producing a "composition law."

8. Next time

We continue, see what the WDVV equation means, and what structures it imposes.