
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 5

A. GIVENTAL

1. Review

Let us recapitulate what was going on last time. We let X be a compact
Kähler manifold, and we described the moduli space Xg,n,d of stable degree d maps
f : (Σ, ε) → X of genus g curves with n marked points.

In order to define Gromov-Witten invariants, we need to make sense of the
fundamental class [Xg,n,d]. In the genus 0 case, we had

Theorem (Behrend–Manin). If g = 0 and X is convex1, then X0,n,d are compact

complex orbifolds. If nonempty, dimC X0,n,d = RR-dimC Xg,n,d,

where RR-dimC Xg,n,d is defined as the “Riemann-Roch” dimension

RR-dimC Xg,n,d = 〈c1(TX), d〉 + (1 − g)(dimC X − 3) + n.

Orbifolds have a natural fundamental cycle we can use. Unfortunately (or oth-
erwise), in the general situation, the spaces Xg,n,d can be very singular and unlike

manifolds. In those cases, we want to define a virtual fundamental class [Xg,n,d]
vir

.

2. Gromov’s idea for constructing symplectic invariants

We want to construct invariants of symplectic manifolds. Gromov said: look at
pairs (J, f), where f : CP1 → (X, ω) is a smooth map, and J is an ω-compatible
almost complex structure. We are interested in the space of compatible pairs such
that the map is J-holomorphic:

Date: 9 September 1997.

Notes taken by Noam Shomron.
1This means the tangent spaces are spanned by global holomorphic vector fields. Homogeneous

spaces and tori are some examples.
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The idea of the construction is that bordism invariants will give symplectic invari-
ants, which do not depend on the choice of almost complex structure.

Approach.

(1) Pick a generic almost complex structure J .
(2) Pick generic constraints: require that f(z1), . . . , f(zN ) ∈ given generic cy-

cles, such that dimMJ,cycles = 0. The space MJ,cycles of solutions satisfying
the constraints will therefore consist of a number of points. Since the man-
ifold is 0-dimensional, the Gromov Compactness theorem implies that the
number of points is finite.

Define GW =
∑

s∈MJ,cycles

sign(s).

(3) We want to show that we indeed have an invariant. Gromov’s Compactness
theorem tells us what maps we must add in order to compactify our space;
the resulting space of maps contains some singular ones. We want to avoid
encountering a “gluing” phenomenon
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in our bordism. The singular maps will have codimC = 1 =⇒ codimR = 2,
so they won’t occur in dimension 1. Therefore we can go around them and
produce a 1-parameter family

which describes an oriented bordism, and everything is okay.

This is the description of the traditional approach [Ruan, Ruan–Tian, . . . ]. It works
well for g = 0 and (c1(TX) ≥ 0 or dimC X ≤ 3), but the approach fails beyond
those assumptions, due to problems with multiple covers of holomorphic spheres
with 〈c1(TX), d〉 < 0. [We are unable to bring everything to general position and
achieve transversality, which breaks things at step 2.]

3. Kontsevich’s program

The problem was solved by Kontsevich’s program:

(1) Pick any J ; take MJ (which may be very singular), compactify it by stable
maps to MJ , and consider the resulting Xg,n,d.

(2) Then construct the virtual fundamental class [Xg,n,d]
vir

.

The program was essentially completed by several authors.

4. Model problem

Suppose you have a vector bundle over a manifold, with a given section. If the
section intersects the zero section transversely, then we can count the intersection
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number. Suppose it is not transverse to the zero section; then we still want to
construct something representing the Euler class of the bundle.

There are two approaches:

(1) Deformation to the normal cone (algebro-geometric; q.v. Fulton)
(2) Topological — Ruan’s approach to [Xg,n,d]:

Take some closed neighbourhood, and restrict the bundle to that neighbourhood.
There exists a section not vanishing at the boundary =⇒ Euler(bundle) ∈
H∗(nbhd, ∂nbhd) (recall that completely nonvanishing sections give zero). We want
to define the virtual fundamental class via its pairing with cohomology classes; given
some cohomology class t,

∫

[Xg,n,d]vir

t :=

∫

[nbhd]

t ∧ Euler(bundle).

5. Examples

(1) Illustrating the virtual fundamental class
(2) Difficulty of the traditional approach

Example 1. Consider X1,1,0 = X×M1,1. We know M1,1
∼= CP1, so dim X1,1,0 =

dimC X + 1, but

RR-dim = 〈c1(TX), d〉 + n + (1 − g)(dim X − 3) = 0 + 1 + 0 = 1.

Therefore the fundamental cycle is in the wrong dimension: 0, not 1. Where does
transversality fail?

Linearize the Cauchy-Riemann equation:

0 H0(E, Tf(0)) C∞(f∗Tf(0))
∂

Ω0,1(Tf(0)) H1(E, Tf(0)) 0

Transversality would mean ∂ is onto and 0 is a regular value, but the cokernel
H∗ ⊗ Tf(0) := H1(E, Tf(0)) is nonzero, so it is not transversal.
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Therefore, we have X ×M1,1 plus a bundle

H
∗

⊗TX

X ×M1,1

so we get that the virtual fundamental class is Euler(H∗ ⊗ TX).

Example of computation.

∫

[X1,1,0]

ev∗
1 t :=

∫

X×M1,1

ev∗
1 t Euler(H∗ ⊗ TX),

where the second integral is over its fundamental class as an orbifold. Let m =
dimC X. Then

Euler(H∗ ⊗ TX) = cm(TX) + cm−1(TX)(−ω) + cm−2(TX)(−ω)2 + · · ·

[Euler class of a line bundle ⊗ a vector bundle]. Then ω2 = 0, so we are left with the
two terms cm(TX) + cm−1(TX)(−ω). But

∫
X×M1,1

cm(TX) = 0 (the dimension is

wrong), so the first term vanishes, and we get

=

∫

[X×M1,1]

t ∧ cm−1(TX)(−ω) = −
1

24

∫

[X]

cm−1(TX) ∧ t.

Example 2. Here X = CP2, and we study elliptic curves of degree 3 (cf. X1,0,3).

There are 10 degree 3 monomials: x3, y3, z3, x2y, x2z, . . . , xyz −→ (CP9)∗, so the

family of cubic elliptic curves in CP2 has dimension 9.
Compare this with some of the maps in X1,0,3:
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Now,

(1) forms a 1-parameter family (in the closure of (CP9)∗)

(2) dim = 9 =⇒ not in the closure of (CP9)∗

(3) dim = 8 + 1 + 1 = 10 =⇒ not in the closure.
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Worst of all, note that these 3 components all intersect each other, e.g., in

The problem with the traditional approach is that, in order to count objects, we
must also consider some “pathological” objects, with a certain weight.

6. Next time

We try to describe some classes of Gromov-Witten invariants.
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