
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURES 3-4

A. GIVENTAL

1. Calculating Universal Chern Numbers

1.1. Witten’s Conjecture = Kontsevich’s Theorem. We have seen that the
Universal Chern Numbers satisfy some identities, including the String Equation

(T1, . . . , Tn, 1)g,n+1 =

n
∑

i=1

(T1, . . . , DTi, . . . , Tn)g,n

where

DT =
T (c) − T (0)

c

and the Dilation Equation

(T1, . . . , Tn, cn+1)g,n+1 = (2g − 2 + n)(T1, . . . , Tn)g,n

These are special cases of Witten’s Conjecture, proved by Kontsevich (Comm.
Math. Phys. 147, pp. 1-23 (1992)).

Let

Fg =

∞
∑

n=0

(T, . . . , T )g,n/n!

Then there exist a collection of 2nd order differential operators in ti

L−1,L0,L1, . . .

which commute like
∂

∂z
, z

∂

∂z
, z2 ∂

∂z
, . . .

such that

Ln exp(

∞
∑

g=0

(
2

3
)2−2gFg) = 0

for all n. The statement for n = −1 reduces to the string equation, the statement
for n = 0 to the dilation equation.
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1.2. Product structure of Substrata. Mg,n is stratified by the combinatorial

type of (Σ, ǫ). For a particular combinatorial type Γ, the substrata Mg,n
Γ

can often
be decomposed, at least at the level of homology, as a product of simpler moduli
spaces. Fo example:

so

M0,4 ×M0,3 → M0,5
Γ

is 1 − 1 at generic points, and the computation of universal chern numbers can be
pulled back to the product space.

A caveat is that one must be careful of orbifolds, in that the degree of these
maps need not be 1.

1.3. The Hodge Bundle. On Mg,n there is a bundle H whose fiber at (Σ, ǫ) is
H0(Σ,KΣ), the global sections of the canonical bundle. By Serre duality, this is
equal at each point to H1(Σ,OΣ)∗ and is g-dimensional. This bundle is known as

the Hodge Bundle of Mg,n.

Exercise. (1) Prove that KΣ is precisely the 1-forms on each irreducible com-
ponent, which are allowed to have 1st order poles at the singular points,
such that the sum of the residues on either component vanishes, for each
intersection

(2)

ln+1 = K[ǫ1 + ǫ2 + · · ·+ ǫn]

(3)

H|
Mg,n

= ft∗H|
Mg,n−1

= · · · = ft∗ft∗ . . . ft∗H|
Mg,0

(4) if ω denotes c1(H), compute
∫

[M1,n]

ωd0cd1

1 . . . cdn
n

1.4. The case g = 1. For genus 1, we have M1,0 = ∅ and dimM1,n = n.
An elliptic curve with a marked point, together with a choice of generators of the

fundamental group, is determined by a τ : Im(τ ) > 0. Then we have E = C/Z⊕τZ.
Forgetting the choice of generators is tantamount to quotienting by the action of

PSL(2, Z), which acts on the upper half-plane by fractional linear transformations,
and is generated by τ → τ + 1 and τ → −1/τ . A fundamental domain for the
action is

and the quotient space is C, though as an orbifold it has two cone points of order
2 and 3 respectively.
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M1,1 = CP 1, and the curve corresponding to ∞ is given by the equation y2 =
p3(x), where p3 is a cubic, two of whose roots coincide.

Recall that there is a fiber map

ft2 : M1,2 → M1,1

The fiber over a point is the curve represented by that point modulo its automor-
phisms, which is generically Z2, but is Z4 and Z6 at special fibers. The fiber is
therefore a CP 1 almost everywhere, and at a few places counted with multiplicity.

Exercise. Show that M1,2 can be described as (CP 2 blown up at one point)/S3

where S3 is the group of automorphisms of CP 2 permuting 3 generic lines passing
through the blown-up point.

Let c = c1(conormal bundle toǫ1) and ω = c1(H). Then c = ω, since a holo-
morphic differential on an elliptic curve is determined by its value at a marked
point.

We make the claim

∫

[M1,1]

c =

∫

[M1,1]

ω =
1

24

A factor of 1/6 comes from the action of S3. A factor of 1/2 comes from the
symmetry of the tangent bundle to the marked point. Finally, a factor of 1/2 comes
from the symmetry of a generic elliptic curve.

The justification comes from the dilation equation, which implies that
∫

[M1,2]

ωc2 =

∫

[M1,1]

ω

Geometrically, the integral is equal to
∫

Σ/Z2

c2

∫

[M0,4/S3 ]

ω =
1

2

∫

[M0,4/S3]

ω

Therefore ω on [M1,1] is 1/2 that of the pullback of ω from [M0,4/S3].

2. Moduli Spaces of Stable Maps

We want to study the moduli space of holomorphic maps Σ → X where X is a
compact Kähler manifold, for example a subvariety of CP n, and such that the maps
are stable in a sense to be made precise. We want to keep in mind degenerations of
such maps of the form xy = ǫ as ǫ → 0 and y2 = x(x − 1)(x − λ) as λ → 1.

Definition 1. (1)
f : (Σ, ǫ) → X

is holomorphic if the restriction to each irreducible component is holomor-
phic. Here, as above, Σ is a compact connected curve with at most double
singularities, and ǫ is a collection of ordered distinct non-singular marked
points.

(2)
f ′ : (Σ′, ǫ′) → X, f ′′ : (Σ′′, ǫ′′) → X

are equivalent if there is an isomorphism from (Σ′, ǫ′) to (Σ′′, ǫ′′) commuting
with f ′, f ′′.
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(3) f : (Σ, ǫ) → X is stable if it has no non-trivial infinitesimal automorphisms.

Example. • f : E → p ∈ X where E is an elliptic curve with no marked
points is unstable.

• f : (Σ, ǫ) → X where some component Σ0 is a CP 1 with < 3 special
points, and f |Σ0

is constant, is unstable.

All other maps are stable.

(4) The genus of f , denoted g(f), is defined to be g(Σ).
(5) The degree of f is defined to be the homology class

∑

α

f∗[Σα] = d ∈ H2(X, Z)

(6) Xg,n,d is defined to be the set of equivalence classes of stable degree d maps
to X of genus g curves with n marked points.

(7)
(ev1, . . . , evn) : Xg,n,d → X × · · · × X

is defined by evaluating the map f determined by a point in Xg,n,d at its
marked points.

(8)
fti : Xg,n,d → Xg,n−1,d

is defined by forgetting the i-th marked point and contracting components
which become thereby unstable.

(9) As with Mg,n there are sections ǫi : Xg,n,d → Xg,n+1,d and we have the
universal stable map

evn+1 : Xg,n+1,d → X




y

ǫi

Xg,n,d

(10) There is another tautologically defined map

ct : Xg,n,d → Mg,n

given by forgetting f and contracting components which become unstable.

Theorem 1. (Gromov, Kontsevich, et. al.) Xg,n,d has a natural structure of a
compact Hausdorff topological space. In fact, it is a compact analytic orbifold.
ev, ft, ct are continuous and analytic. The topology is defined by saying fn → f if
the images converge in the Hausdorff topology, and marked points converge.

Example. (1)
Xg,n,0 = X ×Mg,n

since degree 0 maps are constant.
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(2)
(CP m)0,0,1 = Gr2,m+1

which is already compact.
(3)

(CP 1×CP 1)0,0,(1,1) = compactification of space of graphs of automorphisms from CP 1 → CP 1

The space of such graphs is just PSL(2, C), the represented as projective
2 × 2 complex matrices such that ad 6= bc. This can be compactified by
removing the inequality, and we see that it naturally compactifies to CP 3.
The extra points correspond to maps whose images are the union of a
vertical CP 1 and a horizontal CP 1.

(4)
(CP m)0,0,4

has a number of components. For instance, a configuration of the kind

and a configuration of the kind

3. Gromov-Witten Invariants

Formally, the kind of invariants we would like to define are expressed as

α(t1, t2, . . . , tn)g,n,d =

∫

[Xg,n,d]

ct∗α ∧ ev∗1t1 ∧ · · · ∧ ev∗ntn

where α ∈ H∗(Mg,n) and ti ∈ H∗(X).
Ideally, this expression should count the number of degree d genus g curves in X

such that evi passes through the cycle ti for all i, and (Σ, ǫ) range over the Poincaré
dual of α.

Here α and ti must be chosen to have the correct dimension, or the integral is
defined to be zero.

Notice that by definition this depends only on [α], not the specific α, so we are
free to choose a degenerate representative to make calculation easier.

The problem with making sense of this integral is deciding exactly what is meant
by [Xg,n,d].

Theorem 2. (Behrend-Manin) If g = 0 and X is convex then X0,n,d is a compact
complex orbifold. If nonempty, it has complex dimension

dimCX0,n,d =< c1(TX), d > +dimCX + n − 3

Here X is convex if TX is spanned by global holomorphic vector fields. X
is therefore a symmetric space, for example projective spaces, grassmanians, flag
manifolds, etc.
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4. Tangent Spaces to Xg,n,d

A point p ∈ Xg,n,d is an equivalence class [f ] of maps f : (Σ, ǫ) → X. Some of
the tangent space to Xg,n,d is composed of variations of f keeping (Σ, ǫ) fixed. This
is descibed by H0(Σ, f∗TX), where T is the tangent sheaf of X. H0(Σ, TΣ[−ǫ]),
the infinitesimal automorphisms of (Σ, ǫ), injects into this by the assumption of
stability. We must quotient by the image of this, since we are only interested of f
up to equivalence.

We therefore have an exact sequence

0 → H0(Σ, TΣ[−ǫ]) → H0(Σ, f∗TX) → T[f]Xg,n,d

The cokernel of this maps onto deformations of the complex structure on (Σ, ǫ),
which are parameterized by H1(Σ, TΣ[−ǫ]) ⊕s∈sing(Σ) T ′

s ⊗ T ′′
s but the image will

miss H1(Σ, f∗TX). Finally, the cokernel is denoted by N[f ]Xg,n,d which might be
nontrivial because of the non-smoothness of X at some point.

Putting this together we have the exact sequence

0 → H0(Σ, TΣ[−ǫ]) → H0(Σ, f∗TX) → T[f]Xg,n,d →

→ H1(Σ, TΣ[−ǫ]) ⊕ T ′
s ⊗ T ′′

s → H1(Σ, f∗TX) → N[f]Xg,n,d → 0

Exercise. If g = 0 and X is convex, H1(Σ, f∗TX) is trivial.

If we define the dimension to be dimT − dimN whenever N is trivial, then a
computation shows that

dimT − dimN = χ(f∗TX) − χ(TΣ[−ǫ]) + |sing(Σ)|

which can be computed via Riemann-Roch to be equal to < c1(TX), d > +(1 −
g)(dimCX − 3) + n We define this to be the Riemann-Roch dimension of Xg,n,d.

If g = 0 and X is convex, the Riemann-Roch dimension and the actual dimension
coincide.

One can construct a class, the virtual fundamental class of Xg,n,d, denoted
[Xg,n,d]

vir ∈ H∗(Xg,n,d) of dimension equal to the Riemann-Roch dimension.
This result is due to (Behrend-Fantechi, Li-Tian) in the case X is algebraic, and

to (Fukaya-Ono, Li-Tian, Ruan) when X is symplectic.

5. Symplectic Manifolds

A Symplectic Manifold is a manifold of even dimension X2m together with a
closed, non-degenerate (i.e. its highest exterior power is nowhere zero) 2-form ω.

By Darboux’ theorem, any such manifold looks locally like R2m with symplectic
form

∑m
i=1 dxi ∧ dyi.

This theorem says that there are no local invariants of symplectic manifolds. In
1985 Gromov demonstrated that global invariants of symplectic structures could
be found by studying solutions of the Cauchy-Riemann equations.

We can improve a symplectic structure to an almost-Kähler structure. That is,
we can introduce an automorphism J : TX → TX such that J2 = −1 such that
J is compatible with ω in the sense that ω(Jξ, Jη) = ω(ξ, η), and ω(ξ, Jξ) > 0 for
ξ 6= 0.
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Algebraically, this amounts to improving the Sp(2n, R) structure on TX to a Un

structure, where TX is seen to be a Sp(2n, R)-bundle by Darboux’ theorem.
If J is integrable, this gives a Kähler structure.

In general, J is not integrable, and we cannot look for complex submanifolds
of X of dimension > 1. But we can find, at least locally, complex 1-submanifolds
through any point, since the integrability condition is trivial in dimension 1.

We want to study the space of maps f : Σ → Xω,J such that ∂̄Jf = 0.
Consider pairs J, f where f : CP 1 → X and look at the subspace where ∂̄Jf = 0.

Notice that if we have flexibility in choosing J , this condition can be satisfied
algebraically, so this subspace is a smooth infinite-dimensional submanifold. Let
MJ be the fiber of this subspace over the projection map to J-space.

The space of compatible J ’s are contractible, since locally they are parameterized
by Sp(2n, R)/Un which is contractible. More explicitly, there is an Sp(2n, R)/Un

bundle over X, and a compatible J is a section of this.

Theorem 3. (Compactification Theorem) If we have a sequence of maps fn : Σn →
X such that ∂̄Jn

fn = 0 and Jn → J , and we assume that the area of fn(Σn) is
bounded by some finite constant, then one can find a subsequence fnk

which converge
to a cusp curve f0 : Σ0 → X which is J0-holomorphic, where Σ0 is possibly singular.

Notice that we need some control over the area of the maps, since the maps
z → zn from CP 1 to itself converge nowhere.

We use the Riemannian metric defined by ω to determine area. But for a holo-
morphic curve, this area is the symplectic area, which depends only on the homology
class of f∗(Σ).
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