TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY
LECTURES 3-4

A. GIVENTAL

1. CALCULATING UNIVERSAL CHERN NUMBERS
1.1. Witten’s Conjecture = Kontsevich’s Theorem. We have seen that the
Universal Chern Numbers satisfy some identities, including the String Equation
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and the Dilation Equation

(Tl, ceey Tn, CnJrl)g,nJrl = (29 — 2 + TL)(Tl, ceey Tn)g,n

These are special cases of Witten’s Conjecture, proved by Kontsevich (Comm.
Math. Phys. 147, pp. 1-23 (1992)).
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Then there exist a collection of 2nd order differential operators in ¢;
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for all n. The statement for n = —1 reduces to the string equation, the statement

for n = 0 to the dilation equation.

Date: Sep. 5, 1997.
Notes taken by D. Calegari.



1.2. Product structure of Substrata. M, , is stratified by the combinatorial

type of (X, €). For a particular combinatorial type T', the substrata ﬂgynr can often
be decomposed, at least at the level of homology, as a product of simpler moduli
spaces. Fo example:

SO
—_— —_— — T
M074 X Moyg — M075

is 1 — 1 at generic points, and the computation of universal chern numbers can be
pulled back to the product space.

A caveat is that one must be careful of orbifolds, in that the degree of these
maps need not be 1.

1.3. The Hodge Bundle. On M, ,, there is a bundle H whose fiber at (¥, ¢) is
H°(X, Kx), the global sections of the canonical bundle. By Serre duality, this is
equal at each point to H*(3, Ox)* and is g-dimensional. This bundle is known as
the Hodge Bundle of M, .

Ezercise. (1) Prove that Ky is precisely the 1-forms on each irreducible com-
ponent, which are allowed to have 1st order poles at the singular points,
such that the sum of the residues on either component vanishes, for each
intersection

(2)

lnt1=Klet + 2+ + €]

(3)

Mg, , = Mg, == 0" H |5

(4) if w denotes ¢;(H), compute

do d1 dny,
/_ wcelt L
[(Mi,n]

1.4. The case g = 1. For genus 1, we have MI,O = () and dimﬂlyn =n.
An elliptic curve with a marked point, together with a choice of generators of the
fundamental group, is determined by a 7 : Im(7) > 0. Then we have E = C/Z®7Z.
Forgetting the choice of generators is tantamount to quotienting by the action of
PSL(2,7), which acts on the upper half-plane by fractional linear transformations,
and is generated by 7 — 74+ 1 and 7 — —1/7. A fundamental domain for the
action is

and the quotient space is C, though as an orbifold it has two cone points of order
2 and 3 respectively.



M;i 1 = CP!, and the curve corresponding to oo is given by the equation y? =
ps(x), where ps is a cubic, two of whose roots coincide.

Recall that there is a fiber map
fto : HLQ — ﬂl,l

The fiber over a point is the curve represented by that point modulo its automor-
phisms, which is generically Zs, but is Z4 and Zg at special fibers. The fiber is
therefore a CP' almost everywhere, and at a few places counted with multiplicity.

Ezercise. Show that M o can be described as (CP? blown up at one point)/Ss
where S3 is the group of automorphisms of CP? permuting 3 generic lines passing
through the blown-up point.

Let ¢ = ¢1(conormal bundle toe;) and w = ¢;(H). Then ¢ = w, since a holo-
morphic differential on an elliptic curve is determined by its value at a marked

point.
o= Ja =2
c= w=—
[Mi,1] [Mi,1] 24

We make the claim

A factor of 1/6 comes from the action of S3. A factor of 1/2 comes from the
symmetry of the tangent bundle to the marked point. Finally, a factor of 1/2 comes
from the symmetry of a generic elliptic curve.

The justification comes from the dilation equation, which implies that

/ wey = / w
[Mi 2] [Mi,1]

Geometrically, the integral is equal to

1
/ c2 / w= / w
$/Zs  J[Mo.1/S5] 2 J[Mo.a/55)

Therefore w on [Mj 1] is 1/2 that of the pullback of w from [Mg 4/S3).

2. MODULI SPACES OF STABLE MAPS

We want to study the moduli space of holomorphic maps ¥ — X where X is a
compact Kéhler manifold, for example a subvariety of CP™, and such that the maps
are stable in a sense to be made precise. We want to keep in mind degenerations of
such maps of the form xy = e as € — 0 and y* = z(z — 1)(z — \) as A — 1.

Definition 1. (1)
f:%e—-X
is holomorphic if the restriction to each irreducible component is holomor-
phic. Here, as above, ¥ is a compact connected curve with at most double
singularities, and € is a collection of ordered distinct non-singular marked
points.

[ () = X () X
are equivalent if there is an isomorphism from (3, €') to (¥”, €’’) commuting

with f', f"".



(3) f:(X,¢) — X is stable if it has no non-trivial infinitesimal automorphisms.

Example. o f:FE — p e X where E is an elliptic curve with no marked
points is unstable.

e f:(X,¢) — X where some component ¥ is a CP! with < 3 special
points, and f|s, is constant, is unstable.

All other maps are stable.

(4) The genus of f, denoted g(f), is defined to be g(3).
(5) The degree of f is defined to be the homology class

3 filBa] = d € Hy(X, Z)

(6) Xg.n,ais defined to be the set of equivalence classes of stable degree d maps
to X of genus g curves with n marked points.

(7)

(evq,...,evy) : Xgna— X X+ xX
is defined by evaluating the map f determined by a point in X, , 4 at its
marked points.
(8)
fti : Xg,n,d - Xg,nfl,d
is defined by forgetting the i-th marked point and contracting components
which become thereby unstable.
(9) As with M, , there are sections €; : Xgna — Xgnt1,4 and we have the
universal stable map

€Un41 ¢ Xg,nJrl,d — X

Xg,n,d
(10) There is another tautologically defined map
ct: Xgmd — Mgn

given by forgetting f and contracting components which become unstable.

Theorem 1. (Gromov, Kontsevich, et. al.) Xy, has a natural structure of a
compact Hausdorff topological space. In fact, it is a compact analytic orbifold.
ev, ft,ct are continuous and analytic. The topology is defined by saying f, — f if
the images converge in the Hausdorff topology, and marked points converge.

Ezample. (1)

Xg,n,O =X x Mg,n
since degree 0 maps are constant.
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(2)
(CP™)0,01 = Gram41
which is already compact.
(3)
(CP? ><(CP1)0707(171) = compactification of space of graphs of automorphisms from CP! — CP!

The space of such graphs is just PSL(2,C), the represented as projective
2 x 2 complex matrices such that ad # be. This can be compactified by
removing the inequality, and we see that it naturally compactifies to CP3.
The extra points correspond to maps whose images are the union of a
vertical CP' and a horizontal CP?.

(CP™)o,0,4
has a number of components. For instance, a configuration of the kind

and a configuration of the kind

3. GROMOV-WITTEN INVARIANTS

Formally, the kind of invariants we would like to define are expressed as

a(tl,tg,...,tn)gynyd:/ ct*aNevity A+ Aevity,
[Xg,n,d]

where o € H*(M,,,) and t; € H*(X).

Ideally, this expression should count the number of degree d genus g curves in X
such that ev; passes through the cycle ¢; for all 4, and (X, €) range over the Poincaré
dual of a.

Here o and t; must be chosen to have the correct dimension, or the integral is
defined to be zero.

Notice that by definition this depends only on [«], not the specific «, so we are
free to choose a degenerate representative to make calculation easier.

The problem with making sense of this integral is deciding exactly what is meant
by [Xg.n,dl-
Theorem 2. (Behrend-Manin) If g =0 and X is convex then Xo .4 is a compact
complez orbifold. If nonempty, it has complex dimension

dimeXon,a =< a1(TX),d > +dimcX +n—3
Here X is convex if TX is spanned by global holomorphic vector fields. X

is therefore a symmetric space, for example projective spaces, grassmanians, flag
manifolds, etc.



4. TANGENT SPACES TO X, g

A point p € X, 5, q is an equivalence class [f] of maps f: (X,¢) — X. Some of
the tangent space to X, ., 4 is composed of variations of f keeping (X, €) fixed. This
is descibed by H®(X, f*Tx), where 7 is the tangent sheaf of X. H°(X, Tx[—¢€]),
the infinitesimal automorphisms of (3, ¢€), injects into this by the assumption of
stability. We must quotient by the image of this, since we are only interested of f
up to equivalence.

We therefore have an exact sequence

0— HO(E, Ts[—€]) — HO(E, Tx) — TinXgn,d
The cokernel of this maps onto deformations of the complex structure on (X, ¢€),
which are parameterized by H' (3, Ts;[—€]) ®sesing(s) Ty ® T but the image will
miss H* (X, f*Tx). Finally, the cokernel is denoted by N|f] X n,q which might be
nontrivial because of the non-smoothness of X at some point.
Putting this together we have the exact sequence

0— H)S, Tx[—€]) —» H°(S, f*Tx) — Ti Xgn,a —
— H'(S, Te[~) o T, 0 T — H'(Z, f*Tx) — N Xgna — 0
Ezercise. If g =0 and X is convex, H* (X, f*Tx) is trivial.

If we define the dimension to be dim7T — dimN whenever N is trivial, then a
computation shows that

dimT — dimN = x(f*Tx) — x(Ts[—€]) + |sing(S)|

which can be computed via Riemann-Roch to be equal to < ¢1(TX),d > +(1 —
g)(dimcX — 3) +n We define this to be the Riemann-Roch dimension of X, 4.

If g = 0 and X is convex, the Riemann-Roch dimension and the actual dimension
coincide.

One can construct a class, the wvirtual fundamental class of X, 4, denoted
(X gynyd]"ir € H.(X4n,a) of dimension equal to the Riemann-Roch dimension.

This result is due to (Behrend-Fantechi, Li-Tian) in the case X is algebraic, and
to (Fukaya-Ono, Li-Tian, Ruan) when X is symplectic.

5. SYMPLECTIC MANIFOLDS

A Symplectic Manifold is a manifold of even dimension X?™ together with a
closed, non-degenerate (i.e. its highest exterior power is nowhere zero) 2-form w.

By Darboux’ theorem, any such manifold looks locally like R?™ with symplectic
form 221 dz; N dy;.

This theorem says that there are no local invariants of symplectic manifolds. In
1985 Gromov demonstrated that global invariants of symplectic structures could
be found by studying solutions of the Cauchy-Riemann equations.

We can improve a symplectic structure to an almost-Kdhler structure. That is,
we can introduce an automorphism J : TX — TX such that J? = —1 such that
J is compatible with w in the sense that w(JE, Jn) = w(&,n), and w(&, JE) > 0 for

£#0.



Algebraically, this amounts to improving the Sp(2n, R) structure on TX to a U,
structure, where T'X is seen to be a Sp(2n, R)-bundle by Darboux’ theorem.
If J is integrable, this gives a Kahler structure.

In general, J is not integrable, and we cannot look for complex submanifolds
of X of dimension > 1. But we can find, at least locally, complex 1-submanifolds
through any point, since the integrability condition is trivial in dimension 1.

We want to study the space of maps f: ¥ — X, s such that dyf = 0.

Consider pairs J, f where f : CP' — X and look at the subspace where d; f = 0.
Notice that if we have flexibility in choosing J, this condition can be satisfied
algebraically, so this subspace is a smooth infinite-dimensional submanifold. Let
M be the fiber of this subspace over the projection map to J-space.

The space of compatible J’s are contractible, since locally they are parameterized
by Sp(2n,R)/U, which is contractible. More explicitly, there is an Sp(2n,R)/U,
bundle over X, and a compatible J is a section of this.

Theorem 3. (Compactification Theorem) If we have a sequence of maps fpn, : Xy —
X such that 9y, f, = 0 and J, — J, and we assume that the area of fn.(X,) is
bounded by some finite constant, then one can find a subsequence f,, which converge
to a cusp curve fy: X9 — X which is Jy-holomorphic, where ¥ is possibly singular.

Notice that we need some control over the area of the maps, since the maps
z — 2" from CP? to itself converge nowhere.

We use the Riemannian metric defined by w to determine area. But for a holo-
morphic curve, this area is the symplectic area, which depends only on the homology
class of fi(2).



