
TOPICS IN ENUMERATIVE ALGEBRAIC GEOMETRY

LECTURE 2

A. GIVENTAL

1. Universal genus g curve with n marked points

Recall that we had the following diagram:

Mg,n+1 ←−−−−
(Σ, ε)

Aut(Σ, ε)




y

ft
n+1

Mg,n,

which we will continue to refer as “universal marked curves. Today we are going to
do some intersection theory onMg,n.

First, they are orbifolds. This implies the existence of fundamental class [Mg,n].
There are natural strata on them:

M
Γ

g,n := closure of {elements inMg,n with combinatorial structure specified by Γ}.

Example. Intersection of strata:

M0,5




y

ft
5

M0,4

The strata a, b and c are specified by the following representing curves (rather than
their dual graphs):

stratum a stratum b stratum c

(each stratum is isomorphic to CP1.)
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2 A. GIVENTAL

These strata can be represented as a section of ft
5

as:

Then we have

0 = (a + b)(a + b) = a2 + 2ab + b2 = a2 + 2 + b2,

where the first equality holds because a + b is (homologous to) a fibre. (Fibres are
homologous and they don’t intersect each other.) The third equality comes from
the fact that a intersects b geometrically at a point. Because the symmetry of a

and b, we have a2 = −1 and b2 = −1. We also have c2 = −1 by the combinatorial
symmetry.

2. Universal cotangent line

Given the following diagram:

Mg,n+1 ←−−−−
(Σ, ε)

Aut(Σ, ε)




y

ft
n+1

Mg,n.

Definition 1. The universal cotangent line is defined to be the conormal (orbi-
)bundle to the universal section εi, i.e.

li|[Σ,ε] := T ∗
εi

Σ.

Notation. ci := first chern class of li on Mg,n, i = 1, . . . , n.

l̃i := the corresponding universal cotangent line onMg,n+1.

c̃i := first chern class of l̃i.

Definition 2.

(cd1

1 , . . . , cdn

n )g,n :=

∫

[Mg,n]

cd1

1 · · · c
dn

n .
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Theorem 1.

(1) (cd1

1 , . . . , cdn

n )0,n =







(n − 3)!

d1! · · ·dn!
if d1 + · · ·+ dn = n− 3

0 otherwise

i.e.

∑

di≥0

xd1

1 · · ·x
dn

n (cd1

1 , . . . , cdn

n )0,n =

∫

[M0,n]

n
∏

i=1

1

1− xici
(2)

= (x1 + . . . + xn)n−3

Lemma 1.

(3)

∫

[Mg,n+1]

c̃1
d1 · · · c̃n

dn =
∑

i,di 6=0

∫

[Mg,n]

cdi−1
i

∧

j 6=i

c
dj

j .

Proof. We will abuse notation to denote li and ci also the line bundle and cohomol-
ogy class induced from Mg,n, i. e. li = ft∗

n+1
(li), ci = ft∗

n+1
(ci) on Mg,n+1. First

we will examine the difference between li and l̃i. They are almost the same except
when the (n + 1)-st point coincides with the i-th point, i. e. there exists a section

s of l̃i ⊗ l−1
i , s 6= 0 outside the divisor [εi]. ([εi] := the image of universal section

εi(Mg,n).) Thus we have

c̃i = ci+?[εi].

To find the coefficient ? we notice that li|[εi] = li but l̃i|[εi] is trivial. (Because 3

points on CP
1 give a coordinate and therefore trivialize the bundle.)

This implies l̃i⊗ l−1
i |[εi] = l−1

i . However, l−1
i is exactly the normal bundle of [εi],

we have ? = 1.
So cd

i = c̃i
d + [−εi]

d because the intersection of c̃i and [εi] is 0. Therefore

0 =

∫

[Mg,n+1]

n
∧

i=1

cdi

i

=

∫

[Mg,n+1]

∧

(c̃i
di [−εi]

di)

=

∫

[Mg,n+1]

∧

c̃i
di +

∫

[Mg,n+1]

[−εi]
di

∑

di>0

∧

j 6=i

c
dj

j

=

∫

[Mg,n+1]

∧

c̃i
di +

∑

di>0

∫

[−ε]

[−εi]
di−1

∧

j 6=i

c
dj

j

But [εi] ∼=Mg,n and ci = [−εi], we are done. �
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To deduce the theorem from the lemma we need some combinatorics. Let T (c) :=
∑∞

j=0 tjc
j. Define

(T1, . . . , Tn)g,n :=

∫

[Mg,n]

T1(c1) · · ·Tn(cn).

The lemma is equivalent to

(T1, . . . , Tn)g,n+1 =

n
∑

i=1

(T1, . . . , DTi, . . . , Tn)g,n ,

DT (c) :=
T (c)− T (0)

c
.

In particular,

(4)

(

1

1− x1c
, . . . ,

1

1− xnc
, 1

)

g,n+1

= (x1 + · · ·+xn)

(

1

1− x1c
, . . . ,

1

1− xnc

)

g,n

,

or more generally,
(

1

1− x1c
, . . . ,

1

1− xnc
, 1, . . . , 1

)

g,n+1

(5)

=(x1 + · · ·+ xn)k

(

1

1− x1c
, . . . ,

1

1− xnc

)

g,n

.

Remark. These series of equations (3) (4) (5) are called string equations.

¿From now on, we will confine ourself to the case g = 0.

Proof. (of the theorem) We will apply induction on n (number of marked points).
Notice that in the case M0,3

∼= pt the theorem is obvious. For general n:

0 =

∫

[M0,n]

n
∧

i=1

(

1

1− xici
− 1

)

=
∑

I⊆{1,...,n}

(−1)|I|
∫

[M0,n]

∧

j /∈I

1

1− xjcj
(6)

=

∫

[M0,n]

∧

i

1

1− xici
+

∑

I 6=∅

(−1)|I|
(

∑

j /∈I

xj

)|I|(
∑

j /∈I

xj

)n−3−|I|

.

Here the first equality follow from the dimensional reason, while third equality from
the above lemma and the induction hypothesis. Now observe that the second term
of the last line in (6) is equal to

(−1)(x1 + · · ·+ xn)n−3

because it is the finite difference version of the equality

∂n(x1 + · · ·xn)n−3

∂x1 · · ·∂xn
|~x=~0 = 0.

�

Exercise. Prove the following “dilation equation”.

(7) (cd1

1 , . . . , cdn

n , cn+1)g,n+1 = (2g − 2 + n)(cd1

1 , . . . , cdn

n )g,n.
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Hint:
cn+1 = KMg,n+1/Mg,n

+ [ε1] + · · ·+ [εn].


