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Preface

Here is a typical conversation of a student with professor which I 
frequently have in my capacity of a major adviser.

S: I have already taken the upper-division linear algebra.
P: Good! What was the course about?
S: Matrices?
P: Well, matrices are things. There is no point in introducing more 
things unless one can say something important about them. So, what 
were the results about matrices?
S: Diagonalization?
P: Right. Anything else?
S: There were many theorems, I don’t remember all of them. 
Then we start estimating how many. Say, a typical textbook might 
have 7 chapters, 5 sections each, with 3 theorems per section: some 
100+ theorems in total. The problem I have with this count is this: 
modulo some variations on the same topics, I myself know only 4.

The four theorems give exhaustive answers to four problems of 
classification: of linear maps between two vector spaces (the Rank 
Theorem and some close relatives including the Gaussian elimina-
tion); of real (variations: complex, Hermitian) quadratic forms (the 
Inertia Theorem); of pairs of quadratic (or Hermitian) forms of which 
one is positive definite (the Orthogonal Diagonalization Theorem, or 
slightly more generally, the Spectral Theorem for normal operators); 
of linear maps from a (complex or real) vector space to itself (the 
Jordan Canonical Form Theorem).

This point of view on the traditional content of linear algebra 
as the classification theory of several basic geometrical objects up 
to suitable linear changes of coordinates greatly simplifies the logical 
structure of the subject. Application-wise it instills the right intuition 
by showing that there are only that many useful tools in the toolbox; 
without them anything else remains a useless triviality.

iii



It is also in line with the ‘higher’, ‘scientific’ standpoint of mod-
ern mathematics. Namely, according to a paradigm developed in
the 70-ies a (non-linear) problem is considered solved if reduced to a
‘problem of linear algebra’, i.e. a problem of classification of linear-
algebraic data. (Examples of such reductions include some descrip-
tions of instanton solutions to the Yang-Mills equations in mathe-
matical physics, and classification of vector bundles over projective
spaces in algebraic geometry). The theory of quivers outlined at the
end of this book illustrates well what the modern-day problems of
classification of linear-algebraic data entail.

Of course, mathematicians are fully aware of the nature of linear
algebra as a classification theory, and implicitly this idea is present
in the textbooks. However, it usually gets lost on its way to the mind
of the reader through the woods of the 100+ theorems. In this book,
we take the idea out of the woods.

While it is natural to develop the theory of vector spaces over
an arbitrary field K, for most of applications in engineering and eco-
nomics working over real and complex numbers would suffice. For
the sake of versatility we attempt to do both. In the core material
(typeset in this normal font) the reader may assume that K = R or
C, and be sure that we avoid some abstractions (such as the notion
of quotient spaces). Alternatively, the reader may assume that K is
any field, and brave the material typeset in a smaller dark green font.
There the exposition may become more abstract.

The stand-alone section on tensors, which is not related to classi-
fication problems, was included merely for completeness’s sake, and
also out of desire to stress the role of determinants in multi-dimensional
integration. Much of this section is also colored green, while the essay
on differential forms assumes familiarity with vector calculus.

Among 450+ exercises many are provided with hints and/or an-
swers, as indicated by the signs � and � respectively. More difficult
exercises are marked with ⋆. We don’t set up definitions of new terms
(which are many) as separate paragraphs. When you see a word or
phrase typeset in boldface, this is a new term, and the sentence is
its definition. It is linked to the Index.

I should add that this course is self-contained in the sense that
no prior knowledge of any aspect of linear algebra is expected.

Alexander Givental
Department of Mathematics
University of California Berkeley
May 2022
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Chapter 1

Introduction

One of our goals in this book is to equip the reader with a unifying
view of linear algebra, or at least of what is traditionally studied un-
der this name in university courses. With this mission in mind, we
start with a preview of the subject, and describe its main achieve-
ments in lay terms.

To begin with a few words of praise: linear algebra is a very simple
and useful subject, underlying most of other areas of mathematics,
as well as its applications to physics, computer science, engineering,
and economics. What makes linear algebra useful and efficient is
that it provides ultimate solutions to several important mathemati-
cal problems. Furthermore, as should be expected of a truly fruitful
mathematical theory, the problems it solves can be formulated in
a rather elementary language, and make sense even before any ad-
vanced machinery is developed. Even better, the answers to these
problems can also be described in elementary terms (in contrast with
the justification of those answers, which better be postponed until ad-
equate tools are developed). Finally, those several problems we are
talking about are similar in their nature; namely, they all have the
form of problems of classification of very basic mathematical objects.

Yet unready to discuss the general idea of classification in math-
ematics, we start off with a geometric introduction to vectors, and a
summary of complex numbers. Then we work out a non-trivial model
example: classification of quadratic curves on the plane. Then, with
this example in mind, we will be able to describe the idea of classifi-
cation in its abstract form, and finally present in elementary, down-
to-earth terms the main problems of linear algebra, and the answers
to these problems. At that point, the layout of further material will
also become clear.

1
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3 A Model Example: Quadratic Curves

Conic sections

On the coordinate plane, consider points (x, y), satisfying an equation
of the form

ax2 + 2bxy + cy2 + dx+ ey + f = 0.

Generally speaking, such points form a curve. The set of all solutions
to the equation is called a quadratic curve, provided that not all
of the coefficients a, b, c vanish.

Being a quadratic curve is a geometric property. Indeed, if the
coordinate system is changed (say, rotated, stretched, or translated),
the same curve will be described by a different equation, but the
left-hand-side of the equation will remain a polynomial of degree 2.

Our goal in this section is to describe all possible quadratic curves
geometrically (i.e. disregarding their positions with respect to coor-
dinate systems); or, in other words, to classify quadratic equations
in two variables up to suitable changes of the variables.

G

F

A

B

C

O

Figure 14

Example: Dandelin’s spheres. The equation x2 + y2 = z2

describes in a Cartesian coordinate system a cone (a half of which
is shown on Figure 14). Intersecting the cone by planes, we obtain
examples of quadratic curves. Indeed, substituting the equation z =
αx+βy+ γ of a section plane into the equation of the cone, we get a
quadratic equation x2+y2 = (αx+βy+γ)2 (which actually describes
the projection of the conic section to the horizontal plane).

21



22 Chapter 1. INTRODUCTION

The conic section on the picture is an ellipse. According to one
of many equivalent definitions,6 an ellipse consists of all points of the
plane with a fixed sum of the distances to two given points (called
foci of the ellipse). Our picture illustrates an elegant way7 to locate
the foci of a conic section.

Place into the conic cup two balls (a small and a large one), and
inflate the former and deflate the latter until they touch the plane
(one from inside, the other from outside). Then the points F and G
of the tangency are the foci.

Indeed, let A be an arbitrary point on the conic section. The seg-
ments AF and AG lie in the cutting plane and are therefore tangent
to the balls at the points F and G respectively. On the generatrix
OA, mark the points B and C where it crosses the circles of tan-
gency of the cone with the balls. Then AB and AC are tangent at
these points to the respective balls. All tangent segments from a
given point to a given ball have the same length. Hence we find that
|AF | = |AB|, and |AG| = |AC|. Therefore |AF | + |AG| = |BC|.
But |BC| is the distance along the generatrix between two parallel
horizontal circles on the cone, and is the same for all generatrices.
We conclude that the sum |AF |+ |AG| stays fixed when the point A
moves along our conic section.

A.Givental, 1999
"The Empty Set"
oil on canvas

Figure 15. The Empty Set

Beside ellipses, we find among conic sections: hyperbolas (when
a plane cuts through both halves of the cone), parabolas (cut by
planes parallel to generatrices), and their degenerations (obtained

6According to a mock definition, “an ellipse is the circle inscribed into a square
with unequal sides.”

7Due to Germinal Pierre Dandelin (1794–1847).
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when the cutting plane is replaced with the parallel one passing
through the vertex O of the cone): just one point O, pairs of inter-
secting lines, and “double-lines.” We will see that this list exhausts
all possible quadratic curves, except two degenerate cases: pairs of
parallel lines and (yes!) empty curves.

EXERCISES

51. Prove that a hyperbolic conic section consists of all points on the section
plane with a fixed difference of the distances to two points (called foci).
Locate the foci by adjusting the construction of Dandelin’s spheres.

52.⋆ Prove that light rays emitted from one focus of an ellipse and reflected
in it as in a mirror will focus at the other focus. Formulate and prove
similar optical properties of hyperbolas and parabolas. �

53. Prove that the projections (Figure 16) of conic sections to the horizontal
plane along the axis of the cone are quadratic curves.

Figure 16

P

O

P’Q

54.⋆ Prove that the projections from the previous exercise can be charac-
terized as plane curves formed by all points with a fixed ratio e (called
eccentricity) between the distances to a fixed point (a focus) and a fixed
line (called the directrix). �

55.⋆ Show that e > 1 for hyperbolas, e = 1 for parabolas, and 1 > e > 0
for ellipses (e.g. e = |P ′O|/|P ′Q| in Figure 16). �

Orthogonal Diagonalization (toy version)

Let (x, y) be Cartesian coordinates on a Euclidean plane, and let Q
be a quadratic form on the plane, i.e. a homogeneous degree-2
polynomial:

Q(x, y) = ax2 + 2bxy + cy2.
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Theorem. Every quadratic form in a suitably rotated co-
ordinate system assumes the form Q = AX2 + CY 2.

Figure 17

θθ

O

I

J

i

j

Proof. Rotating the unit coordinate vectors i and j counter-
clockwise through the angle θ (Figure 17), we obtain the following
expressions for the unit coordinate vectors I and J of the rotated
coordinate system:

I = (cos θ)i+ (sin θ)j and J = −(sin θ)i+ (cos θ)j.

Next, we express the radius-vector of any point in both coordinate
systems:

xi+ yj = XI+ Y J = (X cos θ − Y sin θ)i+ (X sin θ + Y cos θ).

This shows that the old coordinates (x, y) are expressed in terms of
the new coordinates (X,Y ) by the formulas

x = X cos θ − Y sin θ, y = X sin θ + Y cos θ. (∗)

Substituting into ax2 + 2bxy + cy2, we rewrite the quadratic form
in the new coordinates as AX2 + 2BXY + CY 2, where A,B,C are
certain expressions of a, b, c and θ. We want to show that choosing
the rotation angle θ appropriately, we can make 2B = 0. Indeed,
making the substitution explicitly and ignoring X2- and Y 2-terms,
we find Q in the form

· · ·+XY
(

−2a sin θ cos θ + 2b(cos2 θ − sin2 θ) + 2c sin θ cos θ
)

+ . . .

Thus 2B = (c−a) sin 2θ+2b cos 2θ. When b = 0, our task is trivial,
as we can take θ = 0. When b 6= 0, we can divide by 2b to obtain

cot 2θ =
a− c

2b
.

Since cot assumes arbitrary real values, the theorem follows.
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Example. For Q = x2+xy+y2, we have cot 2θ = 0, and find 2θ =
π/2 + πk (k = 0,±1,±2, . . . ), i.e. up to multiples of 2π, θ = ±π/4
or ±3π/4. (This is a general rule: together with a solution θ, the
angle θ+ π as well as θ± π/2, also work. Could you give an a priori
explanation?) Taking θ = π/4, we compute x = (X − Y )/

√
2, y =

(X + Y )/
√
2, and finally find:

x2 + y2 + xy = X2 + Y 2 +
1

2
(X2 − Y 2) =

3

2
X2 +

1

2
Y 2.

EXERCISES

56. A line is called an axis of symmetry of a given function Q(x, y) if the
function takes on the same values at every pair of points symmetric about
this line. Prove that every quadratic form has two perpendicular axes of
symmetry. (They are called principal axes.) �

57. Prove that if a line passing through the origin is an axis of symmetry
of a quadratic form Q = ax2 + 2bxy + cy2, then the perpendicular line is
also its axis of symmetry.�

58. Can a quadratic form on the plane have > 2 axes of symmetry? �

59. Find axes of symmetry of the following quadratic forms Q:
(a) x2 + xy + y2, (b) x2 + 2xy + y2, (c) x2 + 4xy + y2.

Which of them have level curves Q = const ellipses? hyperbolas? �

60. Transform the equation 23x2 +72xy+2y2 = 25 to one of the standard
forms by rotating the coordinate system explicitly. � �

Completing the squares

In our study of quadratic curves, the plan is to simplify the equation
of the curve as much as possible by changing the coordinate system.
In doing so we may assume that the coordinate system has already
been rotated to make the coefficient at xy-term vanish. Therefore
the equation at hands assumes the form

ax2 + cy2 + dx+ ey + f = 0,

where a and c cannot both be zero. Our next step is based on com-
pleting the squares: whenever one of these coefficients (say, a) is
non-zero, we can remove the corresponding linear term (dx) this way:

ax2 + dx = a(x2 +
d

a
x) = a

(

(x+
d

2a
)2 − d2

4a2

)

= aX2 − d2

4a
.
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Here X = x + d/2a, and this change represents translation of the
origin of the coordinate system from the point (x, y) = (0, 0) to
(x, y) = (−d/2a, 0).

Example. The equation x2 + y2 = 2ry can be rewritten by com-
pleting the square in y as x2 + (y − r)2 = r2. Therefore, it describes
the circle of radius r centered at the point (0, r) on the y-axis.

With the operations of completing the squares in one or both
variables, renaming the variables if necessary, and dividing the whole
equation by a non-zero number (which does not change the quadratic
curve), we are well-armed to obtain the classification.

Classification of Quadratic Curves

Case I: a 6= 0 6= c. The equation is reduced to aX2 + cY 2 = F by
completing the squares in each of the variables.

Sub-case (i): F 6= 0. Dividing the whole equation by F , we
obtain the equation (a/F )X2 + (c/F )Y 2 = 1. When both a/F and
c/F are positive, the equation can be re-written as

X2

α2
+
Y 2

β2
= 1.

This is the equation of an ellipse with semiaxes α and β (Figure
18). When one a/F and c/F have opposite signs, we get (possibly
renaming the variables) the equation of a hyperbola (Figure 19)

X2

α2
− Y 2

β2
= 1.

When a/F and c/F are both negative, the equation has no real so-
lutions, so that the quadratic curve is empty (Figure 15).

Figure 19. Hyperbola

−β

β

α
−α

−α
α

Figure 18. Ellipse
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Sub-case (ii): F = 0. Then, when a and c have opposite signs
(say, a = α2 > 0, and c = −γ2 < 0), the equation α2X2 = γ2Y 2

describes a pair of intersecting lines Y = ±kX, where k = α/γ
(Figure 20). When a and c are of the same sign, the equation aX2 +
cY 2 = 0 has only one real solution: (X,Y ) = (0, 0). The quadratic
curve is a “thick” point.8

Case II: One of a, c is 0. We may assume without loss of generality
that c = 0. Since a 6= 0, we can still complete the square in x to
obtain an equation of the form aX2 + ey + F = 0.

Sub-case (i): e 6= 0. Divide the whole equation by e and put
Y = y − F/e to arrive at the equation Y = −aX2/e. This curve is a
parabola Y = kX2, where k = −a/e 6= 0 (Figure 21).

Sub-case (ii): e = 0. The equation X2 = −F/a describes: a

pair of parallel lines X = ±k (where k =
√

−F/a), or the empty set
(when F/a > 0), or a “double-line” X = 0 (when F = 0).

1

k

1

−k

k

Figure 20 Figure 21

We have proved the following:

Theorem. Every quadratic curve on a Euclidean plane is
one of the following: an ellipse, hyperbola, parabola, a pair
of intersecting, parallel, or coinciding lines, a “thick” point
or the empty set. In a suitable Cartesian coordinate system,
the curve is described by one of the standard equations:

X2

α2
± Y 2

β2
= 1,−1, or 0; Y = kX2; X2 = k.

8In fact this is the point of intersection of a pair of “imaginary” lines consisting
of non-real solutions.
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EXERCISES

61. Find the places of the following quadratic curves in our classification:
y = x2 + x, xy = 1, xy = 0, xy = y, x2 + x = y2 − y, x2 + x+ y2 − y = 0.

62. Following the steps of our classification, reduce the quadratic equation
x2 + xy+ y2 +

√
2(x− y) = 0 to one of the standard forms. Show that the

curve is an ellipse, and find its semiaxes. � �

63. Use our classification theorem to prove that, with the exception of
parabolas, each conic section has a center of symmetry. �

64. Locate foci of (a) ellipses and (b) hyperbolas given by the standard
equations x2/α2 ± y2/β2 = 1, where α > β > 0. �

65. Show that “renaming coordinates” can be accomplished by a linear
geometric transformation on the plane. �

66. Prove that ellipses are obtained by stretching (or shrinking) unit circles
in two perpendicular directions with two different coefficients.

67. From the Orthogonal Diagonalization Theorem on the plane, derive
the following Inertia Theorem for quadratic forms in two variables: Ev-
ery quadratic form on the plane in a suitable (not necessarily Cartesian)
coordinate system assumes one of the forms:

X2 + Y 2, X2 − Y 2, −X2 − Y 2, X2, −Y 2, 0.

Sketch graphs of these functions.

68. Complete the squares to find out which of the following curves are
ellipses and which are hyperbolas: � �

x2 +4xy = 1, x2 +2xy+4y2 = 1, x2 +4xy+4y2 = 1, x2 +6xy+4y2 = 1.

69. Show that a quadratic form ax2 + 2bxy + cy2 is, up to a sign ±, the
square (αx + βy)2 of a linear function if and only if ac = b2. �

70. Show that if, in addition to rotation, reflection, translation of coor-
dinate systems, and multiplication of a quadratic equation by a non-zero
constant, the change of scales of the coordinates is also allowed, then each
quadratic equation can be transformed to one of the following 9 normal
forms:

x2 + y2 = 1, x2 + y2 = 0, x2 + y2 = −1, x2 − y2 = 1, x2 − y2 = 0,
x2 = y, x2 = 1, x2 = 0, x2 = −1.

71. Examine the curves defined by the above equations to conclude that
they fall into 8 different types.

72. Find the place of x2 − 4y2 = 2x− 4y in the classification of quadratic
curves. �



4 Problems of Linear Algebra

Classifications in mathematics

Classifications are intended to bring order into seemingly complex
or chaotic matters. Yet, there is a major difference between, say,
our classification of quadratic curves and Carl Linnaeus’ Systema
Naturae.

For two quadratic curves to be in the same class, it is not enough
that they share a number of features. What is required is a transfor-
mation of a prescribed type that would transform one of the curves
into the other, and thus make them equivalent in this sense, i.e. the
same up to such transformations.

What types of transformations are allowed (e.g., changes to ar-
bitrary new coordinate systems, or only to Cartesian ones) may be
a matter of choice. With every choice, the classification of objects
of a certain kind (i.e. quadratic curves in our example) up to trans-
formations of the selected type becomes a well-posed mathematical
problem.

A complete answer to a classification problem should consist of
– a list of normal (or canonical) forms, i.e. representatives of the
classes of equivalence, and
– a classification theorem establishing that each object of the kind
(quadratic curve in our example) is equivalent to exactly one of the
normal forms, i.e. in other words, that

(i) each object can be transformed into a normal form, and
(ii) no two normal forms can be transformed into each other.

Simply put, Linear Algebra deals with classifications of linear
and/or quadratic equations, or systems of such equations. One might
think that all that equations do is ask: Solve us! Unfortunately this
attitude toward equations does not lead too far. It turns out that
very few equations (and kinds of equations) can be explicitly solved,
but all can be studied and many classified.

The idea is to replace a given “hard” (possibly unsolvable) equa-
tion with another one, the normal form, which should be chosen to
be as “easy” as it is possible to find in the same equivalence class.
Then the normal form should be studied (and hopefully “solved”)
thus providing information about the original “hard” equation.

What sort of information? Well, any sort that remains invariant
under the equivalence transformations in question.

29



30 Chapter 1. INTRODUCTION

For example, in classification of quadratic curves up to changes
of Cartesian coordinate systems, all equivalent ellipses are indistin-
guishable from each other geometrically (in particular, they have the
same semiaxes) and differ only by the choice of a Cartesian coordi-
nate system. However, if arbitrary rescaling of coordinates is also
allowed, then all ellipses become indistinguishable from circles (but
still different from hyperbolas, parabolas, etc.)

Whether a classification theorem really simplifies the matters, de-
pends on the kind of objects in question, the chosen type of equiva-
lence transformations, and the applications in mind. In practice, the
problem often reduces to finding sufficiently simple normal forms and
studying them in great detail.

The subject of linear algebra fits well into the general philosophy
just outlined. Below, we formulate four model classification problems
of linear algebra, solve them by bare hands in the simplest case of
dimension 1, and state the respective general answers. Together with
a number of variations and applications, which will be presented later
in due course, these problems form what is usually considered the
main course of linear algebra.

The Rank Theorem

Question. Given m linear functions in n variables,

y1 = a11x1 + ...+ a1nxn
...

ym = am1x1 + ...+ amnxn

,

what is the simplest form to which they can be transformed by linear
changes of the variables,

y1 = b11Y1 + ...+ b1mYm
...

ym = bm1Y1 + ...+ bmmYm
,

x1 = c11X1 + ...+ c1nXn

...
xn = cn1X1 + ...+ cnnXn

?

Example. Consider a linear function in one variable: y = ax. We
are allowed to make substitutions y = bY and x = cX, where however
b 6= 0 and c 6= 0 (so that we could reverse the substitutions). The
substitutions will result in a new, transformed function: Y = b−1acX.
Clearly, if a = 0, then no matter what substitution we make, the
linear function will remain identically zero. On the other hand, if
a 6= 0, we can choose such values of b and c that the coefficient b−1ac



4. Problems of Linear Algebra 31

becomes equal to 1 (e.g. take b = 1 and c = a−1). Thus, every
linear function y = ax is either identically zero: Y = 0, or can be
transformed to Y = X.

Theorem. Every system of m linear functions in n vari-
ables can be transformed by suitable linear changes of depen-
dent and independent variables to exactly one of the normal
forms:

Y1 = X1, . . . , Yr = Xr, Yr+1 = 0, . . . , Ym = 0,

where 0 ≤ r ≤ m,n.

The number r featuring in the answer is called the rank of the
given system of m linear functions.

EXERCISES

73. Transform explicitly one linear function y = −3x to the normal form
prescribed by the Rank Theorem.

74. The same for the linear function y = 3x1 − 2x2.

75. The same for the system: y1 = x1 + x2, y2 = x1 − x2.

76. Use the Rank Theorem to prove that if two systems of m linear func-
tions in n variables have the same rank then they can be transformed into
each other by linear changes of dependent and independent variables. �

The Inertia Theorem

Question. Given a quadratic form (i.e. a homogeneous quadratic
function) in n variables,

Q = q11x
2
1 + 2q12x1x2 + 2q13x1x3 + ...+ qnnx

2
n,

what is the simplest form to which it can be transformed by a linear
change of the variables

x1 = c11X1 + ...+ c1nXn

...
xn = cn1X1 + ...+ cnnXn

?

Example. A quadratic form in one variable, x, has the form qx2.
A substitution x = cX (with c 6= 0), transforms it into qc2X2. Of
course, if q = 0, no substitution will change the fact that the function
is identically zero. When q 6= 0, we can make the absolute value of
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coefficient qc2 equal to 1 (by choosing c = ±
√

|q−1|). However, no
substitution will change the sign of the coefficient (that is, a positive
quadratic form will remain positive, and negative will remain nega-
tive). Thus, every quadratic form in one variable can be transformed
to exactly one of these: X2, −X2, or 0.

Theorem. Every quadratic form in n variables can be
transformed by a suitable linear change of the variables to
exactly one of the normal forms:

X2
1 + ...+X2

p −X2
p+1 − ...−X2

p+q where 0 ≤ p+ q ≤ n.

Note that, in a way, the theorem claims that the n-dimensional
case can be reduced to the sum (we will later call it “direct sum”)
of n one-dimensional answers found in the example: X2, −X2, or 0.
The possibility of such reduction of a higher-dimensional problem to
the direct sum of one-dimensional problems is a standard theme of
linear algebra.

The numbers p and q of positive and negative squares in the
normal form are called inertia indices of the quadratic form in
question. If the quadratic form Q is known to be positive everywhere
outside the origin, the Inertia Theorem tells us that in a suitable
coordinate system Q assumes the form X2

1 + ...+X2
n, i.e. its inertia

indices are p = n, q = 0.

EXERCISES

77. Transform explicitly the quadratic forms 4x2 and −9y2 to their normal
forms prescribed by the Inertia Theorem.

78. Transform the quadratic forms from the previous exercise into each
other by a substitution x = cy with possibly complex value of c.

79. Classify quadratic forms Q = ax2 in one variable with complex coeffi-
cients (i.e. a ∈ C) up to complex linear changes: x = cX, c ∈ C, c 6= 0. �

80.⋆ In the Inertia Theorem with n = 2, show that that there are 6 normal
forms, and prove that they are pairwise non-equivalent. �

81. Find the indices of inertia of the quadratic form Q(x, y) = xy. �

82. Show that X2
1 + ... + X2

n is the only one of the normal forms of the
Inertia Theorem which is positive everywhere outside the origin.

83. Sketch the level surfaces Q(X1, X2, X3) = const for all normal forms
in the Inertia Theorem with n = 3.

84. How many normal forms are there in the Inertia Theorem for quadratic
forms in n variables? �
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The Orthogonal Diagonalization Theorem

Question. Given two homogeneous quadratic forms in n variables,
Q(x1, ..., xn) and S(x1, ..., xn), of which the first one is known to be
positive everywhere outside the origin, what is the simplest form to
which they can be simultaneously transformed by a linear change of
the variables?

Example. In the case n = 1, we have Q(x) = qx2, where q > 0,
and S(x) = sx2, where s is arbitrary. As we know, the first quadratic

form is transformed by the substitution x = q−1/2X into X2. The
same transformation will change S into λX2 with λ = sq−1. Of
course, one can make S to be ±X̃2 (if s 6= 0) by rescaling the variable
once again, but this may destroy the form X2 of the function Q. In
fact the only substitutions X = CX̃ which preserve Q (i.e. don’t
change the coefficient) are those with C = ±1. Unfortunately such
substitutions do not affect at all the coefficient λ in the function S:
λX2 = λ(±X̃)2 = λX̃2. We conclude that each pair Q, S can be
transformed into one of the pairs X2, λX2, where λ is a real number,
but two such pairs with different values of λ cannot be transformed
into each other.

Theorem. Every pair Q, S of quadratic forms in n vari-
ables, of which Q is positive everywhere outside the origin,
can be transformed by a linear change of the variables into
exactly one of the normal forms

Q = X2
1 + ...+X2

n, S = λ1X
2
1 + ...+ λnX

2
n, where λ1 ≥ ... ≥ λn.

The real numbers λ1, . . . , λn are called eigenvalues of the given
pair of quadratic forms (and are often said to form their spectrum).

Note that this theorem, too, reduces the n-dimensional problem
to the “direct sum” of n one-dimensional problems solved in our Ex-
ample.

EXERCISES

85. Prove the Orthogonal Diagonalization Theorem for n = 2 using results
of Section 3. �

86. Transform explicitly the quadratic form Q = 3x2 + 16y2 + 9z2 to its
normal form prescribed by the Inertia theorem, and apply the same trans-
formation to the quadratic form S = x2 − 4y2 + 12yz.

87. Find the spectrum of the pair of quadratic forms: Q = 3x2+16y2+9z2,
S = x2 − 4y2 + 12z2.
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The Jordan Canonical Form Theorem

The fourth question deals with a system of n linear functions in n
variables. Such an object is the special case of systems of m func-
tions in n variables when m = n. According to the Rank Theo-
rem, such a system of rank r ≤ n can be transformed to the form
Y1 = X1, . . . , Yr = Xr, Yr+1 = · · · = Yn = 0 by linear changes of
dependent and independent variables. There are many cases however
where relevant information about the system is lost when depen-
dent and independent variables are changed separately. This happens
whenever both groups of variables describe objects in the same space
(rather than in two different ones).

An important class of examples comes from the theory of Ordi-
nary Differential Equations (ODE for short).

Example. Consider a linear first order ODE ẋ = λx. It relates
the values x(t) of an unknown function, x, with its rate of change
in time, ẋ (which is the short notation for dx/dt). A rescaling of
the function by x = cX would make little sense if not accompanied
with the simultaneous rescaling of the rate, ẋ = cẊ (we assume that
the rescaling coefficient c is time-independent). Unfortunately, such

a rescaling does not affect the form of the equation: Ẋ = c−1λcX =
λX. We conclude that no two linear first order ODEs ẋ = λx with
different values of the coefficient λ can be transformed into each other
by a linear change of the variable.

We will describe the fourth classification problem in the context
of the ODE theory, although it can be stated more abstractly as a
problem about n linear functions in n variables, to be transformed
by a single linear change acting on both dependent and independent
variables the same way.

Question.Given a system of n linear homogeneous 1st order con-
stant coefficient ODEs in n unknowns:

ẋ1 = a11x1 + ...+ a1nxn
...

ẋn = an1x1 + ...+ annxn
,

what is the simplest form to which it can be transformed by a linear
change of the unknowns:

x1 = c11X1 + ...+ c1nXn

...
xn = cn1X1 + ...+ cnnXn

?
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There is an advantage in answering this question over C, i.e. as-
suming that the coefficients cij in the change of variables, as well as
the coefficients aij of the given ODE system are allowed to be com-
plex numbers. The advantage is due to the unifying power of the
Fundamental Theorem of Algebra, discussed in Supplement “Com-
plex Numbers.”

Example. Consider a single mth order linear ODE of the form:

(
d

dt
− λ)my = 0, where λ ∈ C.

By setting

y = x1,
d

dt
y − λy = x2, (

d

dt
− λ)2y = x3, . . . , (

d

dt
− λ)m−1y = xm,

the equation can be written as the following system of m ODEs of
the 1st order:

ẋ1 = λx1 + x2
ẋ2 = λx2 + x3

...
ẋm−1 = λxm−1 + xm
ẋm = λxm

.

Let us call this system the Jordan block of size m with the
eigenvalue λ. Introduce a Jordan system of several Jordan blocks
of sizes m1, ...,mr with the eigenvalues λ1, ..., λr . It can be similarly
compressed into the system

(
d

dt
− λ1)

m1y1 = 0, ..., (
d

dt
− λr)

mryr = 0

of r unlinked ODEs of the orders m1, ...,mr.

The numbers λ1, . . . , λr here are not assumed to be necessarily
distinct. In fact they are the roots of a certain degree n polynomial,
p(λ) = (λ−λ1)m1 · · · (λ−λr)mr , (called the characteristic polyno-
mial), which can be associated with every linear ODE system, and
does not change under the linear changes of the unknowns. When the
polynomial has all its n roots distinct (that is, all mi = 1, and r = n),
the Jordan system assumes the form ẋ1 = λ1x1, . . . , ẋn = λnxn of
n unlinked first order ODEs discussed in our one-dimensional ex-
ample. However, the theorem below implies that not every linear
ODE system can be reduced to such a superposition (or direct sum)
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of one-dimensional ODEs. In particular, a single Jordan block of
size m > 1 cannot be transformed into the superposition of one-
dimensional ODEs.

Theorem. Every constant coefficient system of n linear
1st order ODEs in n unknowns can be transformed by a
complex linear change of the unknowns into exactly one
(up to reordering of the blocks) of the Jordan systems with
m1 + ...+mr = n.

EXERCISES

88. Find the general solution to the differential equation ẋ = λx. �

89. Find the general solution to the system of ODE: ẋ = 3x, ẏ = −y,
ż = 0. �

90. Verify that y(t) = eλt
(

c0 + tc1 + ...+ cm−1t
m−1

)

, where ci ∈ C are

arbitrary constants, is the general solution to the ODE ( d
dt

− λ)my = 0.

91. Rewrite the pendulum equation ẍ = −x as a system. �

92.⋆ Identify the Jordan form of the system ẋ1 = x2, ẋ2 = −x1. �

93.⋆ Find the general solution to the system ẋ1 = x2, ẋ2 = 0, and sketch
the trajectories (xt(t), x2(t)) on the plane. Prove that the system cannot be
transformed into any system ẏ1 = λ1y1, ẏ2 = λ2y2 of two unlinked ODEs.

Fools and wizards

In the rest of the book we will undertake a more systematic study of
the four basic problems and prove the classification theorems stated
here. However, the reader (not unlike a fairy-tale hero) should be
prepared to meet the following three challenges of the next Chapter.

Firstly, linear algebra has developed an adequate language, based
on the abstract notion of vector space. It allows one to represent
relevant mathematical objects and results in ways much less cum-
bersome and thus more efficient than those found in the previous
discussion. This language is introduced at the beginning of Chapter
2. The challenge here is to get accustomed to the abstract way of
thinking.

Secondly, one will find there much more diverse material than
what has been described in the Introduction. This is because many
mathematical objects and classification problems about them can be
reduced (speaking loosely or literally) to the four problems discussed
above. The challenge is to learn how to recognize situations where
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results of linear algebra can be helpful. Many of those objects will
be introduced in the middle section of Chapter 2.

Finally, we will encounter one more fundamental result of linear
algebra, which is not a classification, but an important (and beau-
tiful) formula. It answers the question: Which substitutions of the
form

x1 = c11X1 + ...+ c1nXn

...
xn = cn1X1 + ...+ cnnXn

are indeed changes of the variables and can therefore be inverted by ex-
pressing X1, ...,Xn linearly in terms of x1, ..., xn, and how to describe
such inversion explicitly? The answer is given in terms of the deter-
minant, a remarkable function of n2 variables c11, ..., cnn, which will
also be studied in Chapter 2.

Let us describe now the principle by which our four main themes
are grouped in Chapters 3 and 4.

Note that Jordan canonical forms and the normal forms in the
Orthogonal Diagonalization Theorem do not form discrete lists, but
instead depend on continuous parameters — the eigenvalues. Based
on experience with many mathematical classifications, it is consid-
ered that the number of parameters on which equivalence classes in a
given problem depend, is the right measure of complexity of the clas-
sification problem. Thus, Chapter 3 deals with simple problems of
Linear Algebra, i.e. those classification problems where equivalence
classes do not depend on continuous parameters. Respectively, the
non-simple problems are studied in Chapter 4.

Finally, let us mention that the proverb: Fools ask questions that
wizards cannot answer, fully applies in Linear Algebra. In addition to
the four basic problems, there are many similarly looking questions
that one can ask: for instance, to classify triples of quadratic forms in
n variables up to linear changes of the variables. In fact, in this prob-
lem, the number of parameters, on which equivalence classes depend,
grows with n at about the same rate as the number of parameters
on which the three given quadratic forms depend. We will have a
chance to touch upon such problems of Linear Algebra in the last,
Epilogue section, in connection with quivers. The modern attitude
toward such problems is that they are unsolvable.
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EXERCISES

94. Using results of Section 3, derive the Inertia Theorem for n = 2.

95. Show that classification of real quadratic curves up to linear inhomoge-
neous changes of coordinates consists of 8 equivalence classes, but if the co-
ordinate systems are required to remain Cartesian, then there are infinitely
many equivalence classes, which depend on 2 continuous parameters.

96. Is there any difference between classification of quadratic equations
F (x, y) = 0 up to linear inhomogeneous coordinate changes and multi-
plication of the equations by non-zero constants, and of quadratic curves
{(x, y) | F (x, y) = 0} up to the same type of coordinate transformations? �

97.⋆ From the Orthogonal Diagonalization Theorem (as it is stated in this
Section) in the case n = 2, derive the “toy version” proved in Section 3. �

98. Let us represent a quadratic form ax2+2bxy+cy2 by the point (a, b, c)
in the 3-space. Show that the surface ac = b2 is a cone. �

99. Locate the 6 normal forms (x2+y2, x2−y2,−x2−y2, x2,−y2, 0) of the
Inertia Theorem with respect to the cone ac = b2 on Figure 22.

Figure 22
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− 

+ 

+ +

− − 

0

100. The cone ac = b2 divides the 3-space into three regions (Figure 22).
Show that these three regions, together with the two branches of the cone
itself, and the origin form the partition of the space into 6 parts which
exactly correspond to the 6 equivalence classes of the Inertia Theorem in
dimension 2.

101. How many arbitrary coefficients are there in a quadratic form in n
variables? �

102.⋆ Show that equivalence classes of triples of quadratic forms in n vari-
ables must depend on at least n2/2 parameters. �



3 Determinants

Definition

Let A be a square matrix of size n:

A =





a11 ... a1n
...

an1 ... ann





Its determinant is a scalar detA defined by the formula

detA =
∑

σ

ε(σ)a1σ(1)a2σ(2)...anσ(n).

Here σ is a permutation of the indices 1, 2, ..., n. A permutation
σ can be considered as an invertible function i 7→ σ(i) from the
set of n elements {1, ..., n} to itself. We use the functional no-
tation σ(i) in order to specify the i-th term in the permutation

σ =
(

1 . . . n
σ(1) . . . σ(n)

)

. Thus, each elementary product in the

determinant formula contains exactly one matrix entry from each
row, and these entries are chosen from n different columns. The sum
is taken over all n! ways of making such choices. The coefficient ε(σ)
in front of the elementary product equals 1 or −1 and is called the
sign of the permutation σ.

We will explain the general rule of the signs after a few examples.
In these examples, we begin using one more conventional notation for
determinants. According to it, a square array of matrix entries placed
between two vertical bars denotes the determinant of the matrix.

Thus,

[

a b
c d

]

denotes a matrix, but

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

denotes a number

equal to the determinant of that matrix.

Examples. (1) For n = 1, the determinant |a11| = a11.

(2) For n = 2, we have:

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

= a11a22 − a12a21.

(3) For n = 3, we have 3! = 6 summands
∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

=

a11a22a33−a12a21a33+a12a23a31−a13a22a31+a13a21a32−a11a23a32
corresponding to permutations

(123
123

)

,
(123
213

)

,
(123
231

)

,
(123
321

)

,
(123
312

)

,
(123
132

)

.

73
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The rule of signs for n = 3 is schematically shown on Figure 28.

Figure 28

EXERCISES

203. Prove that the following determinant is equal to 0:
∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 a b
0 0 0 c d
0 0 0 e f
p q r s t
v w x y z

∣

∣

∣

∣

∣

∣

∣

∣

∣

. �

204. Compute determinants:
∣

∣

∣

∣

cos x − sinx
sinx cos x

∣

∣

∣

∣

,

∣

∣

∣

∣

coshx sinhx
sinhx coshx

∣

∣

∣

∣

,

∣

∣

∣

∣

cos x sin y
sinx cos y

∣

∣

∣

∣

. �

205. Compute determinants:
∣

∣

∣

∣

∣

0 1 1
1 0 1
1 1 0

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

0 1 1
1 2 3
1 3 6

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

1 i 1 + i
−i 1 0
1− i 0 1

∣

∣

∣

∣

∣

. �

The parity of permutations

The general rule of signs relies on properties of permutations.

Let ∆n denote the following polynomial in n variables x1, . . . , xn:

∆n(x1, . . . , xn) =
∏

1≤i<j≤n

(xi − xj).

Examples: ∆2 = x1 − x2, ∆3 = (x1 − x2)(x1 − x3)(x2 − x3). By
definition, ∆1 = 1. In general, ∆n is the product of all “n-choose-2”
linear factors xi − xj written in such a way that i < j.

Let σ be a permutation of {1, . . . , n}. It acts on polynomials P in
the variables x1, . . . , xn by permutation of the variables:
(σP )(x1, . . . , xn) := P (xσ(1), . . . , xσ(n)).
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Example. Let σ =
(

1 2 3
3 1 2

)

. Then

σ∆3 = (x3−x1)(x3−x2)(x1−x2) = (−1)2(x1−x3)(x2−x3)(x1−x2).

One says that σ inverses a pair of indices i < j if σ(i) > σ(j).
The total number l(σ) of pairs i < j that σ inverses is called the
length of the permutation σ. Thus, in the previous example, σ
inverses the pairs (1, 2) and (1, 3), and has length l(σ) = 2.

Lemma. σ∆n = ε(σ)∆n, where ε(σ) = (−1)l(σ).

Proof. Indeed, a permutation of {1, . . . , n} also permutes all
pairs i 6= j, and hence permutes all the linear factors in ∆n. However,
a factor xi − xj is transformed into xσ(i) − xσ(j), which occurs in the
product ∆n with the same sign whenever σ(i) < σ(j), and with the
opposite sign whenever σ(i) > σ(j). Thus, σ∆n differs from ∆n by

the sign (−1)l(σ). �

A permutation σ is called even or odd depending on the sign
ε(σ), i.e. when the length is even or odd respectively.

Examples. (1) The identity permutation id (defined by id(i) =
i for all i) is even since l(id) = 0.

(2) Consider a transposition τ , i.e. a permutation that swaps
two indices, say i < j, leaving all other indices in their respective
places. Then τ(j) < τ(i), i.e. τ inverses the pair of indices i < j.
Besides, for every index k such that i < k < j we have: τ(j) < τ(k) <
τ(i), i.e. both pairs i < k and k < j are inverted. Note that all other
pairs of indices are not inverted by τ , and hence l(τ) = 2(j − i) + 1.
In particular, every transposition is odd: ε(τ) = −1.

Proposition. Composition of two even or two odd permu-
tations is even, and composition of one even and one odd
permutation is odd: ε(σσ′) = ε(σ)ε(σ′).

Proof. We have:

ε(σσ′)∆n := (σσ′)∆n = σ(σ′∆n) = ε(σ′)σ∆n = ε(σ′)ε(σ)∆n.

Corollary 1. Inverse permutations have the same parity.

Corollary 2. Whenever a permutation is written as the
product of transpositions, the parity of the number of the
transpositions in the product remains the same and coin-
cides with the parity of the permutation: If σ = τ1 . . . τN ,
then ε(σ) = (−1)N .
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Here are some illustrations of the above properties in connection
with the definition of determinants.

Examples. (3) The transposition (21) is odd. That is why the
term a12a21 occurs in 2× 2-determinants with the negative sign.

(4) The permutations
(123
123

)

,
(123
213

)

,
(123
231

)

,
(123
321

)

,
(123
312

)

,
(123
132

)

have
lengths l = 0, 1, 2, 3, 2, 1 and respectively signs ε = 1,−1, 1,−1, 1,−1
(thus explaining Figure 28). Notice that each next permutation here
is obtained from the previous one by an extra flip.

(5) The permutation
(1234
4321

)

inverses all the 6 pairs of indices and
has therefore length l = 6. Thus the elementary product a14a23a32a41
occurs with the sign ε = (−1)6 = +1 in the definition of 4 × 4-
determinants.

(6) Since inverse permutations have the same parity, the definition
of determinants can be rewritten “by columns:”

detA =
∑

σ

ε(σ)aσ(1)1 ...aσ(n)n.

Indeed, each summand in this formula is equal to the summand in
the original definition corresponding to the permutation σ−1, and
vice versa. Namely, reordering the factors aσ(1)1...aσ(n)n, so that
σ(1), . . . , σ(n) increase monotonically, yields a1σ−1(1)...anσ−1(n).

EXERCISES

206. List all the 24 permutations of {1, 2, 3, 4}, find the length and the sign
of each of them. �

207. Find the length of the following permutation:
(

1 2 . . . k k + 1 k + 2 . . . 2k
1 3 . . . 2k − 1 2 4 . . . 2k

)

. �

208. Find the maximal possible length of permutations of {1, ..., n}. �

209. Find the length of a permutation

(

1 . . . n
i1 . . . in

)

given the length l

of the permutation

(

1 . . . n
in . . . i1

)

. �

210. Prove that inverse permutations have the same length. �

211. Compare the parities of permutations of the letters a,g,h,i,l,m,o,r,t in
the words logarithm and algorithm. �

212. Prove that the identity permutations are the only ones of length 0.

213. Find all permutations of length 1. �
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214.⋆ Show that every permutation σ can be written as the product of l(σ)
transpositions of nearby indices. �

215.⋆ Represent the permutation

(

1 2 3 4 5
4 5 1 3 2

)

as a composition of

as few transpositions as possible. �

216. Do the products a13a24a53a41a35 and a21a13a34a55a42 occur in the
defining formula for determinants of size 5? �

217. Find the signs of the elementary products a23a31a42a56a14a65 and
a32a43a14a51a66a25 in the definition of determinants of size 6 by computing
the numbers of inverted pairs of indices. �

Properties of determinants

(i) Transposed matrices have equal determinants:

detAt = detA.

This follows from the last Example. Below, we will think of an
n × n matrix as an array A = [a1, . . . ,an] of its n columns of size n
(vectors from C

n if you wish) and formulate all further properties of
determinants in terms of columns. The same properties hold true for
rows, since the transposition of A changes columns into rows without
changing the determinant.

(ii) Interchanging any two columns changes the sign of
the determinant:

det[...,aj , ...,ai, ...] = − det[...,ai, ...,aj , ...].

Indeed, the operation replaces each permutation in the definition
of determinants by its composition with the transposition of the in-
dices i and j. Thus changes the parity of the permutation, and thus
reverses the sign of each summand.

Rephrasing this property, one says that the determinant, consid-
ered as a function of n vectors a1, . . . ,an is totally anti-symmetric,
i.e. changes the sign under every odd permutation of the vectors, and
stays invariant under even. It implies that a matrix with two equal
columns has zero determinant. It also allows one to formulate further
column properties of determinants referring to the 1st column only,
since the properties of all columns are alike.

(iii) Multiplication of a column by a number multiplies
the determinant by this number:

det[λa1,a2, ...,an] = λdet[a1,a2, ...,an].
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Indeed, this operation simply multiplies each of the n! elementary
products by the factor of λ.

This property shows that a matrix with a zero column has zero
determinant.

(iv) The determinant function is additive with respect to
each column:

det[a′1 + a′′1 ,a2, ...,an] = det[a′1,a2, ...,an] + det[a′′1,a2, ...,an].

Indeed, each elementary product contains exactly one factor
picked from the 1-st column and thus splits into the sum of two ele-
mentary products a′σ(1)1aσ(2)2...aσ(n)n and a′′σ(1)1aσ(2)2...aσ(n)n. Sum-

ming up over all permutations yields the sum of two determinants on
the right hand side of the formula.

The properties (iv) and (iii) together mean that the determinant
function is linear with respect to each column separately. Together
with the property (ii), they show that adding a multiple of one
column to another one does not change the determinant of
the matrix. Indeed,

|a1 + λa2,a2, ...| = |a1,a2, ...| + λ |a2,a2, ...| = |a1,a2, ...| ,

since the second summand has two equal columns.

The determinant function shares all the above properties with the
identically zero function. The following property shows that these
functions do not coincide.

(v) det I = 1.

Indeed, since all off-diagonal entries of the identity matrix are
zeroes, the only elementary product in the definition of detA that
survives is a11...ann = 1.

The same argument shows that the determinant of any diagonal
matrix equals the product of the diagonal entries. It is not hard to
generalize the argument in order to see that the determinant of any
upper or lower triangular matrix is equal to the product of the diago-
nal entries. One can also deduce this from the following factorization
property valid for block triangular matrices.

Consider an n×n-matrix

[

A B
C D

]

subdivided into four blocks

A,B,C,D of sizes m×m, m× l, l×m and l× l respectively (where
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of course m+ l = n). We will call such a matrix block triangular
if C or B is the zero matrix 0. We claim that

det

[

A B
0 D

]

= detA detD.

Indeed, consider a permutation σ of {1, ..., n} which sends at least
one of the indices {1, ...,m} to the other part of the set,
{m+1, ...,m+ l}. Then σ must send at least one of {m+1, ...,m+ l}
back to {1, ...,m}. This means that every elementary product in
our n × n-determinant which contains a factor from B must also
contain a factor from C, and hence vanish, if C = 0. Thus only
the permutations σ which permute {1, ...,m} separately from {m +
1, ...,m + l} contribute to the determinant in question. Elementary
products corresponding to such permutations factor into elementary
products from detA and detD and eventually add up to the product
detAdetD.

Of course, the same holds true if B = 0 instead of C = 0.

We will use the factorization formula in the 1st proof of the fol-
lowing fundamental property of determinants.

EXERCISES

218. Compute the determinants

∣

∣

∣

∣

13247 13347
28469 28569

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

246 427 327
1014 543 443
−342 721 621

∣

∣

∣

∣

∣

. �

219. The numbers 195, 247, and 403 are divisible by 13. Prove that the

following determinant is also divisible by 13:

∣

∣

∣

∣

∣

1 9 5
2 4 7
4 0 3

∣

∣

∣

∣

∣

. �

220. An office and home phone numbers are written as 7×1-matrix O and
1× 7-matrix H respectively. Compute det(OH). �

221. How does a determinant change if all of its n columns are rewritten
in the opposite order? �

222.⋆ Solve the equation

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x x2 ... xn

1 a1 a21 ... an1
1 a2 a22 ... an2

...
1 an a2n ... ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, where all a1, ..., an

are given distinct numbers. �

223. Prove that an anti-symmetric matrix of size n has zero determinant
if n is odd. �
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Multiplicativity

Theorem. The determinant is multiplicative with respect to
matrix products: for arbitrary n× n-matrices A and B,

det(AB) = (detA)(detB).

We give two proofs: one ad hoc, the other more conceptual.

Proof I. Consider the auxiliary 2n×2n matrix

[

A 0
−I B

]

with

the determinant equal to the product (detA)(detB) according to the
factorization formula. We begin to change the matrix by adding to
the last n columns linear combinations of the first n columns with
such coefficients that the submatrix B is eventually replaced by zero
submatrix. Thus, in order to kill the entry bkj we must add the bkj-
multiple of the k-th column to the n+ j-th column. According to the
properties of determinants (see (iv)) these operations do not change

the determinant but transform the matrix to the form

[

A C
−I 0

]

.

We ask the reader to check that the entry cij of the submatrix C in
the upper right corner equals ai1b1j + ... + ainbnj so that C = AB
is the matrix product! Now, interchanging the i-th and n + i-th
columns, i = 1, ..., n, we change the determinant by the factor of

(−1)n and transform the matrix to the form

[

C A
0 −I

]

. The factor-

ization formula applies again and yields detC det(−I). We conclude
that detC = detAdetB since det(−I) = (−1)n compensates for the
previous factor (−1)n. �

Proof II. We will first show that the properties (i – v) com-
pletely characterize det[v1, . . . ,vn] as a function of n columns vi of
size n.

Indeed, consider a function f , which to n columns v1, . . . ,vn,
associates a number f(v1, . . . ,vn). Suppose that f is linear with
respect to each column. Let ei denote the ith column of the identity
matrix. Since v1 =

∑n
i=1 vi1ei, we have:

f(v1,v2, . . . ,vn) =
n
∑

i=1

vi1f(ei,v2, . . . ,vn).

Using linearity with respect to the 2nd column v2 =
∑n

j=1 vj2ej, we
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similarly obtain:

f(v1,v2, . . . vn) =
n
∑

i=1

n
∑

j=1

vi1vj2f(ei, ej,v3, . . . ,vn).

Proceeding the same way with all columns, we get:

f(v1, . . . ,vn) =
∑

i1,...,in

vi11 · · · vinnf(ei1 , . . . , ein).

Thus, f is determined by its values f(ei1 , . . . , ein) on strings of n
basis vectors.

Let us assume now that f is totally anti-symmetric. Then, if any
two of the indices i1, . . . , in coincide, we have: f(ei1 , . . . , ein) = 0.

All other coefficients correspond to permutations σ =
(

1 . . . n
i1 . . . in

)

of the indices (1, . . . , n), and hence satisfy:

f(ei1 , . . . , ein) = ε(σ)f(e1, . . . , en).

Therefore, we find:

f(v1, . . . ,vn) =
∑

σ

vσ(1)1 . . . vσ(n)nε(σ)f(e1, . . . , en),

= f(e1, . . . , en) det[v1, . . . ,vn].

Thus, we have established:

Proposition 1. Every totally anti-symmetric function of
n coordinate vectors of size n which is linear in each of them
is proportional to the determinant function.

Next, given an n× n matrix C, put

f(v1, . . . ,vn) := det[Cv1, . . . , Cvn].

Obviously, the function f is totally anti-symmetric in all vi (since
det is). Multiplication by C is linear:

C(λu+ µv) = λCu+ µCv for all u,v and λ, µ.

Therefore, f is linear with respect to each vi (as composition of two
linear operations). By the previous result, f is proportional to det.



82 Chapter 2. DRAMATIS PERSONAE

Since Cei are columns of C, we conclude that the coefficient of pro-
portionality f(e1, . . . , en) = detC. Thus, we have found the following
interpretation of detC.

Proposition 2. detC is the factor by which the determi-
nant function of n vectors vi is multiplied when the vectors
are replaced with Cvi.

Now our theorem follows from the fact that when C = AB, the
substitution v 7→ Cv is the composition v 7→ Av 7→ ABv of consec-
utive substitutions defined by A and B. Under the action of A, the
function det is multiplied by the factor detA, then under the action
of B by another factor detB. But the resulting factor (detA)(detB)
must be equal to detC. �

Corollary. If A is invertible, then detA is invertible.

Indeed, (detA)(detA−1) = det I = 1, and hence detA−1 is recip-
rocal to detA. The converse statement: that matrices with invertible
determinants are invertible, is also true due to the explicit formula
for the inverse matrix, described in the next section.

Remark. Of course, a real or complex number detA is invertible
whenever detA 6= 0. Yet over the integers Z this is not the case:
the only invertible integers are ±1. The above formulation, and sev-
eral similar formulations that follow, which refer to invertibility of
determinants, are preferable as they are more general.

EXERCISES

224. How do similarity transformations of a given matrix affect its deter-
minant? �

225. Prove that the sign of the determinant of the coefficient matrix of a
real quadratic form does not depend on the coordinate system. �

The Cofactor Theorem

In the determinant formula for an n × n-matrix A each elementary
product ±a1σ(1)... begins with one of the entries a11, ..., a1n of the
first row. The sum of all terms containing a11 in the 1-st place is
the product of a11 with the determinant of the (n − 1) × (n − 1)-
matrix obtained from A by crossing out the 1-st row and the 1-st
column. Similarly, the sum of all terms containing a12 in the 1-st
place looks like the product of a12 with the determinant obtained by
crossing out the 1-st row and the 2-nd column of A. In fact it differs
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by the factor of −1 from this product, since switching the columns
1 and 2 changes signs of all terms in the determinant formula and
interchanges the roles of a11 and a12. Proceeding in this way with
a13, ..., a1n we arrive at the cofactor expansion formula for detA
which can be stated as follows.

Figure 30

ij

i
j

1

2

3

4

5

1 52 43
11

a a

aa

1n

n1 nn

Figure 29

a

The determinant of the (n− 1)× (n− 1)-matrix obtained from A
by crossing out the row i and column j is called the (ij)-minor of A
(Figure 29). Denote it by Mij . The (ij)-cofactor Aij of the matrix
A is the number that differs from the minor Mij by a factor ±1:

Aij = (−1)i+jMij .

The chess-board of the signs (−1)i+j is shown on Figure 30. With
these notations, the cofactor expansion formula reads:

detA = a11A11 + a12A12 + ...+ a1nA1n.

Example.
∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

= a11

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

−a12
∣

∣

∣

∣

a21 a23
a31 a33

∣

∣

∣

∣

+a13

∣

∣

∣

∣

a21 a22
a31 a32

∣

∣

∣

∣

.

Using the properties (i) and (ii) of determinants we can adjust
the cofactor expansion to the i-th row or j-th column:

detA = ai1Ai1 + ...+ ainAin = a1jA1j + ...+ anjAnj, i, j = 1, ..., n.

These formulas reduce evaluation of n × n-determinants to that of
(n− 1)× (n− 1)-determinants and can be useful in recursive compu-
tations.

Furthermore, we claim that applying the cofactor formula to the
entries of the i-th row but picking the cofactors of another row we
get the zero sum:

ai1Aj1 + ...+ ainAjn = 0 if i 6= j.
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Indeed, construct a new matrix Ã replacing the j-th row by a copy of
the i-th row. This forgery does not change the cofactors Aj1, ..., Ajn

(since the j-th row is crossed out anyway) and yields the cofactor

expansion ai1Aj1+...+ainAjn for det Ã. But Ã has two identical rows

and hence det Ã = 0. The same arguments applied to the columns
yield the dual statement:

a1iA1j + ...+ aniAnj = 0 if i 6= j.

All the above formulas can be summarized in a single matrix identity.
Introduce the n×n-matrix adj(A), called adjugate to A, by placing
the cofactor Aij on the intersection of j-th row and i-th column. In
other words, each aij is replaced with the corresponding cofactor Aij ,
and then the resulting matrix is transposed:

adj





a11 . . . a1n
. . . aij . . .
an1 . . . ann



 =





A11 . . . An1

. . . Aji . . .
A1n . . . Ann



 .

Theorem. A adj(A) = (detA) I = adj(A) A.

Corollary. If detA is invertible then A is invertible, and

A−1 =
1

detA
adj(A).

Example. If ad− bc 6= 0, then

[

a b
c d

]−1

= 1
ad−bc

[

d −b
−c a

]

.

EXERCISES

226. Prove that the adjugate matrix of an upper (lower) triangular matrix
is upper (lower) triangular.

227. Which triangular matrices are invertible?

228. Compute the determinants: (∗ is a wild card):

(a)

∣

∣

∣

∣

∣

∣

∣

∗ ∗ ∗ an
∗ ∗ . . . 0
∗ a2 0 . . .
a1 0 . . . 0

∣

∣

∣

∣

∣

∣

∣

, (b)

∣

∣

∣

∣

∣

∣

∣

∗ ∗ a b
∗ ∗ c d
e f 0 0
g h 0 0

∣

∣

∣

∣

∣

∣

∣

. �

229. Compute determinants using cofactor expansions:

(a)

∣

∣

∣

∣

∣

∣

∣

1 2 2 1
0 1 0 2
2 0 1 1
0 2 0 1

∣

∣

∣

∣

∣

∣

∣

, (b)

∣

∣

∣

∣

∣

∣

∣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

∣

∣

∣

∣

∣

∣

∣

. �
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230. Compute the inverses of matrices using the Cofactor Theorem:

(a)

[

1 2 3
3 1 2
2 3 1

]

, (b)

[

1 1 1
0 1 1
0 0 1

]

. �

231. Solve the systems of linear equations Ax = b where A is one of the
matrices of the previous exercise, and b = [1, 0, 1]t. �

232. Compute






1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1







−1

.

233. Express det(adj(A)) of the adjugate matrix via detA. �

234. Which integer matrices have integer inverses? �

Cramer’s Rule

This is an application of the Cofactor Theorem to systems of linear
equations. Consider a system

a11x1+ · · ·+ a1nxn = b1
· · ·

an1x1+ · · ·+ annxn = bn

of n linear equations with n unknowns (x1, . . . , xn). It can be written
in the matrix form

Ax = b,

where A is the n×n-matrix of the coefficients aij , b = [b1, . . . , bn]
t is

the column of the right hand sides, and x is the column of unknowns.
In the following Corollary, ai denote columns of A.

Corollary. If detA is invertible then the system of linear
equations Ax = b has a unique solution given by the formu-
las:

x1 =
det[b,a2, ...,an]

det[a1, ...,an]
, . . . , xn =

det[a1, ...,an−1,b]

det[a1, ...,an]
.

Indeed, when detA 6= 0, the matrix A is invertible. Multi-
plying the matrix equation Ax = b by A−1 on the left, we find:
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x = A−1b. Thus the solution is unique, and xi = (detA)−1(A1ib1 +
... + Anibn) according to the cofactor formula for the inverse ma-
trix. But the sum b1A1i + ... + bnAni is the cofactor expansion for
det[a1, ...,ai−1,b,ai+1, ...,an] with respect to the i-th column.

Example. Suppose that a11a22 6= a12a21. Then the system

a11x1 + a12x2 = b1
a21x2 + a22x2 = b2

has a unique solution

x1 =

∣

∣

∣

∣

b1 a12
b2 a22

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

, x2 =

∣

∣

∣

∣

a11 b1
a21 b2

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

.

EXERCISES

235. Solve systems of equations using Cramer’s rule:

(a)
2x1 − x2 − x3 = 4

3x1 + 4x2 − 2x3 = 11
3x1 − 2x2 + 4x3 = 11

, (b)
x1 + 2x2 + 4x3 = 31
5x1 + x2 + 2x3 = 29
3x1 − x2 + x3 = 10

. �

Three cool formulas

We collect here some useful generalizations of previous results.

A. We don’t know of any reasonable generalization of determi-
nants to the situation when matrix entries do not commute. However

the following generalization of the formula det

[

a b
c d

]

= ad− bc is

instrumental in some non-commutative applications.10

In the block matrix

[

A B
C D

]

, assume that D−1 exists.

Then det

[

A B
C D

]

= det(A−BD−1C) detD.

Proof:

[

A B
C D

] [

I 0
−D−1C I

]

=

[

A−BD−1C B
0 D

]

.

10Notably in the definition of Berezinian in super-mathematics [10].
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B. Laplace’s formula11 below generalizes cofactor expansions.

By a multi-index I of length |I| = k we mean an increasing
sequence i1 < · · · < ik of k indices from the set {1, . . . , n}. Given
and n× n-matrix A and two multi-indices I, J of the same length k,
we define the (IJ)-minor MIJ of A as the determinant of the k× k-
matrix formed by the entries aiαjβ of A located at the intersections
of the rows i1, . . . , ik with columns j1, . . . , jk (see Figure 31). Also,
denote by Ī the multi-index complementary to I, i.e. formed by
those n− k indices from {1, . . . , n} which are not contained in I.

For each multi-index I = (i1, . . . , ik), the following cofactor
expansion with respect to rows i1, . . . , ik holds true:

detA =
∑

J :|J |=k

(−1)i1+···+ik+j1+···+jkMIJMĪ J̄ ,

where the sum is taken over all multi-indices J = (j1, . . . , jk)
of length k.

Similarly, one can similarly write Laplace’s cofactor expansion
formula with respect to given k columns.

Figure 31

i

i

i

j j
2 k

j
1

1

2

k

Example. Let a1,a2,a3,a4 and b1,b2,b3,b4 be 8 vectors on the

plane. Then

∣

∣

∣

∣

a1 a2 a3 a4
b1 b2 b3 b4

∣

∣

∣

∣

= |a1 a2||b3 b4| − |a1 a3||b2 b4|
+ |a1 a4||b2 b3|+ |a2 a3||b1 b4| − |a2 a4||b1 b3|+ |a3 a4||b1 b2|.

In the proof of Laplace’s formula, it suffices to assume that it is
written with respect to the first k rows, i.e. that I = (1, . . . , k). In-
deed, interchanging them with the rows i1 < · · · < ik takes
(i1 − 1) + (i2 − 2) + · · ·+ (ik − k) transpositions, which is accounted
for by the sign (−1)i1+···+ik in the formula.

11After Pierre-Simon Laplace (1749–1827).
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Next, multiplying out MIJMĪ J̄ , we find k!(n − k)! elementary
products of the form:

±a1,jα1
· · · ak,jαk

ak+1,j̄β1
· · · an,j̄βn−k

,

where α =
(

1 . . . k
α1 . . . αk

)

and β =
(

1 . . . n− k
β1 . . . βn−k

)

are permuta-

tions, and jαµ ∈ J , j̄βν
∈ J̄ . It is clear that the total sum over

multi-indices I contains each elementary product from detA, and
does it exactly once. Thus, to finish the proof, we need to compare
the signs.

The sign ± in the above formula is equal to ε(α)ε(β), the prod-
uct of the signs of the permutations α and β. The sign of this
elementary product in the definition of detA is equal to the sign

of the permutation
(

1 . . . k k + 1 . . . n
jα1

. . . jαk
j̄β1

. . . j̄βn−k

)

on the set

J ∪ J̄ = {1, . . . , n}. Reordering separately the first k and last n − k
indices in the increasing order changes the sign of the permutation
by ε(α)ε(β). Therefore the signs of all summands of detA which
occur in MIJMĪ J̄ are coherent. It remains to find the total sign with
which MIJMĪ J̄ occurs in detA, by computing the sign of the permu-

tation σ :=
(

1 . . . k k + 1 . . . n
j1 . . . jk j̄1 . . . j̄n−k

)

, where j1 < · · · jk and

j̄1 < · · · < j̄n−k.

Starting with the identity permutation (1, 2 . . . , j1, . . . , j2, . . . , n),
it takes j1 − 1 transpositions of nearby indices to move j1 to the 1st
place. Then it takes j2 − 2 such transpositions to move j2 to the 2nd
place. Continuing this way, we find that

ε(σ) = (−1)(j1−1)+···+(jk−k) = (−1)1+···+k+j1+···+jk .

This agrees with Laplace’s formula, since I = {1, . . . , k}. �.

C. Let A and B be k × n and n × k matrices (think of k < n).
For each multi-index I = (i1, . . . , ik), denote by AI and BI the k×k-
matrices formed by respectively: columns of A and rows of B with
the indices i1, . . . , ik.

The determinant of the k × k-matrix AB is given by the
following Binet–Cauchy formula:12

detAB =
∑

I

(detAI)(detBI).

12After Jacques Binet (1786–1856) and Augustin Louis Cauchy (1789–1857).
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Note that when k = n, this turns into the multiplicative property
of determinants: det(AB) = (detA)(detB). Our second proof of it
can be generalized to establish the formula of Binet–Cauchy. Namely,
let a1, . . . ,an denote columns of A. Then the jth column of C = AB
is the linear combination: cj = a1b1j + · · · + anbnj. Using linearity
in each cj , we find:

det[c1, . . . , ck] =
∑

1≤i1,...,ik≤n

det[ai1 , . . . ,aik ]bi11 · · · bikk.

If any two of the indices iα coincide, det[ai1 , . . . ,aik ] = 0. Thus the

sum is effectively taken over all permutations
(

1 . . . k
i1 . . . ik

)

on the

set13 {i1, . . . , ik}. Reordering the columns ai1 , . . . ,aik in the increas-
ing order of the indices (and paying the “fees” ±1 according to the
parities of the permutations) we obtain the sum over all multi-indices
of length k:

∑

i′
1
<···<i′

k

det[ai′
1
, . . . ,ai′

k
]
∑

σ

ε(σ)bi11 · · · bikk.

The sum on the right is taken over permutations σ =
(

i′1 . . . i′k
i1 . . . ik

)

.

It is equal to detBI , where I = (i′1, . . . , i
′
k). �

Corollary 1. If k > n, detAB = 0.

This is because no multi-indices of length k > n can be formed
from {1, . . . , n}. In the other extreme case k = 1, Binet–Cauchy’s
formula turns into the expression utv =

∑

uivi for the dot product
of coordinate vectors.

Corollary 2. detAAt =
∑

I(detAI)
2.

EXERCISES

236.⋆ Compute determinants:

(a)

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 x1 x2 . . . xn
x1 1 0 . . . 0
x2 0 1 . . . 0
. . . . .
xn 0 . . . 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (b)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a 0 0 0 0 b
0 a 0 0 b 0
0 0 a b 0 0
0 0 c d 0 0
0 c 0 0 d 0
c 0 0 0 0 d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

� �.

13Remember that in a set, elements are unordered!



90 Chapter 2. DRAMATIS PERSONAE

237.⋆ Let Pij , 1 ≤ i < j ≤ 4, denote the 2 × 2-minor of a 2 × 4-matrix
formed by the columns i and j. Prove the following Plücker identity14

P12P34 − P13P24 + P14P23 = 0. �
′′

238. The cross product of two vectors x,y ∈ R
3 is defined by

x× y :=

(∣

∣

∣

∣

x2 x3
y2 y3

∣

∣

∣

∣

,

∣

∣

∣

∣

x3 x1
y3 y1

∣

∣

∣

∣

,

∣

∣

∣

∣

x1 x2
y1 y2

∣

∣

∣

∣

)

.

Prove that the length |x× y| =
√

|x|2|y|2 − 〈x,y〉2. �

239.⋆ Prove that an +
1

an−1 +
1

· · ·+ 1

a1 +
1

a0

=
∆n

∆n−1

,

where ∆n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 1 0 . . . 0
−1 a1 1 . . . 0
. . . . .
0 . . . −1 an−1 1
0 . . . 0 −1 an

∣

∣

∣

∣

∣

∣

∣

∣

∣

. �

240.⋆ Compute:

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ −1 0 . . . 0
0 λ −1 . . . 0
. . . . .
0 . . . 0 λ −1
an an−1 . . . a2 λ+ a1

∣

∣

∣

∣

∣

∣

∣

∣

∣

. �

241.⋆ Compute:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1
1

(

2

1

) (

3

1

)

. . .
(

n
1

)

1
(

3

2

) (

4

2

)

. . .
(

n+1

2

)

. . . . .
1

(

n
n−1

) (

n+1

n−1

)

. . .
(

2n−2

n−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. � �

242.⋆ Prove Vandermonde’s identity15

∣

∣

∣

∣

∣

∣

∣

1 x1 x21 . . . xn−1

1

1 x2 x22 . . . xn−1

2

. . . . .
1 xn x2n . . . xn−1

n

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤i<j≤n

(xj − xi). �

243.⋆ Compute:

∣

∣

∣

∣

∣

∣

∣

1 2 3 . . . n
1 23 33 . . . n3

. . . . .
1 22n−1 32n−1 . . . n2n−1

∣

∣

∣

∣

∣

∣

∣

. � �

14After Julius Plücker (1801–1868).
15After Alexandre-Theóphile Vandermonde (1735–1796).



3 The Inertia Theorem

We study here the classification of quadratic forms and some general-
izations of this problem. The answer actually depends on properties
of the field of scalars. This section focuses on the cases K = R or C,
while some other cases are delegated to the next section. We begin,
however, with a key argument that remains valid in general. 4

Orthogonal bases

In section “Matrices” of Chapter 2 we established a one-to-one corre-
spondence between symmetric bilinear forms and quadratic forms. To
recall, a symmetric bilinear form on a vector space V is a function
Q : V ×V → K, (x,y) 7→ Q(x,y), which is linear in each vector vari-
able x and y, and symmetric, i.e. Q(y,x) = Q(x,y) for all x,y ∈ V.
Taking the arguments in a symmetric bilinear form equal to each
other, one obtains the corresponding quadratic form, which we will
denote by the same letter: Q : V → K. Thus, Q(x) := Q(x,x). (This
should not cause confusion: whenever there are two arguments, it is
the bilinear form, and when there is only one, it is the corresponding
quadratic form.) The symmetric bilinear form is reconstructed from
the corresponding quadratic form as

Q(x,y) =
1

2
[Q(x+ y)−Q(x)−Q(y)] .

In coordinates, if {e1, . . . , en} is a basis of V, we have

Q(x,y) =

n
∑

i=1

n
∑

j=1

xiqijyj = xtQy, where qij = Q(ei, ej) = qji,

and respectively Q(x) =
∑n

i=1

∑n
j=1 xiqijxj = xtQx.

Under a linear change of coordinates x = Cx′,y = Cy′, the sym-
metric coefficient matrix Q = [qij] changes according to the transfor-
mation rule Q 7→ CtQC.

A basis {f1, . . . , fn} in the space V is called Q-orthogonal if
Q(fi, fj) = 0 for all i 6= j, i.e. if the symmetric coefficient matrix of
the quadratic form with respect to this basis is diagonal.

Lemma. Every quadratic form in a finite dimensional vec-
tor space has an orthogonal basis.

4More precisely, whenever K does not contain Z2, so that 1/2 exists.

127
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Proof. We use induction on the dimension n = dimV of the
vector space. For n = 1 the requirement is empty. Let us construct a
Q-orthogonal basis in V assuming that every quadratic form in space
of dimension n−1 has an orthogonal basis. If the given quadratic form
Q is identically zero, the corresponding symmetric bilinear form is
identically zero too, and so any basis is Q-orthogonal. If the quadratic
form is not identically zero, then there exists a vector f1 such that
Q(f1) 6= 0. Let W be the subspace in V consisting of all vectors
Q-orthogonal to f1: W = {x ∈ V | Q(f1,x) = 0.}. This subspace
does not contain f1 and is given by 1 linear equation. Thus dimW =
n−1. Let {f2, . . . , fn} be a basis in W orthogonal with respect to the
symmetric bilinear form obtained by restricting Q to this subspace.
Such a basis exists by the induction hypothesis. Therefore Q(fi, fj) =
0 for all 1 < i < j. Besides, Q(f1, fi) = 0 for all i > 1, since
fi ∈ W. Then Q(fi, fj) = 0 for all i > j by the symmetry of Q. Thus
{f1, f2, . . . , fn} is a Q-orthogonal basis of V. �

Corollary. For every symmetric n× n-matrix Q with en-
tries from K there exists an invertible matrix C such that
CtQC is diagonal.

The diagonal entries here are the values Q(f1), . . . , Q(fn).

Inertia indices

Consider the case K = R.

Given a quadratic form Q in R
n, we pick a Q-orthogonal ba-

sis {f1, . . . , fn} and then rescale those of the basis vectors for which

Q(fi) 6= 0: fi 7→ f̃i = |Q(fi)|−1/2fi. After such rescaling, the non-zero

coefficients Q(f̃i) of the quadratic form will become ±1. Reordering
the basis so that the terms with positive coefficients come first, and
negative next, we transform Q to the normal form:

Q = X2
1 + · · ·+X2

p −X2
p+1 − · · · −X2

p+q, p+ q ≤ n.

Note that by restricting Q to the subspace Xp+1 = · · · = Xn = 0
of dimension p we obtain a quadratic form on this subspace which is
positive (or positive definite), i.e takes on positive values every-
where outside the origin.

Proposition. The numbers p and q of positive and neg-
ative squares in the normal form are equal to the maximal
dimensions of the subspaces in R

n where the quadratic form
Q (respectively, −Q) is positive.
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Proof. The quadratic form Q = X2
1+...+X

2
p−X2

p+1−...−X2
p+q is

non-positive everywhere on the subspace W of dimension n−p given
by the equations X1 = ... = Xp = 0. Let us show that the existence of
a subspace V of dimension p+1 where the quadratic form is positive
leads to a contradiction. Indeed, the subspaces V and W would
intersect in a subspace of dimension at least (p+1)+(n−p)−n = 1,
containing therefore non-zero vectors x with Q(x) > 0 and Q(x) ≤ 0.
Thus, Q is positive on some subspace of dimension p and cannot
be positive on any subspace of dimension > p. Likewise, −Q is
positive on some subspace of dimension q and cannot be positive on
any subspace of dimension > q. �

The maximal dimensions of positive subspaces of Q and −Q
are called respectively positive and negative inertia indices of
a quadratic form in question. By definition, inertia indices of a
quadratic form do not depend on the choice of a coordinate system.
Our Proposition implies that the normal forms with different pairs
of values of p and q are pairwise non-equivalent. This establishes the
Inertia Theorem (as stated in Section 4 of Chapter 1).

Theorem. Every quadratic form in R
n by a linear change of

coordinates can be transformed to exactly one of the normal
forms:

X2
1 + ...+X2

p −X2
p+1 − ...−X2

p+q, where 0 ≤ p+ q ≤ n.

The matrix formulation of the Inertia Theorem reads:

Every real symmetric matrix Q can be transformed to exactly one

of the diagonal forms





Ip 0 0
0 −Iq 0
0 0 0



 by transformations of the form

Q 7→ CtQC defined by invertible real matrices C.

EXERCISES

303. Find orthogonal bases and the inertia indices of quadratic forms: �

x1x2 + x22, x21 + 4x1x2 + 6x22 − 12x2x3 + 18x23, x1x2 + x2x3 + x3x1.

304. Prove that Q =
∑

1≤i≤j≤n xixj is positive definite.

305. A minor of a square matrix formed by rows and columns with the
same indices is called principal. Prove that all principal minors of the
coefficient matrix of a positive definite quadratic form are positive.

306.⋆ Let a1, . . . , ap and b1, . . . ,bq be linear forms in Rn, and let Q(x) =
a21(x) + · · · + a2p(x) − b2

1(x) − · · · − b2
q(x). Prove that the positive and

negative inertia indices of Q do not exceed p and q respectively. �
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Complex quadratic forms

Consider the case K = C.

Theorem. Every quadratic form in C
n can be transformed

by linear changes of coordinates to exactly one of the normal
forms:

z21 + · · · + z2r , where 0 ≤ r ≤ n.

Proof. Given a quadratic form Q, pick a Q-orthogonal basis in
C
n, order it in such a way that vectors f1, . . . , fr with Q(fi) 6= 0 come

first, and then rescale these vectors by fi 7→ Q(fi)
−1/2fi.

In particular, we have proved that every complex symmetric ma-

trix Q can be transformed to exactly one of the forms

[

Ir 0
0 0

]

by the

transformations of the form Q 7→ CtQC defined by invertible complex
matrices C. As it follows from the Rank Theorem, here r = rkQ,
the rank of the coefficient matrix of the quadratic form. This guar-
antees that the normal forms with different values of r are pairwise
non-equivalent, and thus completes the proof. �

To establish the geometrical meaning of r, consider a more general
situation.

Given a quadratic form Q on a K-vector space V, its kernel is
defined as the subspace of V consisting of all vectors which are Q-
orthogonal to all vectors from V:

KerQ := {z ∈ V|Q(z,v) = 0 for all v ∈ V.}

Note that the values Q(x,y) do not change when a vector from the
kernel is added to either of x and y.5

The rank of a quadratic form Q on K
n is defined as the codimen-

sion of KerQ. For example, the quadratic form z21+· · ·+z2r on K
n cor-

responds to the symmetric bilinear form x1y1+· · ·+xryr, and has the
kernel of codimension r defined by the equations z1 = · · · = zr = 0.

5As a result, the symmetric bilinear form Q descends to the quotient space

V/KerQ (see Supplement D).
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Conics

The set of all solutions to one polynomial equation in K
n:

F (x1, . . . , xn) = 0

is called a hypersurface. When the polynomial F does not depend
on one of the variables (say, xn), the equation F (x1, . . . , xn−1) = 0
defines a hypersurface in K

n−1. Then the solution set in K
n is called

a cylinder, since it is the Cartesian product of the hypersurface in
K

n−1 and the line of arbitrary values of xn.

Hypersurfaces defined by polynomial equations of degree 2 are
often referred to as conics — a name reminiscent of conic sections,
which are “hypersurfaces” in K

2. The following application of the
Inertia Theorem allows one to classify all conics in R

n up to equiv-
alence defined by compositions of translations with invertible linear
transformations.

p=3 p=2 p=1 p=0

p=0 p=1 p=0 p=1

Figure 38

Figure 39

Theorem. Every conic in R
n is equivalent to either the

cylinder over a conic in R
n−1, or to one of the conics:

x21 + · · · + x2p − x2p+1 − · · · − x2n = 1, 0 ≤ p ≤ n,

x21 + · · · + x2p = x2p+1 + · · · + x2n, 0 ≤ p ≤ n/2,

xn = x21 + · · · + x2p − x2p+1 − · · · − x2n−1, 0 ≤ p ≤ (n− 1)/2,

known as hyperboloids, cones, and paraboloids respectively.
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For n = 3, all types of “hyperboloids” (of which the first type
contains spheres and ellipsoids) are shown in Figure 38, and cones
and paraboloids in Figure 39.

Proof. Given a degree 2 polynomial F = Q(x)+ a(x)+ c, where
Q is a non-zero quadratic form, a a linear form, and c a constant,
we can apply a linear change of coordinates to transform Q to the
form ±x21 ± · · · ± x2r, where r ≤ n, and then use the completion
of squares in the variables x1, . . . , xr to make the remaining linear
form independent of x1, . . . , xr. When r = n, the resulting equations
±x21 ± · · · ± x2n = C (where C is a new constant) define hyperboloids
(when C 6= 0), or cones (when C = 0). When r < n, we can take the
remaining linear part of the function F (together with the constant)
for a new, r + 1-st coordinate, provided that this linear part is non-
constant. When r = n − 1, we obtain the equations of paraboloids.
When r < n−1, or if r = n−1, but the linear function was constant,
the function F , written in new coordinates, does not depend on the
last of them, and this defines the cylinder over a conic in R

n−1. �

Classification of conics in C
n is obtained in the same way, but the

answer looks simpler, since there are no signs ± in the normal forms
of quadratic forms over C.

Theorem. Every conic in C
n is equivalent to either the

cylinder over a conic in C
n−1, or to one of the three conics:

z21 + · · ·+ z2n = 1, z21 + · · · + z2n = 0, zn = z21 + · · · + z2n−1.

Example. Let Q be a non-degenerate quadratic form with real
coefficients in 3 variables. According to the previous (real) classifi-
cation theorem, the conic Q(x1, x2, x3) = 1 can be transformed by a
real change of coordinates into one of the 4 normal forms shown on
Figure 38. The same real change of coordinates identifies the set of
complex solutions to the equation Q(z1, z2, z3) = 1 with that of the
normal form: ±z21±z22+±z23 = 1. However, −z2 becomes z2 after the
change z 7→

√
−1z, which identifies the set of complex solutions with

the complex sphere in C
3, given by the equation z21 + z22 + z23 = 1.

Thus, various complex conics equivalent to the complex sphere and
given by equations with real coefficients, “expose” themselves in R

3

by various real forms: real spheres or ellipsoids, hyperboloids of one
or two sheets (as shown on Figure 38), or even remain invisible (when
the set of real points is empty).
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Remark. The same holds true in general: various hyperboloids
(as well as cones or paraboloids) of the real classification theorem are
real forms of complex conics defined by the same equations. They
become equivalent when complex changes of coordinates are allowed.
In this sense, the three normal forms of the last theorem represent
hyperboloids, cones and paraboloids of the previous one.

EXERCISES

307. Find the place of surfaces x1x2+x2x3 = ±1 and x1x2+x2x3+x3x1 =
±1 in the classification of conics in R3.

308. Examine normal forms of hyperboloids in R4 and find out how many
connected components (“sheets”) each of them has. �

309. Find explicitly a C-linear transformation that identifies the sets of
complex solutions to the equations uv = 1 and x2 + y2 = 1.

310. Find the rank of the quadratic form z21 + 2iz1z2 − z22 .

311. Classify conics in C2 up to linear inhomogeneous transformations. �

312. Find the place of the complex conic z21 − 2iz1z2 − z22 = iz1+ z2 in the
classification of conics in C

2. �

313. Classify all conics in C3 up to linear inhomogeneous transformations.

314. Prove that there are 3n− 1 equivalence classes of conics in Cn.

Hermitian and anti-Hermitian forms

In Chapter 2, at the end of section “Matrices”, we established one-to-
one correspondences between Hermitian, anti-Hermitian, Hermitian
quadratic and anti-Hermitian quadratic forms on a complex vector
space V.

To recall, a sesquilinear form is a function V × V → C, which
is C-linear in the 2nd argument, and anti-linear in the 1st. Such a
form H is called Hermitian-symmetric if H(w, z) = H(z,w) for
all z,w ∈ V. The corresponding Hermitian quadratic form is
H(z) := H(z, z). (It is denoted by the same letter, but takes in one
vector argument, and assumes real values.) In a coordinate system
z = z1e1 + · · ·+ znen on V, an Hermitian quadratic form is given by
the formula

H(z) =

n
∑

i=1

n
∑

j=1

zi hij zj ,

where the coefficient matrix H = [hij ] is Hermitian-symmetric: H† =
H, i.e. h̄ij = hji. The corresponding Hermitian-symmetric form has
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the coordinate expression

H(z,w) =
n
∑

i=1

n
∑

j=1

zi hijwj.

An anti-Hermitian form, by definition, is a sesquilinear form, Q,
satisfying Q(w, z) = −Q(z,w) for all z,w ∈ V. Every such form
(and the corresponding anti-Hermitian quadratic form Q(z) :=
Q(z, z)) is obtained by multiplication by

√
−1 from an Hermitian-

symmetric (respectively Hermitian quadratic) form, and vice versa.

Theorem. Every Hermitian quadratic form H in C
n can be

transformed by a C-linear change of coordinates to exactly
one of the normal forms

|z1|2 + · · · + |zp|2 − |zp+1|2 − · · · − |zp+q|2, 0 ≤ p+ q ≤ n.

Proof. It is the same as in the case of the Inertia Theorem for
real quadratic forms. We pick a vector f1 such that H(f1) = ±1, and
consider the subspace V1 consisting of all vectors H-orthogonal to f1:
V1 = {z | H(f1, z) = 0}. It does not contain f1 (since H(f1, f1) =
H(f1) 6= 0), and has therefore complex codimension 1. We consider
the Hermitian form obtained by restricting H to V1 and proceed the
same way, i.e. pick a vector f2 ∈ V1 such that H(f2) = ±1, and
pass to the subspace V2 consisting of all vectors of V1 which are H-
orthogonal to f2. The process stops when we reach a subspace Vr

of codimension r in C
n such that the restriction of the form H to

Vr vanishes identically. Then we pick any basis {fr+1, . . . , fn} in Vr.
The vectors f1, . . . , fn form a basis in C

n which is H-orthogonal (since
H(fi, fj) = 0 for all i < j by construction), and H(fi, fi) = ±1 (for
i ≤ r) or = 0 for i > r. Reordering the vectors f1, . . . , fr so that those
with the values +1 come first, we obtain the required normal form
for H, where p+ q = r.

To prove that the normal forms with different pairs of values of
p and q are non-equivalent to each other, we show (the same way
as in the case of real quadratic forms) that the number p (q) of
positive (respectively negative) squares in the normal form
is equal to the maximal dimension of a subspace where the
Hermitian form H (respectively −H) is positive definite. �

Corollary 1. An anti-Hermitian quadratic form Q in C
n

can be transformed by a C-linear change of coordinates to
exactly one of the normal forms

i|z1|2 + · · ·+ i|zp|2 − i|zp+1|2 − · · · − i|zp+q|2, 0 ≤ p+ q ≤ n.
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Using matrix notation, one expresses a sesquilinear form with
the coefficient matrix T by the matrix product formula z†Tw, where
w is a column, and z† is the row Hermitian-adjoint to the column
z, i.e. obtained from it by transposition and complex conjugation.
Applying a C-linear change of variables z = Cz′,w = Cw′, we find

(z′)†T ′w′ = z†Tw = z†C†TCw, i.e. T ′ = C†TC.

Corollary 2. Any Hermitian (anti-Hermitian) matrix
can be transformed to exactly one of the normal forms





Ip 0 0
0 −Iq 0
0 0 0







 respectively





iIp 0 0
0 −iIq 0
0 0 0







 .

by transformations of the form T 7→ C†TC defined by invert-
ible complex matrices C.

It follows that p+ q is equal to the rank of the coefficient matrix
of the (anti-)Hermitian form.

EXERCISES

315. Check that T † = T t if and only if T is real.

316. Show that diagonal entries of an Hermitian matrix are real, and of
anti-Hermitian imaginary.

317. Find all complex matrices which are symmetric and anti-Hermitian
simultaneously. �

318.⋆ Prove that a sesquilinear form T of z,w ∈ V can be expressed in
terms of its values at z = w, and find such an expression. � �

319. Define sesquilinear forms T : Cm × Cn → C of pairs of vectors (z,w)
taken from two different spaces, and prove that T (z,w) = 〈z, Tw〉, where
T is the m× n-matrix of coefficients of the form, and 〈·, ·〉 is the standard
Hermitian dot-product in Cm. �

320. Prove that under changes of variables v = Dv′, w = Cw′ the coeffi-
cient matrices of sesquilinear forms are transformed as P 7→ D†PC.

321. Prove that 〈Az,w〉 = 〈z, Bw〉 for all z ∈ Cm, w ∈ Cn if and only if
A = B†. Here 〈·, ·〉 denote Hermitian dot-products in Cn or Cm. �

322. Prove that (AB)† = B†A†. �

323. Prove that for (anti-)Hermitian matrices A and B, the commutator

matrix AB −BA is anti-Hermitian.

324. Find out which of the following forms are Hermitian or anti-Hermitian
and transform them to the appropriate normal forms: �

z̄1z2 − z̄2z1, z̄1z2 + z̄2z1, z̄1z1 + iz̄2z1 − iz̄1z2 + z̄2z2.
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Sylvester’s rule

Let H be an Hermitian n× n-matrix. Denote by ∆0 = 1, ∆1 = h11,
∆2 = h11h22 − h12h21, . . . , ∆n = detH the minors formed by the
intersection of the first k rows and columns of H, k = 1, 2, . . . , n
(Figure 40). They are called leading minors of the matrix H. Note
that detH = detHt = det H̄ = detH is real, and the same is true for
each ∆k, since it is the determinant of an Hermitian k×k-matrix. The
following result is due to the English mathematician James Sylvester
(1814–1897).

1n

h

∆n−1

∆n

∆

∆

h
12

h
21

∆
1

nn
h

h

22
h

h

n1

11

2

3

Figure 40

Theorem. Suppose that an Hermitian n × n-matrix H has
non-zero leading minors. Then the negative inertia index of
the corresponding Hermitian form is equal to the number of
sign changes in the sequence ∆0,∆1, . . . ,∆n.

Remark. The hypothesis that detH 6= 0 means that the Her-
mitian form is non-degenerate, or equivalently, that its kernel is
trivial. In other words, for each non-zero vector x there exists y such
that H(x,y) 6= 0. Respectively, the assumption that all leading mi-
nors are non-zero means that restrictions of the Hermitian forms to
all spaces of the standard coordinate flag

Span(e1) ⊂ Span(e1, e2) ⊂ · · · ⊂ Span(e1, . . . , ek) ⊂ . . .

are non-degenerate. The proof of the theorem consists in classify-
ing such Hermitian forms up to linear changes of coordinates that
preserve the flag.

Proof. As before, we inductively construct an H-orthogonal ba-
sis {f1, . . . , fn} and normalize the vectors so that H(fi) = ±1, re-
quiring however that each fk ∈ Span(e1, . . . , ek). When such vectors
f1, . . . , fk−1 are already found, the vector fk, H-orthogonal to them,
can be found (by the Rank Theorem) in the k-dimensional space of
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the flag, and can be assumed to satisfy H(fk) = ±1, since the Her-
mitian form on this space is non-degenerate. Thus, an Hermitian
form non-degenerate on each space of the standard coordi-
nate flag can be transformed to one (and in fact exactly one) of
the 2n normal forms ±|z1|2 ± · · · ± |zn|2 by a linear change of
coordinates preserving the flag.

In matrix form, this means that there exists an invertible upper
triangular matrix C such that D = C†HC is diagonal with all di-
agonal entries equal to ±1. Note that transformations of the form
H 7→ C†HC may change the determinant but preserve its sign:

det(C†HC) = (detC†)(detH)(detC) = detH|detC|2.

When C is upper triangular, the same holds true for all leading mi-
nors, i.e. each ∆k has the same sign as the leading k × k-minor
of the diagonal matrix D with the diagonal entries d1, . . . , dn equal
±1. The latter minors form the sequence 1, d1, d1d2, . . . , d1 . . . dk, . . . ,
where the sign is changed each time as dk = −1. Thus the total num-
ber of sign changes is equal to the number of negative squares in the
normal form. �

When the form H is positive definite, its restrictions to any sub-
space is positive definite and hence non-degenerate automatically. We
obtain the following corollaries.

Corollary 1. Any positive definite Hermitian form in C
n

can be transformed into |z1|2 + · · · + |zn|2 by a linear change
of coordinates preserving a given complete flag.

Corollary 2. An Hermitian form in C
n is positive defi-

nite if and only if all of its leading minors are positive.

Note that the standard basis of Cn is orthonormal with respect
to the Hermitian dot product 〈x,y〉 =

∑

x̄iyi, i.e. 〈ei, ej〉 = 0 for
i 6= i, and 〈ei, ei〉 = 1.

Corollary 3. Every positive definite Hermitian form in
C
n has an orthonormal basis {f1, . . . , fn} such that fk ∈

Span(e1, . . . , ek).

Remarks. (1) The process of replacing a given basis {e1, . . . , en}
with a new basis, orthonormal with respect to a given positive defi-
nite Hermitian form and such that each fk is a linear combination of
e1, . . . , ek, is called Gram–Schmidt orthogonalization.
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(2) Results of this subsection hold true for quadratic forms in R
n.

Namely, our reasoning can be easily adjusted to this case. Note also
that every real symmetric matrix is Hermitian.

EXERCISES

325. Prove that for every symmetric matrix Q all of whose leading minors
are non-zero there exists a unipotent upper triangular matrix C such that
D = CtQC is diagonal, and express the diagonal entries of D in terms of
the leading minors. �

326. Use Sylvester’s rule to find inertia indices of quadratic forms: �

x21 + 2x1x2 + 2x2x3 + 2x1x4, x1x2 − x22 + x23 + 2x2x4 + x24.

327. Compute determinants and inertia indices of quadratic forms:
x21 − x1x2 + x22, x21 + x22 + x23 − x1x2 − x2x3.

328. Prove positivity of the quadratic form
∑n

i=1
x2i −

∑

1≤i<n xixi+1.

329.⋆ Prove that when the square of a linear form is added to a positive
quadratic form, the determinant of the coefficient matrix increases. �

330.⋆ Prove that a non-degenerate anti-symmetric bilinear form A(x,y) in
K2n is equivalent to

(x1y2 − x2y1) + · · ·+ (x2n−1y2n − x2ny2n−1),

i.e. to x1 ∧ x2 + · · · + x2n−1 ∧ x2n in the exterior form notation. Namely,
pick two vectors e1 and e2 such that A(e1, e2) = 1, show that A is non-
degenerate on the subspace {x ∈ R2n | A(e1,x) = A(e2,x) = 0}, and
continue by induction.

331. Derive from the previous exercise that the determinant of the coeffi-
cient matrix of an anti-symmetric bilinear form is equal to the square of its
Pfaffian.
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Euclidean spaces

Let V be a real vector space. A Euclidean inner product (or Eu-
clidean structure) on V is defined as a positive definite symmetric
bilinear form 〈·, ·〉. A real vector space equipped with a Euclidean in-
ner product is called a Euclidean space. A Euclidean inner product
allows one to talk about distances between points and angles between
directions:

|x− y| =
√

〈x− y,x− y〉, cos θ(x,y) :=
〈x,y〉
|x| |y| .

It follows from the Inertia Theorem that every finite dimen-
sional Euclidean vector space has an orthonormal basis. In
coordinates corresponding to an orthonormal basis e1, . . . , en the in-
ner product is given by the standard formula:

〈x,y〉 =
n
∑

i,j=1

xiyj〈ei, ej〉 = x1y1 + · · ·+ xnyn.

Thus, every Euclidean space V of dimension n can be identified with
the coordinate Euclidean space R

n by an isomorphism R
n → V

respecting inner products. Such an isomorphism is not unique, but
can be composed with any invertible linear transformation U : V → V
preserving the Euclidean structure:

〈Ux, Uy〉 = 〈x,y〉 for all x,y ∈ V.

Such transformations are called orthogonal.

A Euclidean structure on a vector space V allows one to identify
the space with its dual V∗ by the rule that to a vector v ∈ V assigns
the linear function on V whose value at a point x ∈ V is equal to the
inner product 〈v,x〉. Respectively, given a linear map A : V → W
between Euclidean spaces, the adjoint map At : W∗ → V∗ can be
considered as a map between the spaces themselves: At : W → V.
The defining property of the adjoint map reads:

〈Atw,v〉 = 〈w, Av〉 for all v ∈ V and w ∈ W.

Consequently matrices of adjoint maps A and At with respect to
orthonormal bases of the Euclidean spaces V and W are transposed
to each other.

161
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As in the case of Hermitian spaces, one easily derives that a linear
transformation U : V → V is orthogonal if and only if U−1 = U t. In
the matrix form, the relation U tU = I means that columns of U form
an orthonormal set in the coordinate Euclidean space.

Our goal here is to develop the spectral theory for real normal
operators, i.e. linear transformations A : V → V on a Euclidean
space commuting with their transposed operators: AtA = AAt. Sym-
metric (At = A), anti-symmetric (At = −A), and orthogonal trans-
formations are examples of normal operators in Euclidean geometry.

The right way to proceed is to consider Euclidean geometry as
Hermitian geometry, equipped with an additional, real structure, and
apply the Spectral Theorem of Hermitian geometry to real normal
operators extended to the complex space.

EXERCISES

382. Prove the Cauchy-Schwartz inequality for Euclidean inner products:
〈x,y〉2 ≤ 〈x,x〉〈y,y〉, strictly, unless x and y are proportional, and derive
from this that the angle between non-zero vectors is well-defined. �

383. For x,y ∈ Rn, put 〈x,x〉 =
∑n

i=1
2x2i −2

∑n−1

i=1
xixi+1. Show that the

corresponding symmetric bilinear form defines on Rn a Euclidean structure,
and find the angles between the standard coordinate axes in Rn. �

384. Prove that 〈x,x〉 := 2
∑

i≤j xixj defines in Rn a Euclidean structure,
find pairwise angles between the standard coordinate axes, and show that
permutations of coordinates define orthogonal transformations. �

385. In the standard Euclidean space Rn+1 with coordinates x0, . . . , xn,
consider the hyperplane H given by the equation x0 + · · ·+ xn = 0. Find
explicitly a basis {fi} in H , in which the Euclidean structure has the same
form as in the previous exercise, and then yet another basis {hi} in which
it has the same form as in the exercise preceding it. �

386. Prove that if U is orthogonal, then detU = ±1. �

387. Provide a geometric description of orthogonal transformations of the
Euclidean plane. Which of them have determinant 1, and which −1? �

388. Prove that an n × n-matrix U defines an orthogonal transformation
in the standard Euclidean space R

n if and only if the columns of U form
an orthonormal basis.

389. Show that rows of an orthogonal matrix form an orthonormal basis.
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Complexification

Since R ⊂ C, every complex vector space can be considered as a real
vector space simply by “forgetting” that one can multiply by non-real
scalars. This operation is called realification; applied to a C-vector
space V, it produces an R-vector space, denoted VR, of real dimension
twice the complex dimension of V.

In the reverse direction, to a real vector space V one can associate
a complex vector space, VC, called the complexification of V. As a
real vector space, it is the direct sum of two copies of V:

VC := {(x,y) | x,y ∈ V}.

Thus, the addition is performed componentwise, while the multipli-
cation by complex scalars α + iβ is introduced with the thought in
mind that (x,y) stands for x+ iy:

(α+ iβ)(x,y) := (αx− βy, βx + αy).

This results in a C-vector space VC whose complex dimension equals
the real dimension of V. Note that i(y, 0) = (0,y). Therefore (x,y)
can really be written as x+ iy is one assumes that x,y ∈ V.

The complex space VC carries the operation of complex con-
jugation z = x + iy 7→ z̄ := x − iy. It is R-linear (i.e. is a linear
transformation on the realification of the complexification), but is not
C-linear. Namely, z+w = z̄ + w̄, but λz = λ̄z̄, i.e. it is anti-linear
(or half-linear) relative to the multiplication by scalars λ ∈ C.

A real linear transformation A : V → V extends canonically to a
complex linear transformation AC : VC → VC which we will, abusing
notation, often denote by A again, because it is defined as AC(x,y) :=
(Ax, Ay). Simply speaking, a real matrix can be considered as a
complex one.

By the same token, a real quadratic (bilinear, symmetric, anti-
symmetric) form on V is canonically extended to a complex quadratic
(C-bilinear, symmetric, anti-symmetric) form on VC. What we need,
however, is the extension of a Euclidean inner product on V (not to
a C-bilinear, but) to an Hermitian inner product on VC. Namely, for
all x,y,x′,y′ ∈ V, put

〈x+ iy,x′ + iy′〉 := 〈x,x′〉+ 〈y,y′〉+ i〈x,y′〉 − i〈y,x′〉.

It is straightforward to check that this form on VC is sesquilinear and
Hermitian-symmetric. When 〈·, ·〉 is positive definite in V, so is its
extension to VC, because 〈x+ iy,x + iy〉 = |x|2 + |y|2.



164 Chapter 4. EIGENVALUES

The same way as the Hermitian-transposed of a square matrix
coincides with its ordinary transposed when the matrix is real, the
Hermitian-adjoint A† of (the complexification of) a real operator
A : V → V coincides with (the complexification of) At. That is,
if 〈Atx,y〉 = 〈x, Ay〉 for all x,y ∈ V, then 〈Atz,w〉 = 〈z, Aw〉
for all z,w ∈ VC. In particular, complexifications of orthogonal
(U−1 = U t), symmetric (At = A), anti-symmetric (At = −A),
normal (AtA = AAt) operators in a Euclidean space are respec-
tively unitary, Hermitian, anti-Hermitian, normal operators on the
complexified space (with the additional property that they commute
with the complex conjugation: Az = Az̄).

Remark. A productive (though somewhat abstract) point of view
on the complexification is that it is a complex vector space, W,
equipped with an additional structure which “remembers” that the
space came from a real one. The structure, called complex con-
jugation, is required to be a C-anti-linear involution (the latter
means that repeating it twice yields the identity). Then the real ob-
jects are those complex objects in W which respect this additional
structure. The realification of W splits into the direct sum of two real
subspaces, V = {z ∈ W | z̄ = z} and iV = {z ∈ W | z̄ = −z}. Thus,
W is identified with VC, where V consists of all point fixed by the
complex conjugation. A complex linear transformation A : W → W
is real whenever it commutes with the complex conjugation. For this,
A must preserve the real subspace V ⊂ W, and A coincides with the
complexification of its restriction to V.

Example. Take W = C
n, with the operation of complex con-

jugation acting componentwise, i.e. for z ∈ C
n with components

zα = xα + iyα, the components of z̄ are xα − iyα. Then the real
subspace V = R

n = {z ∈ C
n | yα = 0 for all α}, and C

n = (Rn)C.
Complexifying the standard dot-product 〈x,y〉 = x1y1 + · · · + xnyn
in R

n, we end up with the standard Hermitian dot-product in C
n:

〈z,w〉 = z̄1w1 + · · · + z̄nwn. Note that complex n× n-matrices have
the form A+ iB where A,B are arbitrary real n×n-matrices. Those
which commute with the operation of complex conjugation on C

n

must have B = 0 (because multiplication by i anti-commutes with
it), i.e. must be real (in every sense of the word).

EXERCISES

390. Consider Cn as a real vector space, and describe its complexification.

391. Check that complex conjugation in VC anti-commutes with the mul-
tiplication by i.
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392. Check that the formula for the canonical extension of a bilinear form
〈·, ·〉 from a real vector V to its complexification yields a sesquilinear form
indeed. How would the formula change for the extension to be C-bilinear?

393. Verify that 〈Atz,w〉 = 〈z, Aw〉 for all z,w ∈ VC, where At is the real
adjoint to A on V , and 〈·, ·〉 is the canonical extension to VC of a Euclidean
inner product on V .

394. On the complex line C
1, find all involutions anti-commuting with the

multiplication by i.

395. Show that a linear involution on a (real or complex) vector space has
two complementary eigenspaces corresponding to the eigenvalues ±1. Show
that when the involution is R-linear but acts on a complex vector space and
anti-commutes with the multiplication by i, then the (real!) eigenspaces
have the same dimension, and the multiplication by i interchanges them.

The Real Spectral Theorem

Theorem. Let V be a Euclidean space, and A : V → V a nor-
mal operator. Then in the complexification VC, there exists
an orthonormal basis of eigenvectors of AC which is invari-
ant under complex conjugation and such that the eigenvalues
corresponding to conjugated eigenvectors are conjugated.

Proof. Applying the complex Spectral Theorem to the normal
operator B = AC, we obtain a decomposition of the complexified
space VC into a direct orthogonal sum of eigenspaces W1, . . . ,Wr of B
corresponding to distinct complex eigenvalues λ1, . . . , λr. Note that
if v is an eigenvector of B with an eigenvalue µ, then, since B is real,
Bv̄ = B̄v̄ = Bv = µv = µ̄v̄, i.e. v̄ is an eigenvector of B with the
conjugate eigenvalue µ̄. This shows that if λi is a non-real eigenvalue,
then its conjugate λ̄i is also one of the eigenvalues of B (say, λj),

and the corresponding eigenspaces are conjugated: Wi = Wj. By the

same token, if λk is real, then Wk = Wk. The last equality means that
Wk itself is the complexification of the real space {z ∈ Wk | z̄ = z}.
It coincides with the space Ker(λkI −A) ⊂ V of real eigenvectors of
A with the eigenvalue λk. Thus, to construct a required orthonormal
basis, we take: for each real eigenspace Wk, a Euclidean orthonormal
basis in the corresponding real eigenspace, and for each pair Wi,Wj

of complex conjugate eigenspaces, an Hermitian orthonormal basis
{fα} in Wi and the conjugate basis {fα} in Wj = Wi. The vectors of

all these bases altogether form an orthonormal basis of VC satisfying
our requirements. �
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Example 1. Identify C with the Euclidean plane R
2 in the usual

way, and consider the operator (x + iy) 7→ (α + iβ)(x + iy) of mul-
tiplication by given complex number α + iβ. In the basis 1, i, it has
the matrix

A =

[

α −β
β α

]

.

Since At represents multiplication by α − iβ, it commutes with A.
Therefore A is normal. It is straightforward to check that

z =
1√
2

[

1
−i

]

and z̄ =
1√
2

[

1
i

]

are complex eigenvectors of A with the eigenvalues α+ iβ and α− iβ
respectively, and form an Hermitian orthonormal basis in (R2)C.

Example 2. If A is a linear transformation in R
n, and λ0 is a

non-real root of its characteristic polynomial det(λI − A), then the
system of linear equations Az = λ0z has non-trivial solutions, which
cannot be real though. Let z = u+ iv be a complex eigenvector of A
with the eigenvalue λ0 = α− iβ. Then z̄ = u− iv is an eigenvector
of A with the eigenvalue λ0 = α + iβ. Since λ0 6= λ0, the vectors
z and z̄ are linearly independent over C, and hence the real vectors
u and v must be linearly independent over R. Consider the plane
Span(u,v) ⊂ R

n. Since

A(u+ iv) = (α− iβ)(u+ iv) = (αu+ βv) + i(−βu+ αv),

we conclude that A preserves this plane, and in the basis u,v in it
acts by the matrix from Example 1. If we assume in addition that A
is normal (with respect to the standard Euclidean structure in R

n),
then the eigenvectors z and z̄ must be Hermitian orthogonal, i.e.

〈u− iv,u + iv〉 = 〈u,u〉 − 〈v,v〉 + 2i〈u,v〉 = 0.

We conclude that 〈u,v〉 = 0 and |u|2 − |v|2 = 0, i.e. u and v
are orthogonal and have the same length. Normalizing the length
to 1, we obtain an orthonormal basis of the A-invariant plane, in
which the transformation A acts as in Example 1. The geometry of
this transformation is known to us from studying the geometry of
complex numbers: It is the composition of the rotation through the
angle arg(λ0) with the expansion by the factor |λ0|. We will call such
a transformation of the Euclidean plane a complex multiplication
or multiplication by a complex scalar, λ0.
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Corollary 1. Given a normal operator on a Euclidean
space, the space can be represented as a direct orthogonal
sum of invariant lines and planes, on each of which the
transformation acts as multiplication by a real or complex
scalar respectively.

Corollary 2. A transformation in a Euclidean space is
orthogonal if and only if the space can be represented as the
direct orthogonal sum of invariant lines and planes on each
of which the transformation acts as multiplication by ±1 and
rotation respectively.

Corollary 3. In a Euclidean space, every symmetric op-
erator has an orthonormal basis of eigenvectors.

Corollary 4. Every quadratic form in a Euclidean space
of dimension n can be transformed by an orthogonal change
of coordinates to exactly one of the normal forms:

λ1x
2
1 + · · ·+ λnx

2
n, λ1 ≥ · · · ≥ λn.

Corollary 5. In a Euclidean space of dimension n, every
anti-symmetric bilinear form can be transformed by an or-
thogonal change of coordinates to exactly one of the normal
forms

〈x,y〉 =
r

∑

i=1

ωi(x2i−1y2i − x2iy2i−1), ω1 ≥ · · · ≥ ωr > 0, 2r ≤ n.

Corollary 6. Every real normal matrix A can be written
in the form A = U tMU where U is an orthogonal matrix, and
M is block-diagonal matrix with each block either of size 1,

or of size 2 of the form

[

α −β
β α

]

, where β > 0.

If A is symmetric, then only blocks of size 1 are present
(i.e. M is diagonal).

If A is anti-symmetric, then blocks of size 1 are zero, and

of size 2 are of the form

[

0 −ω
ω 0

]

, where ω > 0.

If A is orthogonal, then all blocks of size 1 are equal to ±1,

and blocks of size 2 have the form

[

cos θ − sin θ
sin θ cos θ

]

, where

0 < θ < π.
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EXERCISES

396. Prove that an operator on a Euclidean vector space is normal if and
only if it is the sum of commuting symmetric and anti-symmetric operators.

397. Prove that in the complexification of a Euclidean plane, all rotations
have a common basis of eigenvectors, and find these eigenvectors. �

398. Prove that an orthogonal transformation in R3 is either the rotation
through an angle θ, 0 ≤ θ ≤ π, about some axis, or the composition of such
a rotation with the reflection about the plane perpendicular to the axis.

399. Find an orthonormal basis in Cn in which the transformation defined
by the cyclic permutation of coordinates: (z1, z2, . . . , zn) 7→ (z2, . . . , zn, z1)
is diagonal, and determine the eigenvalues.

400. In the coordinate Euclidean space Rn with n ≤ 4, find real and com-
plex normal forms of orthogonal transformations defined by various permu-
tations of coordinates.

401. Transform to normal forms by orthogonal transformations: �

(a) x1x2 + x3x4, (b) 2x21 − 4x1x2 + x22 − 4x2x3,
(c) 3x21 + 3x22 + 3x23 + 3x24 + 4x1x2 + 2x1x3 + 2x2x4 + 4x3x4.

402. In Euclidean spaces, classify all operators which are both orthogonal
and anti-symmetric.

403. Recall that a bilinear form on V is called non-degenerate if the
corresponding linear map V → V∗ is an isomorphism, and degenerate

otherwise. Prove that all non-degenerate anti-symmetric bilinear forms on
R2n are equivalent to each other, and that all anti-symmetric bilinear forms
on R2n+1 are degenerate.

404. Derive Corollaries 1 – 6 from the Real Spectral Theorem.

405. Let U and V be two subspaces of dimension 2 in a Euclidean 4-space.
Consider the map T : V → V defined as the composition: V ⊂ R4 →
U ⊂ R4 → V , where the arrows are the orthogonal projections to U and
V respectively. Prove that T is positive, and that its eigenvalues have the
form cosφ, cosψ where φ, ψ are certain angles, 0 ≤ φ, ψ ≤ π/2.

406. Solve Gelfand’s problem6: In a Euclidean 4-space, classify pairs of
planes passing through the origin up to orthogonal transformations of the
space. �

6After I. M. Gelfand (1913–2009)



2. Euclidean Geometry 169

Courant’s minimax principle

One of the consequences (equivalent to Corollary 4) of the Real Spec-
tral Theorem is that a pair (Q,S) of quadratic forms in R

n, of which
the first one is positive definite, can be transformed by a linear change
of coordinates to the normal form:

Q = x21 + · · · + x2n, S = λ1x
2
1 + · · · + λnx

2
n, λ1 ≥ · · · ≥ λn.

The eigenvalues λ1 ≥ · · · ≥ λn form the spectrum of the pair (Q,S).
The following result (due to Richard Courant (1888–1972), see [2])
gives a coordinate-free, geometric description of the spectrum (and
thus implies the Orthogonal Diagonalization Theorem as it was
stated in the Introduction).

Theorem. The k-th greatest spectral number is given by

λk = max
W : dimW=k

min
x∈W−0

S(x)

Q(x)
,

where the maximum is taken over all k-dimensional sub-
spaces W ⊂ R

n, and the minimum over all non-zero vectors
in the subspace.

Proof. When W is given by the equations xk+1 = · · · = xn = 0,
the minimal ratio S(x)/Q(x) (achieved on vectors proportional to
ek) is equal to λk because

λ1x
2
1 + · · ·+ λkx

2
k ≥ λk(x

2
1 + · · ·+ x2k) when λ1 ≥ · · · ≥ λk.

Therefore it suffices to prove for every other k-dimensional subspace
W the minimal ratio cannot be greater than λk. For this, denote
by V the subspace of dimension n − k + 1 given by the equations
x1 = · · · = xk−1 = 0. Since λk ≥ · · · ≥ λn, we have:

λkx
2
k + · · · + λnx

2
n ≤ λk(x

2
k + · · · + x2n),

i.e. for all non-zero vectors x in V the ratio S(x)/Q(x) ≤ λk. Now
we invoke the dimension counting argument: dimW + dimV = k +
(n− k+1) = n+1 > dimR

n, and conclude that W has a non-trivial
intersection with V. Let x be a non-zero vector in W ∩ V. Then
S(x)/Q(x) ≤ λk, and hence the minimum of the ratio S/Q on W−0
cannot exceed λk. �

Applying Theorem to the pair (Q,−S) we obtain yet another
characterization of the spectrum:

λk = min
W : dimW=n−k+1

max
x∈W−0

S(x)

Q(x)
.
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Formulating some applications, we assume that the space R
n is

Euclidean, and refer to the spectrum of the pair (Q,S) where Q =
|x|2, simply as the spectrum of S.

Corollary 1. When a quadratic form increases, its spec-
tral numbers do not decrease: If S ≤ S′ then λk ≤ λ′k for all
k = 1, . . . , n.

Proof. Indeed, since S/Q ≤ S′/Q, the minimum of the ratio
S/Q on every k-dimensional subspace W cannot exceed that of S′/Q,
which in particular remains true for that W on which the maximum
of S/Q equal to λk is achieved.

The following is known as Cauchy’s interlacing theorem.

Corollary 2. Let λ1 ≥ · · · ≥ λn be the spectrum of a
quadratic form S, and λ′1 ≥ · · · ≥ λ′n−1 be the spectrum of
the quadratic form S′ obtained by restricting S to a given
hyperplane R

n−1 ⊂ R
n passing through the origin. Then:

λ1 ≥ λ′1 ≥ λ2 ≥ λ′2 ≥ · · · ≥ λn−1 ≥ λ′n−1 ≥ λn.

Proof. The maximum over all k-dimensional subspaces W can-
not be smaller than the maximum (of the same quantities) over sub-
spaces lying inside the hyperplane. This proves that λk ≥ λ′k. Apply-
ing the same argument to −S and subspaces of dimension n− k− 1,
we conclude that −λk+1 ≥ −λ′k. �

An ellipsoid in a Euclidean space is defined as the level-1 set
E = {x | S(x) = 1} of a positive definite quadratic form, S. It follows
from the Spectral Theorem that every ellipsoid can be transformed
by an orthogonal transformation to principal axes: a normal form

x21
α2
1

+ · · ·+ x2n
α2
n

= 1, 0 < α1 ≤ · · · ≤ αn.

The vectors x = ±αkek lie on the ellipsoid, and their lengths αk are
called the semiaxes of E. They are related to the spectral numbers
λ1 ≥ · · · ≥ λk > 0 of the quadratic form by α−1

k =
√
λk. From

Corollaries 1 and 2 respectively, we obtain:

Given two concentric ellipsoids enclosing one another, the semi-
axes of the inner ellipsoid do not exceed the corresponding semiaxes
of the outer: If E′ ⊂ E, then α′

k ≤ αk for all k = 1, . . . , n.

The semiaxes of a given ellipsoid are interlaced by the semiaxes of
any section of it by a hyperplane passing through the center:
If E′ = E ∩ R

n−1, then αk ≤ α′
k ≤ αk+1 for k = 1, . . . , n− 1.
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EXERCISES

407. Prove that every ellipsoid in Rn has n pairwise perpendicular hyper-
planes of bilateral symmetry.

408. Given an ellipsoid E ⊂ R
3, find a plane passing through its center

and intersecting E in a circle. �

409. Formulate and prove counterparts of Courant’s minimax principle and
Cauchy’s interlacing theorem for Hermitian forms.

410. Prove that semiaxes α1 ≤ α2 ≤ . . . of an ellipsoid in Rn and semiaxes
α′
k ≤ α′

2 ≤ . . . of its section by a linear subspaces of codimension k are
related by the inequalities: αi ≤ α′

i ≤ αi+k, i = 1, . . . , n− k.

411. From the Real Spectral Theorem, derive the Orthogonal Diagonal-
ization Theorem as it is formulated in the Introduction, i.e. for pairs of
quadratic forms on Rn, one of which is positive definite. �

Small oscillations

Let us consider the system of n identical masses m positioned at the
vertices of a regular n-gon, which are cyclically connected by n iden-
tical elastic springs, and can oscillate in the direction perpendicular
to the plane of the n-gon.

Assuming that the amplitudes of the oscillation are small, we can
describe the motion of the masses as solutions to the following system
of n second-order Ordinary Differential Equations (ODE for short)
expressing Newton’s law of motion (mass × acceleration = force):

mẍ1 = −k(x1 − xn)− k(x1 − x2),
mẍ2 = −k(x2 − x1)− k(x2 − x3),

· · ·
mẍn−1 = −k(xn−1 − xn−2)− k(xn−1 − xn)
mẍn = −k(xn − xn−1)− k(xn − x1).

.

Here x1, . . . , xn are the displacements of the n masses in the direction
perpendicular to the plane, and k characterizes the rigidity of the
springs.7

7More precisely (see Figure 43, where n = 4), we may assume that the springs
are stretched, but the masses are confined on the vertical rods and can only slide
along them without friction. When a string of length L is horizontal (∆x = 0), the
stretching force T is compensated by the reactions of the rods. When ∆x 6= 0, the
horizontal component of the stretching force is still compensated, but the vertical
component contributes to the right hand side of Newton’s equations. When ∆x
is small, the contribution equals approximately −T (∆x)/L (so that k = −T/L).
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In fact the above ODE system can be read off a pair of quadratic
forms: the kinetic energy

K(ẋ) =
mẋ21
2

+
mẋ22
2

+ · · ·+ mẋ2n
2

,

and the potential energy

P (x) = k
(x1 − x2)

2

2
+ k

(x2 − x3)
2

2
+ · · · + k

(xn − x1)
2

2
.

Namely, for any conservative mechanical system with quadratic
kinetic and potential energy functions

K(ẋ) =
1

2
〈ẋ,M ẋ〉, P (x) = 1

2
〈x, Qx〉

the equations of motion assume the form

M ẍ = −Qx.

A linear change of variables x = Cy transforms the kinetic and
potential energy functions to a new form with the matrices M ′ =
CtMC and Q′ = CtQC. On the other hand, the same change of
variables transforms the ODE systemM ẍ = −Qx toMCÿ = −QCy.
Multiplying by Ct we get M ′ÿ = −Q′y and see that the relationship
between K,P and the ODE system is preserved. The relationship is
therefore intrinsic, i.e. independent on the choice of coordinates.

Figure 43

Since the kinetic energy is positive we can apply the Orthogonal
Diagonalization Theorem in order to transform K and P simultane-
ously to

1

2
(Ẋ2

1 + ...+ Ẋ2
n), and

1

2
(λ1X

2
1 + ...+ λnX

2
n).



2. Euclidean Geometry 173

The corresponding ODE system splits into unlinked 2-nd order ODEs

Ẍ1 = −λ1X1, ..., Ẍn = −λnXn.

When the potential energy is also positive, we obtain a system of n
unlinked harmonic oscillators with frequencies ω =

√
λ1, ...,

√
λn.

Figure 44

X

Y

Example 1:Harmonic oscillators. The equation Ẍ = −ω2X has
solutions

X(t) = A cosωt+B sinωt,

where A = X(0) and B = Ẋ(0)/ω are arbitrary real constants. It is
convenient to plot the solutions on the phase plane with coordinates
(X,Y ) = (X, Ẋ/ω). In such coordinates, the equations of motion
assume the form

Ẋ = ωY

Ẏ = −ωX ,

and the solutions

[

X(t)
Y (t)

]

=

[

cosωt sinωt
− sinωt cosωt

] [

X(0)
Y (0)

]

.

In other words (see Figure 44), the motion on the phase plane is
described as clockwise rotation with the angular velocity ω.
Since there is one trajectory through each point of the phase plane,
the general theory of Ordinary Differential Equations (namely, the
theorem about uniqueness and existence of solutions with given initial
conditions) guarantees that these are all the solutions to the ODE

Ẍ = −ω2X.
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Let us now examine the behavior of our system of n masses cycli-
cally connected by the springs. To find the common orthogonal basis
of the pair of quadratic forms K and P , we first note that, since K is
proportional to the standard Euclidean structure, it suffices to find
an orthogonal basis of eigenvectors of the symmetric matrix Q.

In order to give a concise description of the ODE system mẍ =
Qx, introduce operator T : Rn → R

n which cyclically shifts the co-
ordinates: T (x1, x2, . . . , xn)

t = (x2, . . . , xn, x1). Then Q = k(T +
T−1 − 2I). Note that the operator T is obviously orthogonal, and
hence unitary in the complexification C

n of the the space R
n. We

will now construct its basis of eigenvectors, which should be called
the Fourier basis.8 Namely, let xk = ζk where ζn = 1. Then the se-
quence {xk} is repeating every n terms, and xk+1 = ζxk for all k ∈ Z.

Thus Tx = ζx, where x = (ζ, ζ2, . . . , ζn)t. When ζ = e2π
√
−1 l/n,

l = 1, 2, . . . , n runs various nth roots of unity, we obtain n eigenvec-
tors of the operator T , which corresponds to different eigenvalues,
and hence are linearly independent. They are automatically pairwise
Hermitian orthogonal (since T is unitary), and happen to have the
same Hermitian inner square, equal to n. Thus, when divided by√
n, these vectors form an orthonormal basis in C

n. Besides, this
basis is invariant under complex conjugation (because replacing the
eigenvalue ζ with ζ̄ also conjugates the corresponding eigenvector).

Now, applying this to Q = k(T + T−1 − 2I), we conclude that Q
is diagonal in the Fourier basis with the eigenvalues

k(ζ+ζ−1−2) = 2k(cos(2πl/n)−1) = −4k sin2 πl/n, l = 1, 2, . . . , n.

When ζ 6= ζ̄, this pair of roots of unity yields the same eigenvalue of
Q, and the real and imaginary parts of the Fourier eigenvector x =
(ζ, . . . , ζn)t span in R

n the 2-dimensional eigenplane of the operator
Q. When ζ = 1 or −1 (the latter happens only when n is even),
the corresponding eigenvalue of Q is 0 and −4k respectively, and the
eigenspace is 1-dimensional (spanned the respective Fourier vectors
(1, . . . , 1)t and (−1, 1, . . . ,−1, 1)t. The whole systems decomposes
into superposition of independent “modes of oscillation” (patterns)
described by the equations

Ẍl = −ω2
lXl, where ωl = 2

√

k

m
sinπ

l

n
, l = 1, . . . , n.

8After Joseph Fourier (1768–1830), and by analogy with the theory of Fourier
series.
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Example 2: n = 4. Here ζ = 1,−1,±i. The value ζ = 1 cor-
responds to the eigenvector (1, 1, 1, 1) and the eigenvalue 0. This

“mode of oscillation” is described by the ODE Ẍ = 0, and actually
corresponds to the steady translation of the chain as a whole with
the constant speed (Figure 45a). The value ζ = −1 corresponds
to the eigenvector (−1, 1,−1, 1) (Figure 45b) with the frequency of

oscillation 2
√

k/m. The values ζ = ±i correspond to the eigenvec-
tors (±i,−1,∓i, 1). Their real and imaginary parts (0,−1, 0, 1) and
(1, 0,−1, 0) (Figures 45cd) span the plane of modes of oscillation with

the same frequency
√

2k/m. The general motion of the system is a
superposition of these four patterns.

Figure 45

dba c

Remark. In fact the oscillatory system we’ve just studied can
be considered as a model of sound propagation in a one-dimensional
crystal. One can similarly analyze propagation of sound waves in 2-
dimensional membranes of rectangular or periodic (toroidal) shape,
or in similar 3-dimensional regions. Physicists often call the result-
ing picture — superposition of independent sinusoidal waves — an
ideal gas of phonons. Here “ideal gas” refers to the independence of
the eigen-modes of oscillation (therefore behaving as non-interacting
particles of a rarefied gas), and “phonons” emphasizes that the “par-
ticles” are rather bells producing sound waves of various frequencies.

The mathematical aspect of this theory is even more general. The
Orthogonal Diagonalization Theorem guarantees that any conser-
vative mechanical system near a local minimum of potential
energy is “an ideal gas of harmonic oscillators” i.e. its be-
havior can be described as the superposition of independent
modes of harmonic oscillation.
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EXERCISES

412. A mass m is suspended on a weightless rod of length l (as a clock
pendulum), and is swinging without friction under the action of the force
of gravity mg (where g is the gravitation constant). Show that the
Newton equation of motion of the pendulum has the form lẍ = −g sinx,
where x is the angle the rod makes with the downward vertical direction,
and show that the frequency of small oscillations of the pendulum near the
lower equilibrium (x = 0) is equal to

√

g/l. �

413. In the mass-spring chain (studied in the text) with n = 3, find the
frequencies and describe explicitly the modes of oscillations.

414. The same, for 6 masses positioned at the vertices of the regular
hexagon (like the 6 carbon atoms in benzene molecules).

415.⋆ Given n numbers C1, . . . , Cn (real or complex), we form from them an
infinite periodic sequence {Ck}, . . . , C−1, C0, C1, . . . , Cn, Cn+1, . . . , where
Ck+n = Ck. Let C denote the n×n-matrix whose entries cij = Cj−i. Prove
that all such matrices (corresponding to different n-periodic sequences) are
normal, that they commute, and find their common eigenvectors. �

416.⋆ Study small oscillations of a 2-dimensional crystal lattice of toroidal
shape consisting of m×n identical masses (positioned in m circular “rows”
and n circular “columns”, each interacting only with its four neighbors).

417. Using Courant’s minimax principle, explain why a cracked bell sounds
lower than the intact one.



Epilogue: Quivers

Gabriel’s theorem

A figure consisting of several points connected by edges is called a
graph. More precisely, a graph is a purely combinatorial object,
which is considered given, if a finite set of its vertices has been
specified, and the pairs of vertices connected by edges have been
specified too. If the edges are equipped with directions, the graph is
called oriented. A graph is called connected if between any two
vertices there exists a path consisting of edges (regardless of their
directions).

A quiver is a connected oriented graph. For some examples see
Figure 47, which shows that we do not exclude the possibility of
multiple edges connecting the same vertices, or edges connecting a
vertex with itself.

Given a quiver, its representation consists of vector spaces as-
signed to the vertices, and linear maps assigned to the edges. More
precisely, to each vertex vi there should correspond a finite dimen-
sional K-vector space Vi, and to each edge eij directed from vi to vj ,
there should correspond a K-linear map Aij : Vi → Vj.

Examples (see Figure 47). (1) The quiver, called A1, consists of
one vertex with no edges. A representation of this quiver is simply a
vector space.

(2) The quiver called Ã0 consists of one vertex and one edge from
this vertex to itself. A representation of this quiver is a linear map
from a vector space to itself.

(3) The quiver called A2 consists of two vertices connected by an
edge. A representation of this quiver is a linear map between two
vector spaces.

(4) In K
n, consider a complete flag V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ K

n.
It can be interpreted as a representation of the quiver consisting of
n vertices v1, v2, . . . , vn−1, vn (the case of n = 5 is shown on Figure

201
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47 under the name A5) connected by the edges e12, e23, . . . , en−1,n.
Indeed, the spaces of the flag correspond to the vertices, and the in-
clusions V i ⊂ V i+1 are the required linear maps. Of course, not every
representation of this quiver corresponds to a flag (and in particular,
the linear maps are not required to be injective).

Figure 47

D 4

~
D 4

A 1 A
~

0 A 2A 1A
~

1

7AA 5

~

(5) In K
n, consider a pair of complete flags. They can be consid-

ered as a representation

V1 ⊂ · · · ⊂ Vn−1 ⊂ K
n ⊃ Wn−1 ⊃ · · · ⊃ W1

of the quiver, consisting of 2n − 1 vertices v1, . . . , vn, vn+1 . . . v2n−1

(the case of n = 4 is shown on Figure 47 under the name A7) con-
nected by the edges e12, . . . , en−1,n and e2n−1,2n−2, . . . , en+1,n.

(6) A triple of subspaces: U ,V,W ⊂ K
n can be considered as a

representation of the quiver, denoted D4 on Figure 47. We leave it
for the reader to give examples of representations of quiver D̃4, and
to interpret representations of the two types of quivers Ã1, shown on
Figure 47.

Two representations of the same quiver are called equivalent if
the spaces, corresponding to the vertices can be identified by isomor-
phisms in such a way that the corresponding maps are also identi-
fied. In greater detail, let U and V be two representations of the
same quiver with vertices {vi}. This means (see Figure 48, where the
quiver is of type D4, with a certain orientation of the edges) that we
are given vector spaces Ui and Vi, and for each edge eij , two linear
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maps: Aij : Ui → Uj, and Bij : Vi → Vj. To establish an equiv-
alence between the representations, one needs to find isomorphisms
Ci : Ui → Vi (shown on Figure 48 by vertical dashed arrows) such
that the pairs of parallel horizontal and vertical arrows form com-
mutative squares: CjAij = BijCi. In particular, corresponding
spaces Ui,Vi of equivalent quivers must have the same dimensions,
and the corresponding maps Aij, Bij must have the same ranks.

Figure 48
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V
4
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Examples. (7) Two representations of the quiver A1 (i.e. two
vector spaces) are equivalent whenever the spaces are isomorphic. As
we know, this this happens exactly when the spaces have the same
dimension.

(8) According to the Rank Theorem, two representations A :
U1 → U2 and B : V1 → V2 of the same quiver • → • are equiva-
lent whenever dimUi = dimVi for i = 1, 2, and rkA = rkB. Indeed,
when the dimensions n and m of the source and target space are fixed,
and the rank r ≤ min(m,n) is given, the representation is equivalent
to the standard one: En,m

r : K
n → K

m, given in coordinates by
(x1, . . . , xn) → (x1, . . . , xr, 0, . . . , 0).

(9) Two representations of the quiver of type Ã0 are linear maps:
A : U → U , and B : V → V. They are equivalent, whenever there
is an isomorphism C : U → V such that CA = BC, i.e. B =
CAC−1. Since spaces of the same dimension n are isomorphic to K

n,
we conclude that classification of representations of this quiver up to
equivalence coincides with the classification of square matrices up to
similarity transformations. When K = C, the answer is given by the
Jordan Canonical Form theorem, and for K = R by the real version
of this theorem.
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As illustrated by above examples, each quiver leads to a well-
posed classification problem of Linear Algebra: classification of rep-
resentations of the given quiver up to equivalence. Moreover, two
of the four classification theorems of Linear Algebra studied in this
course turn out to answer such “quiver” problems corresponding to
two very special examples: quivers A2 (the Rank Theorem), and Ã0

(the Jordan Canonical Form Theorem).

One way to classify representations of a given quiver is to reduce
the problem to classification of indecomposable representations.

Given two representations of a given quiver, U = {Ui, Aij} and
V = {Vi, Bij}, one can form their direct sum W = U ⊕V by taking
Wi = Ui⊕Vi on the role of the spaces, and Cij = Aij⊕Bij on the role
of the maps. The latter means that Cij : Ui⊕Vi → Uj ⊕Vj is defined
by Cij(u,v) = (Aiju, Bijv). In matrix terms, if linear maps Aij and
Bij are given by their matrices in some bases of the respective spaces
Ui,Uj and Vi,Vj, then the matrix of Cij is block-diagonal:

Cij =

[

Aij 0
0 Bij

]

.

A representation which is equivalent to the direct sum of non-zero1

representations is called decomposable, and indecomposable oth-
erwise.

Examples. (10) According to the Jordan Canonical Form Theo-

rem, every representation of quiver Ã0 over K = C is equivalent to
the direct sum of Jordan cells. Each Jordan cell is in fact indecom-
posable. Indeed, a Jordan cell has a one-dimensional eigenspace, but
block-diagonal matrices have at least one one-dimensional eigenspace
for each of the diagonal blocks.

(11) Each representation of quiver A2: • → • is equivalent to the
direct sum of three indecomposable representations:

U01 : K0 → K
1, U11 : K1 ≃→ K

1, U10 : K1 → K
0.

This follows from the Rank Theorem. Indeed, the matrix En,m
r =

[

Ir 0
0 0

]

is block-diagonal, with r diagonal blocks U11 and one zero

diagonal block of size (m − r) × (n − r). The latter, i.e. the zero
map from K

n−r to K
m−r can be described as the direct sum of n− r

copies of U10 and m− r copies of U01.

1The zero representation has all Ui = {0} and consequently all maps Aij = 0.
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Remark. A representation {Ui, Aij} of a given quiver is called
reducible if there exists a non-trivial collection of subspaces Vi ⊂ Ui

which are respected by the maps Aij , i.e. Aij(Vi) ⊂ Vj. In this case,
the subspaces Vi together with the restrictions of the maps Aij to Vi

also form a representation of the quiver: a subrepresentation. For
instance, in a decomposable representation, each of the direct sum-
mands is a subrepresentation. A representation which does not have
a non-trivial subrepresentation is called irreducible. For instance,
U01, U11, and U10 are irreducible representations of quiver A2. On
the other hand, among Jordan cells Jm : Km → K

m, only the cell of
size m = 1 is irreducible as a representation of Ã0, because all Jordan
cells of size m > 1 have non-trivial invariant subspaces. We see there-
fore two fundamental distinctions between the classification problems
for the quivers A2 and Ã0: In the former case, there are finitely many
(three) indecomposable representations, each of them is irreducible,
and each representation is equivalent to a direct sum of them. In the
latter case, there are infinitely many irreducible representations (they
depend on parameters — eigenvalues), and indecomposable represen-
tations are not necessarily equivalent to a direct sum of irreducible
ones.

Definition. A quiver is called simple, if indecomposable rep-
resentations form finitely many equivalence classes.

Example 12. The quiver A2 is simple, and Ã0 is not.

Theorem (Pierre Gabriel [4]). A quiver is simple if and only
if it has the form of one of the graphs An, n ≥ 1, Dn, n ≥ 4,
En, n = 6, 7, 8 (see Figure 49), where n is the number of vertices,
and the orientations of the edges are arbitrary.

Figure 49

E 6 E 7

D nA n

E 8
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One statement of the theorem: that all these quivers are simple,
is proved by classifying their indecomposable representations. This
enthralling problem of linear algebra goes beyond our goal in this
book.2 Let us focus here on the converse statement: that only the
quivers An,Dn, E6, E7, E8 can be simple.

First, it should be clear that if a quiver is simple, then its
representations in spaces of dimensions, not exceeding a cer-
tain bound, D, form finitely many equivalence classes. In-
deed, let d1, . . . , dn denote the dimensions of the vector spaces Ui

associated to the vertices v1, . . . , vn in a given representation U . If
this representation is equivalent to the direct sum of N indecompos-
able ones, then the total dimension

∑

di must be at least N . When
N > nD, some di will exceed D. But if the number of types of in-
decomposable representations is finite, there are only finitely many
ways to arrange them into direct sums of ≤ nD summands.

Let us now do some dimension count. Consider the problem of
classification of representations of a given quiver, assuming that the
dimensions d1, . . . , dn have been fixed. In other words, the space Ui

associated to the vertex vi can be identified with the coordinate space
K

di by a choice of basis. The operator Aij : Ui → Uj corresponding
to an edge eij is then described (in the chosen bases of the spaces
Ui and Uj) by an dj × di-matrix (which can be arbitrary!) Thus, all
representations with prescribed dimensions d1, . . . , dn of the spaces
form themselves a vector space of the total dimension

∑

edges eij
didj

(this is how many entries the matrices Aij have).

Thus, a representation is specified by a collection {Aij} of ma-
trices of prescribed sizes dj × di, one for each edge, but some such
collections define equivalent representations. Which ones? The repre-
sentation defined by the collection {A′

ij} is equivalent to the previous
one, if there exist invertible transformations Ci : Ui → Ui such that
A′

ij = CjAijC
−1
i for each edge eij . In other words, equivalent rep-

resentations are obtained from each other by bases changes in the
spaces Ui = K

di . Such bases changes are determined by n invertible
matrices Ci of sizes di × di, which depend therefore on

∑

vertices vi
d2i

parameters. In fact one parameter here is “wasted”: if all matrices
Ci are equal to the same non-zero scalar λ (i.e. Ci = λIdi), then
A′

ij = Aij . We conclude that, the number of parameters, needed
to parameterize equivalence classes of representations with
prescribed dimensions d1, . . . , dn of the spaces, is greater than
∑

edges eij
didj −

∑

vertices vi
d2i .

2We refer to [1] for an illuminating proof of Gabriel’s theorem is given.
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EXERCISES

448. Interpret representations of the two quivers Ã1 (Figure 47) in matrix
terms. �

449. On the plane, consider three distinct lines passing through the origin
as a representation of quiver D4 and show that they form a single equiva-
lence class. �

450. Consider four distinct lines on the plane as a representation of quiver
D̃4, and show that the equivalence classes depend on one parameter. �

451.⋆ Prove that the cross-ratio λ := (a − b)(c − d)/(a − c)(b − d) of
the slopes a, b, c, d of four lines on the plane does not change under linear
transformations of the plane. �

452. Find all indecomposable representations of quiver A1. �

453.⋆ Show directly that equivalence classes of some representations of
quiver Ãn (with any orientation of the edges) depend on at least one pa-
rameter. �

454. Consider a Jordan cell of size 2 as a representation of quiver Ã0, and
find all nontrivial subrepresentations. �

455. Show that all complete flags in Kn considered as representations of
quiver An are equivalent.

456. Show that pairs of complete flags in Kn considered as representations
of quiver A2n−1 form n! equivalence classes. �

Graphs and quadratic forms

To a graph Γ with n vertices v1, . . . , vn and edges {eij}, we associate
quadratic form QΓ on the space R

n with coordinates x1, . . . xn by the
formula

QΓ(x) :=
∑

vertices vi

2x2i −
∑

edges eij

2xixj.

Example 13. When Γ is the graph An, the quadratic form is
2x21−2x1x2+2x22−2x2x3+· · ·+2x2n−1−2xn−1xn+2x2n. The quadratic

form corresponding to Γ = Ã0 is 2x21 − 2x1x1 = 0 (identically zero!)

Proposition. If a quiver Γ is simple, then the quadratic
form QΓ is positive definite.

Proof. We argue ad absurdum. Suppose that x 6= 0, andQΓ(x) ≤
0. We may assume that all components of x = (x1, . . . , xn) are ratio-
nal numbers. Indeed, if QΓ is non-negative, but not positive definite,
then the coefficient matrix QΓ is degenerate. Since it has integer
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coefficients, the system QΓx = 0 has non-trivial rational solution.
Alternatively, if QΓ(x0) < 0 for some x0, one can approximate x0

with a rational vector x and still have QΓ(x) < 0. Moreover, by
clearing denominators, we may assume that all xi are integers. Note
that replacing all xi with |xi| can only decrease the value QΓ(x), be-
cause the terms x2i do not change, but the terms −xixj , if change at
all, then from a positive value to the opposite negative one. Thus,
unless QΓ is positive definite, there exist a vector d = (d, . . . , dn) of
non-negative integers not all equal to 0 and such that QΓ(d) ≤ 0.
Therefore equivalence classes of representations of the quiver Γ with
the dimensions of the spaces equal to d1, . . . , dn (and any orienta-
tion of the edges) depend on at least one parameter (on more than
−QΓ(d)/2 parameters, to be more precise). Thus the number of such
equivalence classes is infinite (since K is), and the quiver is not simple.

Theorem. The quadratic form QΓ of a graph Γ is positive
definite if and only if each connected component of the graph
is one of: An, n ≥ 1, Dn, n ≥ 4, E6, E7, E8 (Figure 49).

We will prove this theorem in several steps.

Put ∆(Γ) := detQΓ, the determinant of the coefficient matrix of
the quadratic form QΓ.

Proposition.

∆(An) = n+ 1, ∆(Dn) = 4, ∆(E6) = 3, ∆(E7) = 2, ∆(E8) = 1.

Lemma. Let v1 be a vertex of Γ connected by one edge with the
rest of the graph, Γ′, at the vertex v2, and let Γ′′ be the graph obtained
from Γ′ by removing the vertex v2 together with all the edges attached
to it. Then ∆(Γ) = 2∆(Γ′)−∆(Γ′′).

Indeed, detQΓ looks this way, where 0 is a row/column of zeroes,
and ∗ is a (row/column) of “wild cards”:

∣

∣

∣

∣

∣

∣

2 −1 0
−1 ∗ ∗
0 ∗ QΓ′′

∣

∣

∣

∣

∣

∣

.

Applying the cofactor expansion in the 1st row, and then in the 1st
column, we find ∆(Γ) = 2∆(Γ′)− (−1)2∆(Γ′′), as required. �.

Now, to prove the proposition for Γ = An, we use induction on n.
Namely, ∆(A1) = 2, ∆(A2) = 3, and from the induction hypothesis
∆(An−1) = n, ∆(An−2) = n− 1, we conclude using Lemma:

∆(An) = 2∆(An−1)−∆(An−2) = 2n− (n− 1) = n+ 1.
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For Γ = Dn, En, we apply Lemma to the vertex v2 with 3 edges,
and take v1 to be the end of the shortest leg. The graph Γ′′ falls
apart into two components Γ1,Γ2. The corresponding matrix is block-
diagonal, and the determinant factors: ∆(Γ′′) = ∆(Γ1)∆(Γ2). Thus:

∆(Dn) = 2∆(An−1)−∆(A1)∆(An−3) = 2n− 2(n− 2) = 4,

∆(E6) = 2∆(A5)−∆(A2)∆(A2) = 2 · 6− 3 · 3 = 3,

∆(E7) = 2∆(A6)−∆(A2)∆(A3) = 2 · 7− 3 · 4 = 2,

∆(E8) = 2∆(A7)−∆(A2)∆(A4) = 2 · 8− 3 · 5 = 1. �

Corollary 1. For Γ = An,Dn, E6, E7, E8, the quadratic
form QΓ is positive definite.

Proof. This follows from Sylvester’s rule. Order somehow the
vertices of the graph Γ, and tear them off one by one (together with
the attached edges). On each step, we obtain a graph Γ′ which is
one of the graphs Ak,Dk, Ek, or a collection thereof. By Proposition,
∆(Γ′) > 0. This means that all leading minors of the coefficient
matrix QΓ are positive, and hence the quadratic form is positive
definite. �

Corollary 2. For each of the graphs Γ̃ := Ãn, n ≥ 0, D̃n, n ≥
4, Ẽn, n = 6, 7, 8 shown on Figure 50, the corresponding
quadratic form QΓ̃ on R

n+1 is non-negative. More precisely,
its positive inertia index equals n, and the 1-dimensional
kernel is spanned by the vector whose components are shown
on the diagram.

Proof. By tearing off Γ̃ the “white” vertex together with the at-
tached edges, we obtain the corresponding graph Γ, whose quadratic
form QΓ is positive definite by Corollary 1. Thus, R

n+1 contains
the subspace R

n on which the quadratic form QΓ̃ is positive definite,
which proves that the positive inertia index is at least n. To prove
that the quadratic form QΓ̃ is degenerate, consider the corresponding
symmetric bilinear form

QΓ̃(x,y) =
∑

vertices vi

(2xi −
∑

edges eij

xj)yi,

where the last sum is taken over all edges attached to the vertex
vi. To show that a vector x is Q-orthogonal to every y, it suffices
to check that for each vertex vi, twice the value xi is equal to the
sum of xj over all vertices vj connected to vi: 2xi =

∑

edges eij
xj .
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It is straightforward to check that this requirement holds true for
the positive integers written next to the vertices on the diagrams
of Figure 50. Thus, the vector with these components lies in the
quadratic form, which also shows that the negative inertia index of
the quadratic form must be 0. �

Figure 50
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Corollary 2 shows that the quadratic form QΓ cannot be positive
definite if Γ contains any of the graphs of Figure 50 as a subgraph.
(By a subgraph of Γ we mean some vertices of Γ connected by some of
the edges of Γ.) Indeed, the labels on Figure 50 exhibit a vector with
non-negative components on which QΓ is non-positive. For, adding
extra edges can only decrease the value of the form, and the effect of
adding extra vertices can be offset by putting xi = 0 at these vertices.
Thus, to complete the proof of our Theorem, it remains to show that a
connected graph Γ, free of subgraphs Ãn, n ≥ 0, D̃n, n ≥ 4, and
Ẽn, n = 6, 7, 8, must be one of the graphs An, n ≥ 1, Dn, n ≥ 4,
En, n = 6, 7, 8.

To justify the highlighted claim, note that Γ cannot contain a loop
(i.e. a vertex connected by an edge with itself), nor a cycle (for, Ãn

are exactly these). A connected graph free of loops or cycles is called
a tree. Thus Γ is a tree. This tree cannot contain a vertex with ≥ 4
edges attached (for, D̃4 is just that). Nor it can contain two vertices

with 3 edges attached to each of them (for, a subgraph D̃n with n > 4
will be found by connecting these vertices with a chain of edges).
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If Γ has no vertices with 3 edges attached, then it is of type An.
If it has one such a vertex, then Γ = Tp,q,r, i.e. it has the shape of
a letter “T” with the legs of type Ap, Aq, and Ar (where p, q, r are
integers > 1) connected at a common vertex. If p, q, r ≥ 3, then Γ

contains Ẽ6 as a subgraph. If p = 2, but q, r ≥ 4, then Γ contains
Ẽ7 as a subgraph. If p = 2, q = 3, but r ≥ 6, then Γ contains Ẽ8 as
a subgraph. Thus, assuming p ≤ q ≤ r, we have only the following
options left: (p, q, r) = (2, 3, 5), (2, 3, 4), (2, 3, 3), which yield the
graphs E8, E7, E6, or p = q = 2 (while r ≥ 2 can be arbitrary), which
yields the graphs Dr+2. Theorem is proved.

EXERCISES

457.⋆ Prove that ∆(Tp,q,r) = pq − qr + rp− pqr. �

458. Show that QTp,q,r
is positive definite (respectively, non-negative) if

and only if 1

p
+ 1

q
+ 1

r
> 1 (respectively = 1). �

459.⋆ Find all integer triples (p, q, r), 2 ≤ p ≤ q ≤ r, satisfying
(a) 1

p
+ 1

q
+ 1

r
> 1; (b) 1

p
+ 1

q
+ 1

r
= 1. �

460. Tile the Euclidean plane by congruent triangles with the angles:
(a) (π

3
, π
3
, π
3
), (b) (π

2
, π
4
, π
4
), (c) (π

2
, π
3
, π
6
).

461.⋆ Tile the sphere by spherical triangles with the angles:
(a) (π

2
, π
2
, π
r
); (b) (π

2
, π
3
, π
3
), (c) (π

2
, π
3
, π
4
), (d) (π

2
, π
3
, π
5
). �

Root Systems

A remarkable feature of the classification by the graphs An,Dn, En

is that they arise not only in connection with quivers, or graphs Γ
with positive definite quadratic forms QΓ, but in a myriad of other
classification problems. Namely, they occur in the theory of: regu-
lar polyhedra in the 3-space, reflection groups in Euclidean spaces,
compact Lie groups, degenerations of functions near critical points,
singularities of wave fronts and caustics of geometrical optics, and
perhaps many others. There exist many direct connections between
different manifestations of the ADE-classification, but the general
cause of the phenomenon remains a mystery. We round up these
notes with one illustration to the mystery, which comes from the
theory of reflection groups.

For an introduction to group theory we refer the reader to any of
the items [5, 9, 11] in our short bibliography, but in what follows we
try to describe the groups we need directly with no reference to the
general theory.
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Given a graph Γ, one can consider the symmetric bilinear form
〈x,y〉 = (Q(x+ y)−Q(x)−Q(y)) /2 associated with the quadratic
form Q = QΓ as an inner product in R

n in a generalized sense (for
it is not guaranteed to be positive definite). Let vi be the vectors
of the standard basis in R

n. They correspond to the vertices of the
graph and have length

√
2, i.e. Q(vi) = 2 (assuming that Γ has no

loops attached to the ith vertex). One can associate to Γ the group
GΓ generated by n reflections in the hyperplanes Q-orthogonal to vi.

In more detail, by a group of Q-orthogonal transformations one
means a collection G = {Uα} of transformations Uα : R

n → R
n,

preserving the inner product, i.e. satisfying 〈Uαx, Uαy〉 = 〈x,y〉 for
all x,y ∈ R

n, and such that the compositions UαUβ and inverses U−1
α

of the transformations from the collection G are also in G.

For instance, to each vector v ∈ R
n with Q(v) = 2 one can

associate the reflection Rv in the hyperplane Q-orthogonal to v:

Rvx = x− 〈x,v〉v.

If 〈x,v〉 = 0, then Rvx = x, while Rvv = v − 2v = −v. Thus R
n is

the direct Q-orthogonal sum of two eigenspaces of Rv corresponding
to the eigenvalues 1 and −1, and so Rv preserves Q.

Given several vectors {vi} with Q(vi) = 2, one can generate a
group of Q-orthogonal transformations by considering all the reflec-
tions Rvi

along with their compositions, inverses, compositions of the
compositions, etc.

It turns out that the reflection group GΓ associated with a
graph Γ without loops is finite if and only if each connected
component of Γ is one of the graphs An,Dn, E6, E7, E8. We
are not going to prove this theorem here (although this would not be

too hard to do by checking that if Γ contains Ãn, D̃n, or Ẽn, then
the reflection group must be infinite), but merely illustrate it with a
useful example.

Example 14: Reflection group An. In the standard Euclidean
space R

n+1 with coordinates x0, . . . , xn, consider the hyperplane
given by the linear equation x0 + · · · + xn = 0. Permutations of
the coordinates form a group of (n + 1)! orthogonal transformations
in R

n+1, preserving the hyperplane. The whole group of permuta-
tions is generated by n transpositions τ01, τ12, . . . , τn−1,n, where τij
stands for the swapping of the coordinates xi and xj, and thus acts
as an orthogonal reflection in the hyperplane xi = xj .
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The hyperplane x0 + · · · + xn = 0 can be identified with R
n by

the choice of a basis:

v1 = e0 − e1, v2 = e1 − e2, . . . , vn = en−1 − en,

where ei = (. . . , 0, 1, 0, . . . )t denote the unit coordinate vectors in
R
n+1. Computing pairwise dot-products, we find:

〈vi,vi〉 = 2, 〈vi,vi+1〉 = −1, 〈vi,vj〉 = 0 for |i− j| > 1.

We see that the Euclidean structure on the hyperplane Rn in the basis
v1, . . . ,vn coincides with the one defined by the graph An. Note that
the reflections in the hyperplanes perpendicular to vi are exactly the
transpositions τi−1,i. Thus, the reflection group GAn is identified with
the group of permutations of n+ 1 objects.

There is more here than meets the eye. While the group is gen-
erated by n reflections, the total number of hyperplane reflections in
it is

(

n+1
2

)

= n(n+1)/2: one for each transposition τij . Respectively

there are n(n+1) vectors v of length
√
2 perpendicular to the hyper-

planes: ±(ei−ej). The configuration of these vectors (called “roots”)
is called the root system associated to the graph An. The same can
be done with each of the A,D,E-graphs: the root system is a finite
symmetric configuration of vectors of length

√
2 obtained from any

of the vectors vi by applying all transformations from the reflection
group. One of many peculiar properties of root systems is that each
root v is a linear combination of the basis v1, . . . ,vn (corresponding
to the vertices of the graph) with coefficients which have the same
sign: either all non-negative, or all non-positive. E.g. in the case
An, if i < j, then ±(ei−ej) = ±(vi+1+ · · ·+vj). Thus, all the roots
are divided into positive (including v1, . . . ,vn) and negative.

We can now state the following addition to Gabriel’s theorem:

Indecomposable representations of a simple quiver are in
one-to-one correspondence with positive roots of the corre-
sponding root system, and the dimension of the vector space
associated with a vertex of the quiver in a given indecom-
posable representation coincides with the coefficient di ≥ 0
of the corresponding positive root v = d1v1 + · · ·+ dnvn at the
simple root vi associated with this vertex.
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Example 15: A2. The reflection group GA2
acts on the plane

x0 + x1 + x3 = 0 by symmetries of a regular triangle. There are
three symmetry axes, and respectively 6 roots perpendicular to them,
three of which are positive: v1 = e0 − e1, v2 = e1 − e2, and v =
e0−e2 = v1+v2. Their coefficients (1, 0) (0, 1), and (1, 1) correspond
to the three indecomposable representations of the quiver • → • as

described by the Rank Theorem: K1 → K
0, K0 → K

1, and K
1 ≃→ K

1.

EXERCISES

462. Verify that reflections Rv are Q-orthogonal. �

463.⋆ Prove that the reflection group GΓ corresponding to the graph Γ =
Ã1 is infinite. �

464. Describe all indecomposable representations of quiver
An: • → • → · · · → • → •. �

465. Represent a complete flag in K
n as the direct sum of indecomposable

representations of quiver An. �

466. Let X denote an n×n-matrix. Find the solution to the ODE system
dX/dt = AX−XA (where X stands for the unknown n×n-matrix), given
the initial value X(0). �

467. In the previous exercise, let A be diagonal, with the eigenvalues
λ1, . . . , λn. Find the eigenvectors and eigenvalues of the operator X 7→
AX − XA on the space of n × n-matrices, and compare the answer with
the root system of type A. �
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9, 147
Cauchy’s interlacing theorem,

170
Cayley, 152, 185
Cayley transform, 152
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185
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characteristic equation, 152
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classification theorem, 29
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column space, 117
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commutativity, 4
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complementary multi-index,
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complete flag, 123
completing the squares, 25
complex conjugate, 11
complex conjugation, 163, 164
complex multiplication, 166
complex sphere, 132
complex vector space, 40
complexification, 163
components, 47
components of tensor, 94
composition, 61
congruent modulo n, 41
conic section, 21
conics, 131
connected graph, 201
continuous time, 189
contravariant, 94
coordinate Euclidean space,

161
coordinate flag, 124
coordinate system, 5
coordinate vectors, 43, 47
coordinates, 5, 43, 47, 53
Courant, 169
covariant, 94
covector, 93
Cramer’s rule, 85
cross product, 90
cross-ratio, 207
cylinder, 131

Dandelin, 22
Dandelin’s spheres, 21
Darboux, 142
Darboux basis, 142
decomposable representation,

204
degenerate bilinear form, 168
Descartes, 9
determinant, 37, 73
diagonal matrix, 47
diagonalizable matrix, 183
differential form, 101

dimension, 52
dimension of Bruhat cell, 126
direct sum, 32, 44, 204
direct sum of representations,

204
directed segment, 3
directrix, 23
discrete dynamical systems,

189
discrete time, 189
discriminant, 14, 145
distance, 147
distributive law, 12, 60
distributivity, 4
dot product, 7
dot-product, 67
dual basis, 54, 93
dual map, 65
dual space, 46

eccentricity, 23
edge, 201
eigenspace, 153, 177
eigenvalue, 33, 152, 177
eigenvector, 152, 177
Einstein convention, 93
elementary product, 73
elementary row operations,

113
ellipse, 22
ellipsoid, 170
entry, 47
equivalent, 29
equivalent conics, 131
equivalent linear maps, 107
equivalent representations,

202
Euclidean algorithm, 224
Euclidean inner product, 161
Euclidean space, 161
Euclidean structure, 161
Euler’s formula, 18
evaluation, 60
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evaluation map, 48
even form, 141
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exterior algebra, 96, 100
exterior form, 97
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exterior tensor power, 96
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field, 12, 40
field of p-adic numbers, 144
finite dimensional spaces, 52
flag, 123
focus of ellipse, 22
focus of hyperbola, 23
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Fourier, 174
Fourier basis, 174
Fundamental Formula of

Mathematics, 19

Gabriel, 205
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Gelfand’s problem, 168
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graded algebra, 95
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148
graph, 45, 201
Grassmann algebra, 97, 100
gravitation constant, 176
greatest common divisor, 41
group, 212
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Hamilton, 185
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Hasse, 144
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Hermite, 55, 70
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70
Hermitian form, 71
Hermitian inner product, 147
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Hermitian operator, 150
Hermitian quadratic form, 71,

133
Hermitian space., 147
Hermitian-anti-symmetric

form, 70
Hermitian-symmetric form, 70
Hilbert space, 147
homogeneity, 8
homogeneous system, 110
homomorphism, 41
homomorphism theorem, 50
hyperbola, 22
hyperplane, 112
hypersurface, 131

identity matrix, 63
identity permutation, 75
imaginary part, 11
imaginary unit, 11
inconsistent system, 115
indecomposable

representation, 204
indices in inversion, 75
induction hypothesis, 53
inertia index, 129
Inertia Theorem, 28
injective, 44
inner product, 7
invariant subspace, 153
inverse matrix, 63
inverse transformation, 64
inversion of indices, 75
involution, 164
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irreducible representation, 205
isometric Hermitian spaces,

148
isomorphic spaces, 44
isomorphism, 44
iterations of linear maps, 189

Jacobi matrix, 103
Jordan block, 35
Jordan canonical form, 182
Jordan cell, 182
Jordan normal form, 182
Jordan system, 35
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kernel of form, 69, 130
kinetic energy, 172
Kronecker delta, 93

Lagrange, 55
Lagrange polynomials, 55
Laplace, 87
Laplace’s formula, 87
law of cosines, 9
LDU decomposition, 122
leading coefficient, 114
leading entry, 114
leading minors, 136
left inverse, 108
left singular vector, 158
length, 147
length of permutation, 75
linear combination, 4
linear dynamical systems, 189
linear form, 45, 59
linear function, 45, 59
linear map, 44
linear ODE, 189
linear recursion relation, 189
linear subspace, 43
linear transformation, 64
linearly dependent, 52
linearly independent, 52

Linnaeus, 29
lower triangular, 120
lower-triangular matrix, 47
LPU decomposition, 120
LU decomposition, 122
LUP decomposition, 123
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mathematical induction, 53
matrix, 47, 59
matrix entry, 59
matrix product, 60, 61
metric space, 147
Minkowski, 144
Minkowski–Hasse theorem,

144
minor, 83, 87
multi-index, 87
multiplication by scalar, 3
multiplication by scalars, 39
multiplicative, 12
multiplicity, 14

nilpotent operator, 179
non-degenerate bilinear form,

168
non-degenerate Hermitian

form, 136
non-negative form, 158
nontrivial linear combination,

52
normal form, 29
normal operator, 150, 164
null space, 44, 117

odd form, 141
odd permutation, 75
ODE, 189
operator, 150
opposite coordinate flag, 124
opposite vector, 39
oriented graph, 201
orthogonal, 148
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orthogonal basis, 127
orthogonal complement, 153
orthogonal diagonalization,

157
Orthogonal Diagonalization

Theorem, 169
orthogonal operator, 164
orthogonal projection, 149
orthogonal projector, 151
orthogonal transformation,

161
orthogonal vectors, 9
orthonormal basis, 137, 148,

161

parabola, 27
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Pascal’s triangle, 219
pendulum, 176
pendulum equation, 36
permutation, 73
permutation matrix, 120
Pfaffian, 100
phase plane, 173
pivot, 114
Plücker, 90
Plücker coordinates, 109
Plücker identity, 90
PLU decomposition, 123
polar, 13
polar decomposition, 159
polylinear form, 91
positive definite, 128
positive operator, 159
positivity, 8
potential energy, 172
power of matrix, 65
principal axes, 25, 170
principal minor, 129
projection, 148
Pythagorean theorem, 9

quadratic curve, 21

quadratic form, 23, 31, 69
quadratic formula, 14
quiver, 201
quotient space, 49

range, 44
rank, 31, 105
rank of linear system, 110
rank of matrix, 107
real normal operators, 162
real part, 11
real spectral theorem, 165
real vector space, 40
realification, 163
reduced row echelon form, 114
reducible representation, 205
reflection, 212
regular nilpotent, 179
representation, 201
right inverse, 108
right singular vector, 158
root of unity, 15
root space, 178
root system, 213
row echelon form, 114
row echelon form of rank r,

114
row space, 117

scalar, 39, 40
scalar product, 7
Schwarz, 9
semiaxes, 170
semiaxis of ellipse, 26
sesquilinear form, 70, 133
sign of permutation, 73
similarity, 177
similarity transformation, 64
simple problems, 37
simple quiver, 205
singular value, 158
singular value decomposition,

157, 158
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skew-commutative, 96, 99
span, 51
spectral theorem, 152
spectrum, 33, 169
square matrix, 47, 63
square root, 15, 159
standard basis, 51
standard coordinate flag, 123
standard coordinate space, 43
standard Euclidean space, 71
standard Hermitian space, 71
Stokes formula, 104
subrepresentation, 205
subspace, 43
surjective, 44
Sylvester, 136
symmetric algebra, 95
symmetric bilinear form, 68,

127
symmetric matrix, 68
symmetric operator, 164
symmetric tensor power, 95
symmetricity, 8
symmetrization, 220
system of linear equations, 61

tail, 3
tautology, 50
tensor, 94
tensor algebra, 95
tensor product, 91
time-independent dynamical

system, 189
total anti-symmetry, 77
trace, 151
transition matrix, 63, 93
transposed form, 68

transposed map, 65
transposed matrix, 66
transposed partition, 181
transposition matrix, 121
transposition permutation, 75
triangle inequality, 9, 147

unipotent, 182
unipotent matrix, 122
unit coordinate vectors, 51
unit vector, 8
unitary rotation, 155
unitary space, 147
unitary transformation, 151
universality property, 92
upper triangular, 120
upper-triangular matrix, 47

Vandermonde, 90
Vandermonde’s identity, 90
vector, 3, 39
vector field, 101
vector space, 36, 39
vector subspace, 43
vector sum, 3
vertex, 201
Vieta, 16
Vieta’s theorem, 16
volume form, 100

wedge product, 96
wedge-product, 98
Weyl, 7

Young tableaux, 181

zero representation, 204
zero vector, 3, 39
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