
Chapter 4

Eigenvalues

1 The Spectral Theorem

Hermitian Spaces

Given a C-vector space V, an Hermitian inner product in V is
defined as a Hermitian symmetric sesquilinear form such that the
corresponding Hermitian quadratic form is positive definite. A space
V equipped with an Hermitian inner product 〈·, ·〉 is called a Hermi-
tian space.1

The inner square 〈z, z〉 is interpreted as the square of the length
|z| of the vector z. Respectively, the distance between two points z
and w in an Hermitian space is defined as |z−w|. Since the Hermitian
inner product is positive, distance is well-defined, symmetric, and
positive (unless z = w). In fact it satisfies the triangle inequality2:

|z−w| ≤ |z|+ |w|.

This follows from the Cauchy – Schwarz inequality:

|〈z,w〉|2 ≤ 〈z, z〉 〈w,w〉,

where the equality holds if and only if z and w are linearly dependent.
To derive the triangle inequality, write:

|z−w|2 = 〈z−w, z−w〉 = 〈z, z〉 − 〈z,w〉 − 〈w, z〉+ 〈w,w〉
≤ |z|2 + 2|z||w| + |w|2 = (|z| + |w|)2.

1Other terms used are unitary space and finite dimensional Hilbert space.
2This makes a Hermitian space a metric space.
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To prove the Cauchy–Schwarz inequality, note that it suffices to
consider the case |w| = 1. Indeed, when w = 0, both sides vanish,
and when w 6= 0, both sides scale the same way when w is normalized
to the unit length. So, assuming |w| = 1, we put λ := 〈w, z〉 and
consider the projection λw of the vector z to the line spanned by
w. The difference z − λw is orthogonal to w: 〈w, z − λw〉 =
〈w, z〉 − λ〈w,w〉 = 0. From positivity of inner squares, we have:

0 ≤ 〈z− λw, z− λw〉 = 〈z, z − λw〉 = 〈z, z〉 − λ〈z,w〉.

Since 〈z,w〉 = 〈w, z〉 = λ̄, we conclude that |z|2 ≥ |〈z,w〉|2 as re-
quired. Notice that the equality holds true only when z = λw.

All Hermitian spaces of the same dimension are isomet-
ric (or Hermitian isomorphic), i.e. isomorphic through isomor-
phisms respecting Hermitian inner products. Namely, as it follows
from the Inertia Theorem for Hermitian forms, every Hermitian space
has an orthonormal basis, i.e. a basis e1, . . . , en such that 〈ei, ej〉 =
0 for i 6= j and = 1 for i = j. In the coordinate system corresponding
to an orthonormal basis, the Hermitian inner product takes on the
standard form:

〈z,w〉 = z̄1w1 + · · ·+ z̄nwn.

An orthonormal basis is not unique. Moreover, as it follows from
the proof of Sylvester’s rule, one can start with any basis f1, . . . , fn in
V and then construct an orthonormal basis e1, . . . , en such that ek ∈
Span(f1, . . . , fk). This is done inductively; namely, when e1, . . . , ek−1

have already been constructed, one subtracts from fk its projection
to the space Span(e1, . . . , ek−1):

f̃k = fk − 〈e1, fk〉e1 − · · · − 〈ek−1, fk〉ek−1.

The resulting vector f̃k lies in Span(f1, . . . , fk−1, fk) and is orthogonal
to Span(f1, . . . , fk−1) = Span(e1, . . . , ek−1). Indeed,

〈ei, f̃k〉 = 〈ei, fk〉 −
k−1
∑

j=1

〈ej , fk〉〈ei, ej〉 = 0

for all i = 1, . . . , k−1. To construct ek, one normalizes f̃k to the unit
length:

ek := f̃k/|f̃k|.
The above algorithm of replacing a given basis with an orthonormal
one is known as Gram–Schmidt orthogonalization.
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EXERCISES

345. Prove that if two vectors u and v in an Hermitian space are orthogonal,

then |u|2 + |v|2 = |u− v|2. Is the converse true? �

346. Prove that for any vectors u, v in an Hermitian space,

|u+ v|2 + |u− v|2 = 2|u|2 + 2|v|2.
Find a geometric interpretation of this fact. �

347. Apply Gram–Schmidt orthogonalization to the basis f1 = e1 + 2ie2 + 2ie3,

f2 = e1 + 2ie2, f3 = e1 in the coordinate Hermitian space C
3.

348. Apply Gram–Schmidt orthogonalization to the standard basis e1, e2 of C2

to construct an orthonormal basis of the Hermitian inner product 〈z,w〉 = z̄1w1+

2z̄1w2 + 2z̄2w1 + 5z̄2w2.

349. Let f ∈ V be a vector in an Hermitian space, e1, . . . , ek an orthonormal

basis in a subspace W. Prove that u =
∑〈ei,v〉ei is the point of W closest to v,

and that v − u is orthogonal to W. (The point u ∈ W is called the orthogonal

projection of v to W.)

350.⋆ Let f1, . . . , fN be a finite sequence of vectors in an Hermitian space. The

Hermitian N × N-matrix 〈fi, fj〉 is called the Gram matrix of the sequence.

Show that two finite sequences of vectors are isometric, i.e. obtained from each

other by a unitary transformation, if and only if their Gram matrices are the

same.

Normal Operators

Our next point is that an Hermitian inner product on a com-
plex vector space allows one to identify sesquilinear forms
on it with linear transformations.

Let V be an Hermitian vector space, and T : V 7→ V a C-linear
transformation. Then the function V × V → C

T (w, z) := 〈w, Tz〉

is C-linear in z and anti-linear in w, i.e. it is sesquilinear.

In coordinates, w =
∑

iwiei, z =
∑

j zjej, and

〈w, Tz〉 =
∑

i,j

wi 〈ei, Tej〉zj ,

i.e., T (ei, ej) = 〈ei, Tej〉 form the coefficient matrix of the sesquilin-
ear form. On the other hand, Tej =

∑

i tijei, where [tij ] is the matrix
of the linear transformation T with respect to the basis (e1, . . . , en).
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Note that if the basis is orthonormal, then 〈ei, Tej〉 = tij, i.e.
the two matrices coincide.

Since tij could be arbitrary, it follows that every sesquilinear form
on V is uniquely represented by a linear transformation.

Earlier we have associated with a sesquilinear form its Hermitian
adjoint (by changing the order of the arguments and conjugating the
value). When the sesquilinear form is obtained from a linear transfor-
mation T , the adjoint corresponds to another linear transformation
denoted T † and called Hermitian adjoint to T . Thus, by definition,

〈w, Tz〉 = 〈z, T †w〉 = 〈T †w, z〉 for all z,w ∈ V.

Of course, we also have 〈Tw, z〉 = 〈w, T †z〉 (check this!), and either
identity completely characterizes T † in terms of T .

The matrix of T † in an orthonormal basis is obtained from that
of T by complex conjugation and transposition:

t†ij := 〈ei, T †ej〉 = 〈Tei, ej〉 = 〈ej , Tei〉 =: tji.

Definition. A linear transformation on an Hermitian vector
space is called normal (or a normal operator) if it commutes with
its adjoint: T †T = TT †.

Example 1. A scalar operator is normal. Indeed, (λI)† = λ I,
which is also scalar, and scalars commute.

Example 2. A linear transformation on an Hermitian space is
called Hermitian if it coincides with its Hermitian adjoint: S† = S.
An Hermitian operator3 is normal.

Example 3. A linear transformation is called anti-Hermitian if it
is opposite to its adjoint: Q† = −Q. Multiplying an Hermitian op-
erator by

√
−1 yields an anti-Hermitian one, and vice versa (because

(
√
−1I)† = −

√
−1I). Anti-Hermitian operators are normal.

Example 4. Every linear transformation T : V → V can be
uniquely written as the sum of Hermitian and anti-Hermitian opera-
tors: T = S+Q, where S = (T +T †)/2 = S†, and Q = (T −T †)/2 =
−Q†. We claim that an operator is normal whenever its Hermitian
and anti-Hermitian parts commute. Indeed, T † = S −Q, and

TT † − T †T = (S +Q)(S −Q)− (S −Q)(S +Q) = 2(QS − SQ).

3The term operator in Hermitian geometry is synonimous to linear map.
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Example 5. An invertible linear transformation U : V → V is
called unitary if it preserves inner products:

〈Uw, Uz〉 = 〈w, z〉 for all w, z ∈ V.

Equivalently, 〈w, (U †U − I)z〉 = 0 for all w, z ∈ V. Taking w =
(U †U−I)z, we conclude that (U †U−I)z = 0 for all z ∈ V, and hence
U †U = I. Thus, for a unitary map U , U−1 = U †. The converse state-
ment is also true (and easy to check by starting from U−1 = U † and
reversing our computation). Since every invertible transformation
commutes with its own inverse, we conclude that unitary transfor-
mations are normal.

EXERCISES

351. Generalize the construction of Hermiatian adjoint operators to the case of

operators A : V → W between two different Hermitian spaces. Namely, show

that A† : W → V is uniquely determined by the identity 〈A†w,v〉V = 〈w, Av〉W
for all v ∈ V and w ∈ W.

352. Show that the matrices of A : V → W and A† : W → V in orthornormal

bases of V and W are obtained from each other by transposition and complex

conjugation.

353. The trace of a square matrix A is defined as the sum of its diagonal entries,

and is denoted trA. Prove that 〈A,B〉 := tr(A†B) defines an Hermitian inner

product on the space Hom(Cn,Cm) of m× n-matrices.

354. Let A1, . . . , Ak : V → W be linear maps between Hermitian spaces. Prove

that if
∑

A†
iAi = 0, then A1 = · · · = Ak = 0.

355. Let A : V → W be a linear map between Hermitian spaces. Show that

B := A†A and C = AA† are Hermitian, and that the corresponding Hermitian

forms B(x,x) := 〈x, Bx〉 in V and C(y,y) := 〈y, Cy〉 in W are non-negative.

Under what hypothesis about A is the 1st of them positive? the 2nd one? both?

356. Let W ⊂ V be a subspace in an Hermitian space, and let P : V → V be the

map that to each vector v ∈ V assigns its orthogonal projection to W. Prove that

P is an Hermitian operator, that P 2 = P , and that KerP = W⊥.(It is called the

orthogonal projector to W.)

357. Prove that an n × n-matrix is unitary if and only if its rows (or columns)

form an orthonormal basis in the coordinate Hermitian space C
n.

358. Prove that the determinant of a unitary matrix is a complex number of

absolute value 1.

359. Prove that the Cayley transform: C 7→ (I − C)/(I + C), well-defined

for linear transformations C such that I + C is invertible, transforms unitary

operators into anti-Hermitian and vice versa. Compute the square of the Cayley

transform. �
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360. Prove that the commutator AB−BA of anti-Hermitian operators A and B

is anti-Hermitian.

361. Give an example of a normal 2 × 2-matrix which is not Hermitian, anti-

Hermitian, unitary, or diagonal.

362. Prove that for any n×n-matrix A and any complex numbers α, β of absolute

value 1, the matrix αA+ βA† is normal.

363. Prove that A : V → V is normal if and only if |Ax| = |A†x| for all x ∈ V.

The Spectral Theorem for Normal Operators

Let A : V → V be a linear transformation, v ∈ V a vector, and
λ ∈ C a scalar. The vector v is called an eigenvector of A with
the eigenvalue λ, if v 6= 0, and Av = λv. In other words, A
preserves the line spanned by the vector v and acts on this line as
the multiplication by λ.

Theorem. A linear transformation A : V → V on a finite
dimensional Hermitian vector space is normal if and only if
V has an orthonormal basis of eigenvectors of A.

Proof. In one direction, the statement is almost obvious: If
a basis consists of eigenvectors of A, then the matrix of A in this
basis is diagonal. When the basis is orthonormal, the matrix of the
Hermitian adjoint operator A† in this basis is Hermitian adjoint to
the matrix of A and is also diagonal. Since all diagonal matrices
commute, we conclude that A is normal. Thus, it remains to prove
that, conversely, every normal operator has an orthonormal basis of
eigenvectors. We will prove this in four steps.

Step 1. Existence of eigenvalues. We need to show that there
exists a scalar λ ∈ C such that the system of linear equations Ax = λx
has a non-trivial solution. Equivalently, this means that the linear
transformation λI − A has a non-trivial kernel. Since V is finite
dimensional, this can be re-stated in terms of the determinant of the
matrix of A (in any basis) as

det(λI −A) = 0.

This relation, understood as an equation for λ, is called the char-
acteristic equation of the operator A. When A = 0, it becomes
λn = 0, where n = dimV. In general, it is a degree-n polynomial
equation

λn + p1λ
n−1 + · · · + pn−1λ+ pn = 0,
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where the coefficients p1, . . . , pn are certain algebraic expressions of
matrix entries of A (and hence are complex numbers). According to
the Fundamental Theorem of Algebra, this equation has a complex
solution, say λ0. Then det(λ0I − A) = 0, and hence the system
(λ0I − A)x = 0 has a non-trivial solution, v 6= 0, which is therefore
an eigenvector of A with the eigenvalue λ0.

Remark. Solutions to the system Ax = λ0x form a linear subspace
W in V, namely the kernel of λ0I−A, and eigenvectors of A with the
eigenvalue λ0 are exactly all non-zero vectors in W. Slightly abusing
terminology, W is called the eigenspace of A corresponding to the
eigenvalue λ0. Obviously, A(W) ⊂ W. Subspaces with such property
are called A-invariant. Thus eigenspaces of a linear transformation
A are A-invariant.

Step 2. A†-invariance of eigenspaces of A. Let W 6= {0} be the
eigenspace of a normal operator A, corresponding to an eigenvalue λ.
Then for every w ∈ W,

A(A†w) = A†(Aw) = A†(λw) = λ(A†w).

Therefore A†w ∈ W, i.e. the eigenspace W is A†-invariant.

Step 3. Invariance of orthogonal complements. Let W ⊂ V be
a linear subspace. Denote by W⊥ the orthogonal complement of
the subspace W with respect to the Hermitian inner product:

W⊥ := {v ∈ V | 〈w,v〉 = 0 for all w ∈ W.}

Note that if e1, . . . , ek is a basis in W, then W⊥ is given by k linear
equations 〈ei,v〉 = 0, i = 1, . . . , k, and thus has dimension ≥ n− k.
On the other hand, W∩W⊥ = {0}, because no vector w 6= 0 can be
orthogonal to itself: 〈w,w〉 > 0. It follows from dimension counting
formulas that dimW⊥ = n − k. Moreover, this implies that V =
W⊕W⊥, i.e. the whole space is represented as the direct sum of two
orthogonal subspaces. Needless to add: (W⊥)⊥ = W.

We claim that if a subspace is A-invariant, then its orthogo-
nal complement is A†-invariant (and vice versa). Indeed, suppose
that A(W) ⊂ W, and v ∈ W⊥. Then for any w ∈ W, we have:
〈w, A†v〉 = 〈Aw,v〉 = 0, since Aw ∈ W. Therefore A†v ∈ W⊥, i.e.
W⊥ is A†-invariant.

Consequently, if W is both A- and A†-invariant, so is W⊥.

Step 4. Induction on dimV. When dimV = 1, the theorem is
obvious. Assume that the theorem is proved for normal operators in
spaces of dimension < n, and prove it when dimV = n.
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According to Step 1, a normal operator A has an eigenvalue λ.
Let W 6= {0} be the corresponding eigenspace. If W = V, then
the operator is scalar, A = λI, and any orthonormal basis in V will
consist of eigenvectors of A. If W 6= V, then both W and W⊥ have
dimensions < n, and (by Steps 2 and 3) are A- and A†-invariant.
The restrictions of the operators A and A† to each of these sub-
spaces still satisfy AA† = A†A and 〈A†x,y〉 = 〈x, Ay〉 for all x,y.
Therefore these restrictions remain adjoint to each other normal op-
erators on W and W⊥. Applying the induction hypothesis, we can
find orthonormal bases of eigenvectors of A in each W and W⊥. The
union of these bases form an orthonormal basis of eigenvectors of A
in V = W ⊕W⊥. �

Remark. Note that Step 1 is based on the Fundamental The-
orem of Algebra, but does not use normality of A and applies to
any C-linear transformation. Thus, every linear transformation
on a complex vector space has eigenvalues and eigenvectors.
Furthermore, Step 2 actually applies to any commuting transforma-
tions and shows that if AB = BA then eigenspaces of A are
B-invariant. The fact that B = A† is used in Step 3.

Corollary 1. A normal operator has a diagonal matrix
in a suitable orthonormal basis.

Corollary 2. Let A : V → V be a normal operator, λi dis-
tinct roots of its characteristic polynomial, mi their multi-
plicities, and Wi corresponding eigenspaces. Then dimWi =
mi, and

∑

dimWi = dimV.

Indeed, this is true for transformations defined by any diagonal
matrices. For normal operators, in addition Wi ⊥ Wj when i 6= j. In
particular we have the following corollary.

Corollary 3. Eigenvectors of a normal operator corre-
sponding to different eigenvalues are pairwise orthogonal.

Here is a matrix version of the Spectral Theorem.

Corollary 4. A square complex matrix A commuting with
its Hermitian adjoint A† can be transformed to a diagonal
form by transformations A 7→ U †AU defined by unitary ma-
trices U .

Note that for unitary matrices, U † = U−1, and therefore the
above transformations coincide with similarity transformations A 7→
U−1AU . This is how the matrix A of a linear transformation changes
under a change of basis. When both the old and new bases are or-
thonormal, the transition matrix U must be unitary. This is because
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in both old and new coordinates the Hermitian inner product has the
same standard form: 〈x,y〉 = x†y. The result follows.

EXERCISES

364. Prove that the characteristic polynomial det(λI − A) of a square matrix A

does not change under similarity transformations A 7→ C−1AC and thus depends

only on the linear operator defined by the matrix.

365. Show that if λn + p1λ
n−1 + · · · + pn is the characteristic polynomial of a

matrix A, then pn = (−1)n detA, and p1 = − trA, and conclude that the trace

is invariant under similarity transformations.

366. Prove that trA = −∑

λi, where λi are the roots of det(λI − A) = 0.�

367. Prove that if A and B are normal and AB = 0, then BA = 0. Does this

remain true without the normality assumption?

368.⋆ Let operator A be normal. Prove that the set of complex numbers

{〈x, Ax〉 | |x| = 1} is a convex polygon whose vertices are the eigenvalues of

A. �

369. Prove that two (or several) commuting normal operators have a common

orthonormal basis of eigenvectors. �

370. Prove that if A is normal and AB = BA, then AB† = B†A, A†B = BA†,

and A†B† = B†A†.

371.⋆ Give another proof of the Spectral Theorem, using the fact that any nor-

mal operator can be written as S1 +
√
−1S2 where S1 and S2 are commuting

Hermitian operators. Namely, first find and eigenspace of S1 (as in Step 1),

show that its orthogonal complement is S1-invariant, and proceed by induction.

Then show that eigenspaces of S1 are S2-invariant (as in Step 2) and decompose

them into pairwise orthogonal common eigenspaces of S1 and S2. Finally pick an

orthonormal basis and in these common eigenspaces.

Unitary Transformations

Note that if λ is an eigenvalue of a unitary operator U then |λ| =
1. Indeed, if x 6= 0 is a corresponding eigenvector, then 〈x,x〉 =
〈Ux, Ux〉 = λλ̄〈x,x〉, and since 〈x,x〉 6= 0, it implies λλ̄ = 1.

Corollary 5. A transformation is unitary if and only if
in some orthonormal basis its matrix is diagonal, and the
diagonal entries are complex numbers of absolute value 1.

On the complex line C, multiplication by λ with |λ| = 1 and
arg λ = θ defines the rotation through the angle θ. We will call
this transformation on the complex line a unitary rotation. We
arrive therefore to the following geometric characterization of unitary
transformations.
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Corollary 6. Unitary transformations in an Hermitian
space of dimension n are exactly unitary rotations (through
possibly different angles) in n mutually perpendicular com-
plex directions.

Orthogonal Diagonalization

Corollary 7. A linear operator is Hermitian (respectively
anti-Hermitian) if and only if in some orthonormal basis
its matrix is diagonal with all real (respectively imaginary)
diagonal entries.

Indeed, if Ax = λx and A† = ±A, we have:

λ〈x,x〉 = 〈x, Ax〉 = 〈A†x,x〉 = ±λ̄〈x,x〉.

Therefore λ = ±λ̄ provided that x 6= 0, i.e. eigenvalues of an Hermi-
tian operator are real and of anti-Hermitian imaginary. Vice versa,
a real diagonal matrix is obviously Hermitian, and imaginary anti-
Hermitian.

Recall that (anti-)Hermitian operators correspond to (anti-)Her-
mitian forms A(x,y) := 〈x, Ay〉. Applying the Spectral Theorem
and reordering the basis eigenvectors in the monotonic order of the
corresponding eigenvalues, we obtain the following classification re-
sults for forms.

Corollary 8. In a Hermitian space of dimension n, an
Hermitian form can be transformed by unitary changes of
coordinates to exactly one of the normal forms

λ1|z1|2 + · · ·+ λn|zn|2, λ1 ≥ · · · ≥ λn.

Corollary 9. In a Hermitian space of dimension n, an
anti-Hermitian form can be transformed by unitary changes
of coordinates to exactly one of the normal forms

iω1|z1|2 + · · ·+ iωn|zn|2, ω1 ≥ · · · ≥ ωn.

Uniqueness follows from the fact that eigenvalues and dimensions
of eigenspaces are determined by the operators in a coordinate-free
fashion.
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Corollary 10. In a complex vector space of dimension n,
a pair of Hermitian forms, of which the first one is posi-
tive definite, can be transformed by a choice of a coordinate
system to exactly one of the normal forms:

|z1|2 + · · ·+ |zn|2, λ1|z1|2 + · · ·+ λn|zn|2, λ1 ≥ · · · ≥ λn.

This is the Orthogonal Diagonalization Theorem for Hermi-
tian forms. It is proved in two stages. First, applying the Inertia
Theorem to the positive definite form one transforms it to the stan-
dard form; the 2nd Hermitian form changes accordingly but remains
arbitrary at this stage. Then, applying Corollary 8 of the Spectral
Theorem, one transforms the 2nd Hermitian form to its normal form
by transformations preserving the 1st one.

Note that one can take the positive definite sesquilinear form cor-
responding to the 1st Hermitian form for the Hermitian inner prod-
uct, and describe the 2nd form as 〈z, Az〉, where A is an operator
Hermitian with respect to this inner product. The operator, its eigen-
values, and their multiplicities are thus defined by the given pair of
forms in a coordinate-free fashion. This guarantees that pairs with
different collections λ1 ≥ · · · ≥ λn of eigenvalues are non-equivalent
to each other.

EXERCISES

372. Prove that all roots of characteristic polynomials of Hermitian matrices are

real.

373. Find eigenspaces and eigenvalues of an orthogonal projector to a subspace

W ⊂ V in an Hermitian space.

374. Prove that every Hermitian operator P satisfying P 2 = P is an orthogonal

projector. Does this remain true if P is not Hermitian?

375. Prove directly, i.e. not referring to the Spectral Theorem, that every Her-

mitian operator has an orthonormal basis of eigenvectors. �

376. Prove that if (λ−λ1) · · · (λ−λn) is the characteristic polynomial of a normal

operator A, then
∑ |λi|2 = tr(A†A).

377. Classify up to linear changes of coordinates pairs (Q,A) of forms, where Q

is positive definite Hermitian, and A anti-Hermitian.

378. An Hermitian operator S is called positive (written: S ≥ 0) if 〈x, Sx) ≥ 0

for all x. Prove that for every positive operator S there is a unique positive

square root (denoted by
√
S), i.e. a positive operator whose square is S.
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379.⋆ Prove the Singular Value Decomposition Theorem: For a rank r

linear map A : V → W between Hermitian spaces, there exist orthonormal bases

v1, . . . ,vn in V and w1, . . . ,wm in W, and reals µ1 ≥ · · · ≥ µr > 0, such that

Av1 = µ1w1, . . . , Avr = µrwr, Avr+1 = · · · = Avn = 0. �

380. Prove that for every complex m×n-matrix A of rank r, there exist unitary

m×m- and n×n-matrices U and V , and a diagonal r×r-matrix M with positive

diagonal entries, such that A = U†

[

M 0
0 0

]

V . �

381. Using the Singular Value Decomposition Theorem with m = n, prove that

every linear transformation A of an Hermitian space has a polar decomposition

A = SU , where S is positive, and U is unitary.

382. Prove that the polar decomposition A = SU is unique when A is invertible;

namely S =
√
AA∗, and U = S−1A. What are polar decompositions of non-zero

1× 1-matrices?
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2 Euclidean Geometry

Euclidean Spaces

Let V be a real vector space. A Euclidean inner product (or Eu-
clidean structure) on V is defined as a positive definite symmetric
bilinear form 〈·, ·〉. A real vector space equipped with a Euclidean in-
ner product is called a Euclidean space. A Euclidean inner product
allows one to talk about distances between points and angles between
directions:

|x− y| =
√

〈x− y,x− y〉, cos θ(x,y) :=
〈x,y〉
|x| |y| .

It follows from the Inertia Theorem that every finite dimen-
sional Euclidean vector space has an orthonormal basis. In
coordinates corresponding to an orthonormal basis e1, . . . , en the in-
ner product is given by the standard formula:

〈x,y〉 =
n
∑

i,j=1

xiyj〈ei, ej〉 = x1y1 + · · ·+ xnyn.

Thus, every Euclidean space V of dimension n can be identified with
the coordinate Euclidean space R

n by an isomorphism R
n → V

respecting inner products. Such an isomorphism is not unique, but
can be composed with any invertible linear transformation U : V → V
preserving the Euclidean structure:

〈Ux, Uy〉 = 〈x,y〉 for all x,y ∈ V.

Such transformations are called orthogonal.

A Euclidean structure on a vector space V allows one to identify
the space with its dual V∗ by the rule that to a vector v ∈ V assigns
the linear function on V whose value at a point x ∈ V is equal to the
inner product 〈v,x〉. Respectively, given a linear map A : V → W
between Euclidean spaces, the adjoint map At : W∗ → V∗ can be
considered as a map between the spaces themselves: At : W → V.
The defining property of the adjoint map reads:

〈Atw,v〉 = 〈w, Av〉 for all v ∈ V and w ∈ W.

Consequently matrices of adjoint maps A and At with respect to
orthonormal bases of the Euclidean spaces V and W are transposed
to each other.
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As in the case of Hermitian spaces, one easily derives that a linear
transformation U : V → V is orthogonal if and only if U−1 = U t. In
the matrix form, the relation U tU = I means that columns of U form
an orthonormal set in the coordinate Euclidean space.

Our goal here is to develop the spectral theory for real normal
operators, i.e. linear transformations A : V → V on a Eucledean
space commuting with their transposed operators: AtA = AAt. Sym-
metric (At = A), anti-symmetric (At = −A), and orthogonal trans-
formations are examples of normal operators in Euclidean geometry.

The right way to proceed is to consider Euclidean geometry as
Hermitian geometry, equipped with an additional, real structure, and
apply the Spectral Theorem of Hermitian geometry to real normal
operators extended to the complex space.

EXERCISES

383. Prove the Cauchy-Schwartz inequality for Euclidean inner products: 〈x,y〉2
≤ 〈x,x〉〈y,y〉, strictly, unless x and y are proportional, and derive from this that

the angle between non-zero vectors is well-defined. �

384. For x,y ∈ R
n, put 〈x,x〉 =

∑n

i=1
2x2

i − 2
∑n−1

i=1
xixi+1. Show that the

corresponding symmetric bilinear form defines on R
n a Euclidean structure, and

find the angles between the standard coordinate axes in R
n. �

385. Prove that 〈x,x〉 := 2
∑

i≤j
xixj defines in R

n a Euclidean structure, find

pairwise angles between the standard coordinate axes, and show that permuta-

tions of coordinates define orthogonal transformations. �

386. In the standard Euclidean space R
n+1 with coordinates x0, . . . , xn, consider

the hyperplane H given by the equation x0+ · · ·+xn = 0. Find explicitly a basis

{fi} in H , in which the Euclidean structure has the same form as in the previous

exercise, and then yet another basis {hi} in which it has the same form as in the

exercise preceding it. �

387. Prove that if U is orthogonal, then detU = ±1. �

388. Provide a geometric description of orthogonal transformations of the Eu-

clidean plane. Which of them have determinant 1, and which −1? �

389. Prove that an n × n-matrix U defines an orthogonal transformation in the

standard Euclidean space R
n if and only if the columns of U form an orthonormal

basis.

390. Show that rows of an orthogonal matrix form an orthonormal basis.
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Complexification

Since R ⊂ C, every complex vector space can be considered as a real
vector space simply by “forgetting” that one can multiply by non-real
scalars. This operation is called realification; applied to a C-vector
space V, it produces an R-vector space, denoted VR, of real dimension
twice the complex dimension of V.

In the reverse direction, to a real vector space V one can associate
a complex vector space, VC, called the complexification of V. As a
real vector space, it is the direct sum of two copies of V:

VC := {(x,y) | x,y ∈ V}.

Thus, the addition is performed componentwise, while the multipli-
cation by complex scalars α + iβ is introduced with the thought in
mind that (x,y) stands for x+ iy:

(α+ iβ)(x,y) := (αx− βy, βx + αy).

This results in a C-vector space VC whose complex dimension equals
the real dimension of V.

Example. (Rn)C = C
n = {x+ iy | x,y ∈ R

n}.
A productive viewpoint on the complexification VC is that it is a

complex vector space with an additional structure that “remembers”
that the space was constructed from a real one. This additional struc-
ture is the operation of complex conjugation (x,y) 7→ (x,−y).

The operation in itself is a map σ : VC → VC, satisfying σ2 = id,
which is anti-linear over C. The latter means that σ(λz) = λ̄σ(z)
for all λ ∈ C and all z ∈ VC. In other words, σ is R-linear, but
anti-commutes with multiplication by i: σ(iz) = −iσ(z).

Conversely, let W be a complex vector space equipped with an
anti-linear operator whose square is the identity4:

σ : W → W, σ2 = id, σ(λz) = λ̄σ(z) for all λ ∈ C, z ∈ W.

Let V denote the real subspace in W that consists of all σ-invariant
vectors. We claim that W is canonically identified with the
complexification of V: W = VC. Indeed, every vector z ∈ W
is uniquely written as the sum of σ-invariant and σ-anti-invariant
vectors:

z =
1

2
(z+ σz) +

1

2
(z− σz).

4Any transformation whose square is the identity is called an involution.
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Since σi = −iσ, multiplication by i transforms σ-invariant vectors to
σ-anti-invariant ones, and vice versa. Thus, W as a real space is the
direct sum V ⊕ (iV) = {x + iy | x,y ∈ V}, where multiplication by
i acts in the required for the complexification fashion: i(x + iy) =
−y + ix.

The construction of complexification and its abstract description
in terms of the complex conjugation operator σ are the tools that
allow one to carry over results about complex vector spaces to real
vector spaces. The idea is to consider real objects as complex ones
invariant under the complex conjugation σ, and apply (or improve)
theorems of complex linear algebra in a way that would respect σ.

Example. A real matrix can be considered as a complex one. This
way an R-linear map defines a C-linear map (on the complexified
space). More abstractly, given an R-linear map A : V → V, one
can associate to it a C-linear map AC : VC → VC by AC(x,y) :=
(Ax, Ay). This map is real in the sense that it commutes with the
complex conjugation: ACσ = σAC.

Vice versa, let B : VC → VC be a C-linear map that commutes
with σ: σ(Bz) = Bσ(z) for all z ∈ VC. When σ(z) = ±z, we find
σ(Bz) = ±Bz, i.e. the subspaces V and iV of real and imaginary
vectors are B-invariant. Moreover, since B is C-linear, we find that
for x,y ∈ V, B(x+ iy) = Bx+ iBy. Thus B = AC where the linear
operator A : V → V is obtained by restricting B to V.

Our nearest goal is to obtain real analogues of the Spectral Theo-
rem and its corollaries. One way to do it is to combine corresponding
complex results with complexification. Let V be a Euclidean space.
We extend the inner product to the complexification VC in such a
way that it becomes an Hermitian inner product. Namely, for all
x,y,x′,y′ ∈ V, put

〈x+ iy,x′ + iy′〉 = 〈x,x′〉+ 〈y,y′〉+ i〈x,y′〉 − i〈y,x′〉.

It it straightforward to check that this form on VC is sesquilinear and
Hermitian symmetric. It is positive definite since 〈x+ iy,x + iy〉 =
|x|2 + |y|2. Note that changing the signs of y and y′ preserves the
real part and reverses the imaginary part of the form. In other words,
for all z,w ∈ VC, we have:

〈σ(z), σ(w)〉 = 〈z,w〉 (= 〈w, z〉).

This identity expresses the fact that the Hermitian structure of VC

came from a Euclidean structure on V. When A : VC → VC is a real
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operator, i.e. σAσ = A, the Hermitian adjoint operator A† is also
real.5 Indeed, since σ2 = id, we find that for all z,w ∈ VC

〈σA†σz,w〉 = 〈σw, A†σz〉 = 〈Aσw, σz〉 = 〈σAw, σz〉 = 〈z, Aw〉,

i.e. σA†σ = A†. In particular, complexifications of orthogonal
(U−1 = U t), symmetric (At = A), anti-symmetric (At = −A),
normal (AtA = AAt) operators in a Euclidean space are respec-
tively unitary, Hermitian, anti-Hermitian, normal operators on the
complexified space, commuting with the complex conjugation.

EXERCISES

391. Consider C
n as a real vector space, and describe its complexification.

392. Let σ be the complex conjugation operator on C
n. Consider C

n as a real

vector space. Show that σ is symmetric and orthogonal.

393. On the complex line C
1, find all involutions σ anti-commuting with the

multiplication by i: σi = −iσ.

394. Let σ be an involution on a complex vector space W. Considering W
as a real vector space, find eigenvalues of σ and describe the corresponding

eigenspaces. �

The Real Spectral Theorem

Theorem. Let V be a Euclidean space, and A : V → V a normal
operator. Then in the complexification VC, there exists an
orthonormal basis of eigenvectors of AC which is invariant
under complex conjugation and such that the eigenvalues
corresponding to conjugated eigenvectors are conjugated.

Proof. Applying the complex Spectral Theorem to the normal
operator B = AC, we obtain a decomposition of the complexified
space VC into a direct orthogonal sum of eigenspaces W1, . . . ,Wr

of B corresponding to distinct complex eigenvalues λ1, . . . , λr. Note
that if v is an eigenvector of B with an eigenvalue µ, then Bσv =
σBv = σ(µv) = µ̄σv, i.e. σv is an eigenvector of B with the con-
jugate eigenvalue µ̄. This shows that if λi is a non-real eigenvalue,
then its conjugate λ̄i is also one of the eigenvalues of B (say, λj), and
the corresponding eigenspaces are conjugated: σ(Wi) = Wj. By the

5This is obvious in the matrix form: In a real orthonormal basis of V (which is
a complex orthonormal basis of VC) A has a real matrix, so that A† = At. Here
we argue the “hard way” in order to illustrate how various aspects of σ-invariance
fit together.
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same token, if λk is real, then σ(Wk) = Wk. This last equality means
that Wk itself is the complexification of a real space, namely of the
σ-invariant part of Wk. It coincides with the space Ker(λkI−A) ⊂ V
of real eigenvectors of A with the eigenvalue λk. Thus, to construct
a required orthonormal basis, we take: for each real eigenspace Wk,
a Euclidean orthonormal basis in the corresponding real eigenspace,
and for each pair Wi,Wj of complex conjugate eigenspaces, an Her-
mitian orthonormal basis {fα} in Wi and the conjugate basis {σ(fα)}
in Wj = σ(Wi). The vectors of all these bases altogether form an
orthonormal basis of VC satisfying our requirements. �

Example 1. Identify C with the Euclidean plane R
2 in the usual

way, and consider the operator (x + iy) 7→ (α + iβ)(x + iy) of mul-
tiplication by given complex number α + iβ. In the basis 1, i, it has
the matrix

A =

[

α −β
β α

]

.

Since At represents multiplication by α − iβ, it commutes with A.
Therefore A is normal. It is straightforward to check that

z =
1√
2

[

1
−i

]

and z̄ =
1√
2

[

1
i

]

are complex eigenvectors of A with the eigenvalues α+ iβ and α− iβ
respectively, and form an Hermitian orthonormal basis in (R2)C.

Example 2. If A is a linear transformation in R
n, and λ0 is a

non-real root of its characteristic polynomial det(λI − A), then the
system of linear equations Az = λ0z has non-trivial solutions, which
cannot be real though. Let z = u+ iv be a complex eigenvector of A
with the eigenvalue λ0 = α+ iβ. Then σz = u− iv is an eigenvector
of A with the eigenvalue λ̄0 = α − iβ. Since λ0 6= λ̄0, the vectors z
and σz are linearly independent over C, and hence the real vectors
u and v must be linearly independent over R. Consider the plane
Span(u,v) ⊂ R

n. Since

A(u− iv) = (α− iβ)(u − iv) = (αu− βv)− i(βu + αv),

we conclude that A preserves this plane and in the basis u,−v in it

(note the sign change!) acts by the matrix

[

α −β
β α

]

. If we assume

in addition that A is normal (with respect to the standard Euclidean
structure in R

n), then the eigenvectors z and σz must be Hermitian
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orthogonal, i.e.

〈u− iv,u + iv〉 = 〈u,u〉 − 〈v,v〉 + 2i〈u,v〉 = 0.

We conclude that 〈u,v〉 = 0 and |u|2 − |v|2 = 0, i.e. u and v
are orthogonal and have the same length. Normalizing the length
to 1, we obtain an orthonormal basis of the A-invariant plane, in
which the transformation A acts as in Example 1. The geometry of
this transformation is known to us from studying the geometry of
complex numbers: It is the composition of the rotation through the
angle arg(λ0) with the expansion by the factor |λ0|. We will call such
a transformation of the Euclidean plane a complex multiplication
or multiplication by a complex scalar, λ0.

Corollary 1. Given a normal operator on a Euclidean
space, the space can be represented as a direct orthogonal
sum of invariant lines and planes, on each of which the
transformation acts as multiplication by a real or complex
scalar respectively.

Corollary 2. A transformation in a Euclidean space is
orthogonal if and only if the space can be represented as the
direct orthogonal sum of invariant lines and planes on each
of which the transformation acts as multiplication by ±1 and
rotation respectively.

Corollary 3. In a Euclidean space, every symmetric op-
erator has an orthonormal basis of eigenvectors.

Corollary 4. Every quadratic form in a Euclidean space
of dimension n can be transformed by an orthogonal change
of coordinates to exactly one of the normal forms:

λ1x
2
1 + · · ·+ λnx

2
n, λ1 ≥ · · · ≥ λn.

Corollary 5. In a Euclidean space of dimension n, every
anti-symmetric bilinear form can be transformed by an or-
thogonal change of coordinates to exactly one of the normal
forms

〈x,y〉 =
r

∑

i=1

ωi(x2i−1y2i − x2iy2i−1), ω1 ≥ · · · ≥ ωr > 0, 2r ≤ n.
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Corollary 6. Every real normal matrix A can be written
in the form A = U tMU where U is an orthogonal matrix, and
M is block-diagonal matrix with each block either of size 1,

or of size 2 of the form

[

α −β
β α

]

, where β > 0.

If A is symmetric, then only blocks of size 1 are present
(i.e. M is diagonal).

If A is anti-symmetric, then blocks of size 1 are zero, and

of size 2 are of the form

[

0 −ω
ω 0

]

, where ω > 0.

If A is orthogonal, then all blocks of size 1 are equal to ±1,

and blocks of size 2 have the form

[

cos θ − sin θ
sin θ cos θ

]

, where

0 < θ < π.

EXERCISES

395. Prove that an operator on a Euclidean vector space is normal if and only if

it is the sum of commuting symmetric and anti-symmetric operators.

396. Prove that in the complexification (R2)C of a Euclidean plane, all rotations

of R2 have a common basis of eigenvectors, and find these eigenvectors. �

397. Prove that an orthogonal transformation in R
3 is either the rotation through

an angle θ, 0 ≤ θ ≤ π, about some axis, or the composition of such a rotation

with the reflection about the plane perpendicular to the axis.

398. Find an orthonormal basis in C
n in which the transformation defined by the

cyclic permutation of coordinates: (z1, z2, . . . , zn) 7→ (z2, . . . , zn, z1) is diagonal.

399. In the coordinate Euclidean space R
n with n ≤ 4, find real and complex

normal forms of orthogonal transformations defined by various permutations of

coordinates.

400. Transform to normal forms by orthogonal transformations:

(a) x1x2 + x3x4, (b) 2x2
1 − 4x1x2 + x2

2 − 4x2x3,

(c) 5x2
1 + 6x2

2 + 4x2
3 − 4x1x2 − 4x1x3.

401. Show that any anti-symmetric bilinear form on R
2 is proportional to

det[x,y] =

∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

= x1y2 − x2y1.

Find the operator corresponding to this form, its complex eigenvalues and eigen-

vectors. �

402. In Euclidean spaces, classify all operators which are both orthogonal and

anti-symmetric.
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403. Recal that a biliniar form on V is called non-dedgenerate if the corre-

sponding linear map V → V∗ is an isomorphism, and degenerate otherwise.

Prove that all non-degenerate anti-symetric bilinear forms on R
2n are equivalent

to each other, and that all antisymmetric bilinear forms on R
2n+1 are degenerate.

404. Derive Corollaries 1 – 6 from the Real Spectral Theorem.

405. Let U and V be two subspaces of dimension 2 in the Euclidean 4-space.

Consider the map T : V → V defined as the composition: V ⊂ R
4 → U ⊂ R

4 → V,

where the arrows are the orthogonal projections to U and V respectively. Prove

that T is positive, and that its eigenvalues have the form cosφ, cosψ where φ, ψ

are certain angles, 0 ≤ φ, ψ ≤ π/2.

406. Solve Gelfand’s problem: In the Euclidean 4-space, classify pairs of planes

passing through the origin up to orthogonal transformations of the space. �

Courant–Fischer’s Minimax Principle

One of the consequences (equivalent to Corollary 4) of the Real Spec-
tral Theorem is that a pair (Q,S) of quadratic forms in R

n, of which
the first one is positive definite, can be transformed by a linear change
of coordinates to the normal form:

Q = x21 + · · · + x2n, S = λ1x
2
1 + · · · + λnx

2
n, λ1 ≥ · · · ≥ λn.

The eigenvalues λ1 ≥ · · · ≥ λn form the spectrum of the pair (Q,S).
The following result gives a coordinate-free, geometric description of
the spectrum (and thus implies the Orthogonal Diagonalization
Theorem as it was stated in the Introduction).

Theorem. The k-th greatest spectral number is given by

λk = max
W : dimW=k

min
x∈W−0

S(x)

Q(x)
,

where the maximum is taken over all k-dimensional sub-
spaces W ⊂ R

n, and the minimum over all non-zero vectors
in the subspace.

Proof. When W is given by the equations xk+1 = · · · = xn = 0,
the minimal ratio S(x)/Q(x) (achieved on vectors proportional to
ek) is equal to λk because

λ1x
2
1 + · · ·+ λkx

2
k ≥ λk(x

2
1 + · · ·+ x2k) when λ1 ≥ · · · ≥ λk.

Therefore it suffices to prove for every other k-dimensional subspace
W the minimal ratio cannot be greater than λk. For this, denote
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by V the subspace of dimension n − k + 1 given by the equations
x1 = · · · = xk−1 = 0. Since λk ≥ · · · ≥ λn, we have:

λkx
2
k + · · · + λnx

2
n ≤ λk(x

2
k + · · · + x2n),

i.e. for all non-zero vectors x in V the ratio S(x)/Q(x) ≤ λk. Now
we invoke the dimension counting argument: dimW + dimV = k +
(n− k+1) = n+1 > dimR

n, and conclude that W has a non-trivial
intersection with V. Let x be a non-zero vector in W ∩ V. Then
S(x)/Q(x) ≤ λk, and hence the minimum of the ratio S/Q on W−0
cannot exceed λk. �

Applying Theorem to the pair (Q,−S) we obtain yet another
characterization of the spectrum:

λk = min
W : dimW=n−k+1

max
x∈W−0

S(x)

Q(x)
.

Formulating some applications, we assume that the space R
n is

Euclidean, and refer to the spectrum of the pair (Q,S) where Q =
|x|2, simply as the spectrum of S.

Corollary 1. When a quadratic form increases, its spec-
tral numbers do not decrease: If S ≤ S′ then λk ≤ λ′

k for all
k = 1, . . . , n.

Proof. Indeed, since S/Q ≤ S′/Q, the minimum of the ratio
S/Q on every k-dimensional subspace W cannot exceed that of S′/Q,
which in particular remains true for that W on which the maximum
of S/Q equal to λk is achieved.

The following is known as Cauchy’s interlacing theorem.

Corollary 2. Let λ1 ≥ · · · ≥ λn be the spectrum of a
quadratic form S, and λ′

1 ≥ · · · ≥ λ′
n−1 be the spectrum of

the quadratic form S′ obtained by restricting S to a given
hyperplane R

n−1 ⊂ R
n passing through the origin. Then:

λ1 ≥ λ′
1 ≥ λ2 ≥ λ′

2 ≥ · · · ≥ λn−1 ≥ λ′
n−1 ≥ λn.

Proof. The maximum over all k-dimensional subspaces W can-
not be smaller than the maximum (of the same quantities) over sub-
spaces lying inside the hyperplane. This proves that λk ≥ λ′

k. Apply-
ing the same argument to −S and subspaces of dimension n− k− 1,
we conclude that −λk+1 ≥ −λ′

k. �
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An ellipsoid in a Euclidean space is defined as the level-1 set
E = {x | S(x) = 1} of a positive definite quadratic form, S. It follows
from the Spectral Theorem that every ellipsoid can be transformed
by an orthogonal transformation to principal axes: a normal form

x21
α2
1

+ · · ·+ x2n
α2
n

= 1, 0 < α1 ≤ · · · ≤ αn.

The vectors x = ±αkek lie on the ellipsoid, and their lengths αk are
called the semiaxes of E. They are related to the spectral numbers
λ1 ≥ · · · ≥ λk > 0 of the quadratic form by α−1

k =
√
λk. From

Corollaries 1 and 2 respectively, we obtain:

Given two concentric ellipsoids enclosing one another, the semi-
axes of the inner ellipsoid do not exceed the corresponding semiaxes
of the outer:

If E′ ⊂ E, then α′
k ≤ αk for all k = 1, . . . , n.

The semiaxes of a given ellipsoid are interlaced by the semiaxes
of any section of it by a hyperplane passing through the center:

If E′ = E ∩ R
n−1, then αk ≤ α′

k ≤ αk+1 for k = 1, . . . , n − 1.

EXERCISES

407. Prove that every ellipsoid in R
n has n pairwise perpendicular hyperplanes

of bilateral symmetry.

408. Given an ellipsoid E ⊂ R
3, find a plane passing through its center and

intersecting E in a circle. �

409. Formulate and prove counterparts of Courant–Fischer’s minimax principle

and Cauchy’s interlacing theorem for Hermitian forms.

410. Prove that semiaxes α1 ≤ α2 ≤ . . . of an ellipsoid in R
n and semiaxes

α′
k ≤ α′

2 ≤ . . . of its section by a linear subspaces of codimension k are related

by the inequalities: αi ≤ α′
i ≤ αi+k, i = 1, . . . , n− k.

411. From the Real Spectral Theorem, derive the Orthogonal Diagonalization

Theorem as it is formulated in the Introduction, i.e. for pairs of quadratic forms

on R
n, one of which is positive definite.�

Small Oscillations

Let us consider the system of n identical masses m positioned at the
vertices of a regular n-gon, which are cyclically connected by n iden-
tical elastic springs, and can oscillate in the direction perpendicular
to the plane of the n-gon.
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Assuming that the amplitudes of the oscillation are small, we can
describe the motion of the masses as solutions to the following system
of n second-order Ordinary Differential Equations (ODE for short)
expressing Newton’s law of motion (mass × acceleration = force):

mẍ1 = −k(x1 − xn)− k(x1 − x2),
mẍ2 = −k(x2 − x1)− k(x2 − x3),

· · ·
mẍn−1 = −k(xn−1 − xn−2)− k(xn−1 − xn)
mẍn = −k(xn − xn−1)− k(xn − x1).

.

Here x1, . . . , xn are the displacements of the n masses in the direction
perpendicular to the plane, and k characterizes the rigidity of the
springs.6

Figure 43

In fact the above ODE system can be read off a pair of quadratic
forms: the kinetic energy

K(ẋ) =
mẋ21
2

+
mẋ22
2

+ · · ·+ mẋ2n
2

,

and the potential energy

P (x) = k
(x1 − x2)

2

2
+ k

(x2 − x3)
2

2
+ · · · + k

(xn − x1)
2

2
.

6More precisely (see Figure 43, where n = 4), we may assume that the springs
are stretched, but the masses are confined on the vertical rods and can only slide
along them without friction. When a string of length L is horizontal (∆x = 0), the
stretching force T is compensated by the reactions of the rods. When ∆x 6= 0, the
horizontal component of the stretching force is still compensated, but the vertical
component contributes to the right hand side of Newton’s equations. When ∆x
is small, the contribution equals approximately −T (∆x)/L (so that k = −T/L).
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Namely, for any conservative mechanical system with quadratic
kinetic and potential energy functions

K(ẋ) =
1

2
〈ẋ,M ẋ〉, P (x) =

1

2
〈x, Qx〉

the equations of motion assume the form

M ẍ = −Qx.

A linear change of variables x = Cy transforms the kinetic and
potential energy functions to a new form with the matrices M ′ =
CtMC and Q′ = CtQC. On the other hand, the same change of
variables transforms the ODE system M ẍ = −Qx to MCÿ = −QCy.
Multiplying by Ct we get M ′ÿ = −Q′y and see that the relationship
between K,P and the ODE system is preserved. The relationship is
therefore intrinsic, i.e. independent on the choice of coordinates.

Since the kinetic energy is positive we can apply the Orthogonal
Diagonalization Theorem in order to transform K and P simultane-
ously to

1

2
(Ẋ2

1 + ...+ Ẋ2
n), and

1

2
(λ1X

2
1 + ...+ λnX

2
n).

The corresponding ODE system splits into unlinked 2-nd order ODEs

Ẍ1 = −λ1X1, ..., Ẍn = −λnXn.

When the potential energy is also positive, we obtain a system of n
unlinked harmonic oscillators with frequencies ω =

√
λ1, ...,

√
λn.

Example 1:Harmonic oscillators. The equation Ẍ = −ω2X has
solutions

X(t) = A cosωt+B sinωt,

where A = X(0) and B = Ẋ(0)/ω are arbitrary real constants. It is
convenient to plot the solutions on the phase plane with coordinates
(X,Y ) = (X, Ẋ/ω). In such coordinates, the equations of motion
assume the form

Ẋ = ωY

Ẏ = −ωX
,

and the solutions
[

X(t)
Y (t)

]

=

[

cosωt sinωt
− sinωt cosωt

] [

X(0)
Y (0)

]

.
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In other words (see Figure 44), the motion on the phase plane is
described as clockwise rotation with the angular velocity ω.
Since there is one trajectory through each point of the phase plane,
the general theory of Ordinary Differential Equations (namely, the
theorem about uniqueness and existence of solutions with given initial
conditions) guarantees that these are all the solutions to the ODE

Ẍ = −ω2X.

Figure 44

X

Y

Let us now examine the behavior of our system of n masses cycli-
cally connected by the springs. To find the common orthogonal basis
of the pair of quadratic forms K and P , we first note that, since K is
proportional to the standard Euclidean structure, it suffices to find
an orthogonal basis of eigenvectors of the symmetric matrix Q.

In order to give a concise description of the ODE system mẍ =
Qx, introduce operator T : Rn → R

n which cyclically shifts the co-
ordinates: T (x1, x2, . . . , xn)

t = (x2, . . . , xn, x1). Then Q = k(T +
T−1 − 2I). Note that the operator T is obviously orthogonal, and
hence unitary in the complexification C

n of the the space R
n. We

will now construct its basis of eigenvectors, which should be called
the Fourier basis.7 Namely, let xk = ζk where ζn = 1. Then the se-
quence {xk} is repeating every n terms, and xk+1 = ζxk for all k ∈ Z.

Thus Tx = ζx, where x = (ζ, ζ2, . . . , ζn)t. When ζ = e2π
√
−1 l/n,

l = 1, 2, . . . , n runs various nth roots of unity, we obtain n eigenvec-
tors of the operator T , which corresponds to different eigenvalues,
and hence are linearly independent. They are automatically pairwise
Hermitian orthogonal (since T is unitary), and happen to have the
same Hermitian inner square, equal to n. Thus, when divided by

7After French mathematician Joseph Fourier (1768–1830), and by analogy
with the theory of Fourier series.
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√
n, these vectors form an orthonormal basis in C

n. Besides, this
basis is invariant under complex conjugation (because replacing the
eigenvalue ζ with ζ̄ also conjugates the corresponding eigenvector).

Now, applying this to Q = k(T + T−1 − 2I), we conclude that Q
is diagonal in the Fourier basis with the eigenvalues

k(ζ+ζ−1−2) = 2k(cos(2πl/n)−1) = −4k sin2 πl/n, l = 1, 2, . . . , n.

When ζ 6= ζ̄, this pair of roots of unity yields the same eigenvalue of
Q, and the real and imaginary parts of the Fourier eigenvector x =
(ζ, . . . , ζn)t span in R

n the 2-dimensional eigenplane of the operator
Q. When ζ = 1 or −1 (the latter happens only when n is even),
the corresponding eigenvalue of Q is 0 and −4k respectively, and the
eigenspace is 1-dimensional (spanned the respective Fourier vectors
(1, . . . , 1)t and (−1, 1, . . . ,−1, 1)t. The whole systems decomposes
into superposition of independent “modes of oscillation” (patterns)
described by the equations

Ẍl = −ω2
l Xl, where ωl = 2

√

k

m
sinπ

l

n
, l = 1, . . . , n.

Figure 45
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Example 2: n = 4. Here z = 1,−1,±i. The value z = 1 cor-
responds to the eigenvector (1, 1, 1, 1) and the eigenvalue 0. This

“mode of oscillation” is described by the ODE Ẍ = 0, and actually
corresponds to the steady translation of the chain as a whole with
the constant speed (Figure 45a). The value ζ = −1 corresponds
to the eigenvector (−1, 1,−1, 1) (Figure 45b) with the frequency of

oscillation 2
√

k/m. The values ζ = ±i correspond to the eigenvec-
tors (±i,−1,∓i, 1). Their real and imaginary parts (0,−1, 0, 1) and
(1, 0,−1, 0) (Figures 45cd) span the plane of modes of oscillation with

the same frequency
√

2k/m. The general motion of the system is a
superposition of these four patterns.
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Remark. In fact the oscillatory system we’ve just studied can
be considered as a model of sound propagation in a one-dimensional
crystal. One can similarly analyze propagation of sound waves in 2-
dimensional membranes of rectangular or periodic (toroidal) shape,
or in similar 3-dimesnional regions. Physicists often call the result-
ing picture — superposition of independent sinusoidal waves — an
ideal gas of phonons. Here “ideal gas” refers to the independence of
the eigen-modes of oscillation (therefore behaving as non-interracting
particles of a rarefied gas), and “phonons” emphasises that the “par-
ticles” are rather bells producing sound waves of various frequencies.

The mathematical aspect of this theory is even more general: the
Orthogonal Diagonalization Theorem guarantees that small oscil-
lations in any conservative mechanical system near a local
minimum of potential energy are described as superpositions
of independent harmonic oscillations.

EXERCISES

412. A mass m is suspended on a weightless rod of length l (as a clock pendu-

lum), and is swinging without friction under the action of the force of gravity

mg (where g is the gravitation constant). Show that the Newton equation of

motion of the pendulum has the form lẍ = −g sinx, where x is the angle the rod

makes with the downmward vertical direction, and show that the frequency of

small oscillations of the pendulum near the lower equlibrium (x = 0) is equal to
√

g/l. �

413. In the mass-spring chain (studied in the text) with n = 3, find frequencies

and describe explicitly the modes of oscillations.

414. The same, for 6 masses positioned at the vertices of the regular hexagon

(like the 6 carbon atoms in benzene molecules).

415.⋆ Given n numbers C1, . . . , Cn (real or complex), we form from them an in-

finite periodic sequence {Ck}, . . . , C−1, C0, C1, . . . , Cn, Cn+1, . . . , where Ck+n =

Ck. Let C denote the n× n-matrix whose entries cij = Cj−i. Prove that all such

matrices (corresponding to different n-periodic sequences) are normal, that they

commute, and find their common eigenvectors. �

416.⋆ Study small oscillations of a 2-dimansional crystal lattice of toroidal shape

consisting of m×n identical masses (positioned in m circular “rows” and n circular

“columns”, each interacting only with its four neighbors).

417. Using Courant–Fischer’s minimax principle, explain why a cracked bell

sounds lower than the intact one.


