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C. Fields

By a field one means a set K equipped with two operations: addition
and multiplication. Both are assumed to be commutative and asso-
ciative, and satisfying the distributive law: a(b+c) = ab+ac. Besides,
it is required that there exist elements 0 and 1 6= 0 such that a+0 = a
and 1a = a for all a ∈ K. Then, it is required that every a ∈ K has
the opposite −a such that −a+a = 0, and that every non-zero a ∈ K

has its inverse a−1 such that a−1a = 1. To the examples of fields
C and R, we can add (omitting many other available examples):
the field Q of rational numbers; the field A ⊂ C of all algebraic
numbers (i.e. roots of polynomials in one variable with rational
coefficients); the field Zp of integers modulo a given prime number
p (see Exercises). For instance, the set Z2 = {0, 1} of remainders
modulo 2 with the usual arithmetic of remainders (0+0 = 0 = 1+1,
0 + 1 = 1 = 1 + 0, 0 · 0 = 1 · 0 = 0 · 1 = 0, 1 · 1 = 1) can be taken
on the role of scalars. This gives rise to the definition of Z2-vector
spaces useful in computer science and logic.

To reiterate: it is essential that division by all non-zero scalars
is defined. Therefore the set Z of all integers and the set F[x] of all
polynomials in one indeterminate x with coefficients in a field F are
not fields, and do not qualify on the role of scalars in the definition of
vector spaces, because the division is not always possible. However
the field Q of all rational numbers and the field F(x) of all rational
functions with coefficients in a field F are O.K.

EXERCISES

388. Can a field have only one element? �

389. Verify that Z2 is a field.

390. Prove uniqueness of the zero element, the unit element, the opposite
and the inverse to a given element. �

391. Given two integers a and b > 0, let q and r be respectively the quotient
and remainder from the division of a by b, i.e. a = qb+ r, where 0 ≤ r < b.
Show that the set of common divisors of a and b coincides with the set of
common divisors of b and r.

392. Prove that for any two integers a and b, there exists a non-negative
integer d (often denoted (a, b) and called the greatest common divisor
of a and b) such that the set of common divisors of a and b coincides with
the set of all divisors of d. �

393. Prove that the greatest common divisor (a, b) of two integers a and b
is representable in the form d = ka+ lb, where k, l are some integers. �
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394. Let n be a positive integer. Call integers a and b congruent modulo
n (and write a ∼= b mod n) if a − b is divisible by n. Prove that if a ∼= b
mod n and a′ ∼= b′ mod n then a+a′ ∼= b+b′ mod n and ab ∼= a′b′ mod n.

395. Denote by Zn the set of congruence classes of integers modulo n.
Show that addition and multiplication of integers descends to the addition
and multiplication on Zn. �

396. How many elements does Zn have? �

397. Find all invertible elements and their multiplicative inverses in Z5.

398. The same for Z8. �

399. Prove that the congruence class of an integer a has a multiplicative
inverse in Zn if and only if a is relatively prime to n. �

400. Prove that Zn is a field if and only if n is prime.

401. By definition, a homomorphism f : F → K is a map respecting
the operations: f(a + b) = f(a) + f(b) and f(ab) = f(ab) = f(a)f(b) for
all a, b ∈ F. Prove that a non-zero homomorphism between two fields is
necessarily injective. �

402. Show that numbers of the form a + b
√
2, where a, b ∈ Q, form a

subfield in R.

403. Prove that every field K contains a unique subfield isomorphic to Q

or one of Zp, where p is prime. (One calls K a fields of characteristic p
in the latter case, and of characteristic 0 in the former.) �

404.⋆ Show that there is a field F4 of four elements. �

405. Find all roots of the polynomial x2 + x+ 1 in F4. �
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D. Examples of Vector Spaces

The axiomatic definition of vector spaces is doubly abstract: not only
it neglects to specify the set V of vectors, but it does not even tell
us anything explicit about the nature of the operations of addition
of vectors and multiplication of vectors by scalars. To find vari-
ous examples of vector spaces we should figure out which operations
would be good candidates to satisfy the axioms (i–vii). It turns out
that in the majority of useful examples, the operations are pointwise
addition of functions and multiplication of functions by scalars.

Example 1. Let S be any set, and V be the set of all functions
on S with values in K. We will denote this set by KS . The sum and
multiplication by scalars are defined on KS as pointwise operations
with functions. Namely, given two functions f, g and a scalar λ, the
values of the sum f + g and the product λf at a point s ∈ S are

(f + g)(s) = f(s) + g(s), (λf)(s) = λ(f(s)).

It is immediate to check that V = KS equipped with these operations
satisfies the axioms (i–vii). Thus KS is a K-vector space.

Example 1a. Let S be the set of n elements 1, 2, ..., n. Then
the space KS is the space Kn (e.g. RS = Rn and CS = Cn) of
coordinate vectors. Namely, each function on the set {1, . . . , n} is
specified by a string x = (x1, ..., xn) of its values, called coordinates
or components of the coordinate vector. By tradition, the string is
written as a column, and the pointwise operations with functions
turn into termwise operations with the columns:

λ





x1
...
xn



 =





λx1
...

λxn



 ,





x1
...
xn



+





y1
...
yn



 =





x1 + y1
...

xn + yn



 .

Example 1b. Let S be the set of all ordered pairs (i, j), where
i = 1, ...,m, j = 1, ..., n. Then the vector space KS is the space of
m×n-matrices. By tradition, a matrix is denoted by an upper-case
letter, e.g. A, and is represented by a rectangular array whose entry
at the intersection of the ith row and jth column is an element of K
denoted by aij (the same lower-case letter with subscripts):

A =





a11 . . . a1n
... aij

...
am1 . . . amn

.




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The pointwise operations with matrices as functions turn into ele-
mentwise addition of the arrays and their multiplication by scalars.

Example 2. Recall that a subsetW in a vector space V is called a
linear subspace (or simply subspace) if linear combinations λu+
µv of vectors from W with arbitrary coefficients lie in W, and that a
subspace of a vector space is a vector space on its own with respect
to the same operations as those in V. Thus, a subspace of K-vector
space is an example of a K-vector space.

Example 2a. An m × n-matrix is called square, if m = n. A
square matrix A is called diagonal (respectively, upper-triangular,
or lower-triangular) if aij = 0 whenever i 6= j (respectively, i > j,
or i < j). Diagonal (respectively, upper-triangular, or lower-
triangular) matrices form a subspace in the space of all n×n-matrices,
and therefore provide an example of a vector space.

Example 2b. The set of all polynomials (say, in one variable),17

form a subspace in the space RR of all real-valued functions on the
number line and therefore provide examples of real vector spaces.
More generally, polynomials with coefficients in K (as well as such
polynomials of degree not exceeding 7) form examples of K-vector
spaces.

Example 3. Let V be a K-vector space. Consider the set VS of
all functions on a given set S with values in V. Elements of V can
be added and multiplied by scalars. Respectively the vector-valued
functions can be added and multiplied by scalars in the pointwise
fashion. Thus, VS is an example of a K-vector space.

Recall that a function A : V → W from a vector space V to a
vector space W is called a linear map if it respects the operations
with vectors, i.e. if it maps linear combinations of vectors to linear
combinations of their images with the same coefficients:

A(λu+ µv) = λAu+ µAv for all u,v ∈ V and λ, µ ∈ K.

Example 3a. Linear combinations λA+µB of linear maps A,B :
V → W are linear. Therefore all linear maps from V to W form a
subspace in the space WV of all vector-valued functions V → W.
The vector space of linear maps from V to W is usually denoted

17As well as sets of all continuous, differentiable, 5 times continuously differen-
tiable, infinitely differentiable, Riemann-integrable, measurable, etc. functions,
introduced in mathematical analysis.
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byHom(V,W) (from the word homomorphism, synonimous in our
context to the term linear map.

Example 3b. By the very definition, Hom(V,K) is the space of
all K-linear forms V → K, which is called the dual space to V and
is usually denoted by V∗.

The following formal construction indicates that every vector
space can be identified with a subspace in a space of functions with
pointwise operations of addition and multiplication by scalars.

Example 3c. Given a vector v ∈ V and a linear function f ∈ V∗,
the value f(v) ∈ K is defined. We can consider it not as a function
f of v, but as a function of f defined by v. This way, to a vector
v we associate the function Ev : V∗ → K defined by evaluating all
linear functions V → K on the vector v. The function Ev is linear,
since (λf + µg)(v) = λf(v) + µg(v). The linear function Ev is an
element of the second dual space (V∗)∗. The formula f(λv + µw) =
λf(v) + µf(w), expressing linearity of linear functions, shows that
Ev depends linearly on v. Thus the evaluation map E : v 7→ Ev

is a linear map V → (V∗)∗. One can show that E is injective
and thus provides an isomorphism between V and its range
E(V) ⊂ (V∗)∗.

The previous result and examples suggest that vector spaces need
not be described abstractly, and raises the suspicion that the ax-
iomatic definition is misleading as it obscures the actual nature of
vectors as functions subject to the pointwise algebraic operations.
Here are however some examples where vectors do not come natu-
rally as functions.

Perhaps, the most important example of this kind is given by
geometric vectors, (as well as by forces and velocities in physics).
It provides the opportunity to use geometric intuition in contexts
unrelated to geometry. That is, one can “visualize” functions as geo-
metric vectors. Furthermore, taking the field Q of rational numbers,
or the field Z2 = {0, 1} on the role of scalars, one can apply geometric
intuition to number theory or computer science. Later we will have
a chance to see how this works.

Another justification for introducing vector spaces abstractly is
that this approach provides great flexibility in constructing new vec-
tor spaces from given ones. Such constructions (e.g. direct sums)
are used regularly, and it would be very awkward to constantly ex-
press the resulting vector spaces as spaces of functions, even when
the given spaces are expressed this way. Here is another example.
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Quotient spaces

The quotient space of a vector space V by a subspace W is defined
as follows. Two vectors v and v′ (Figure 23) are called equivalent
modulo W, if v − v′ ∈ W. This way, all vectors from V become
partitioned into equivalence classes. These equivalence classes form
the quotient vector space V/W.

In more detail, denote by π : V → V/W the canonical projec-
tion, which assigns to a vector v its equivalence class modulo W.
This class can be symbolically written as v+W, a notation empha-
sizing that the class consists of all vectors obtained from v by adding
arbitrary vectors from W. Alternatively, one may think of v + W
as a “plane” obtained from W as translation by the vector v. When
v ∈ W, we have v +W = W. When v /∈ W, v +W is not a linear
subspace in V. We will call it an affine subspace parallel to W.

The set V/W of all affine subspaces in V parallel toW is equipped
with algebraic operations of addition and multiplication by scalars
in such a way that the canonical projection π : V → V/W becomes a
linear map. In fact this condition leaves no choices, since it requires
that for every u,v ∈ V and λ, µ ∈ K,

λπ(u) + µπ(v) = π(λu+ µv).

In other words, the linear combination of given equivalence classes
must coincide with the equivalence class containing the linear com-
bination λu+µv of arbitrary representatives u,v of these classes. It
is important here that picking different representatives u′ and v′ will
result in a new linear combination λu′+µv′ which is however equiv-
alent to the previous one. Indeed, the difference λ(u−u′)+µ(v−v′)
lies in W since u − u′ and v − v′ do. Thus linear combinations in
V/W are well-defined.

The construction of the quotient space is admittedly one of the
most abstract ones so far. Here is a hint to how one could think of
elements of V/W and the projection π.

Example 4. Projecting 3D images to a 2-dimensional screen is
described in geometry by the canonical projection π from the 3D
space V to the plane V/W of the screen along the line W of the eye
sight (Figure D1).

Example 5. The direct sum V ⊕ W contains V and W as sub-
spaces consisting of the pairs (v,0) and (0,w) respectively. The quo-
tient of V⊕W byW is canonically identified with V, because each pair
(v,w) is equivalent moduloW to (v,0). Likewise, (V ⊕W) /V = W.
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Example 6. Let V = R[x] be the space of polynomials with real
coefficients, and W the subspace of polynomials divisible by x2 + 1.
Then the quotient space V/W can be identified with the plane C

of complex numbers, and the projection π : R[x] → C with the map
P 7→ P (i) of evaluating a polynomial P at x = i. Indeed, polynomials
P and P ′ are equivalent modulo W if and only if P − P ′ is divisible
by x2 + 1, in which case P (i) = P ′(i). Vice versa, if P (i) = P ′(i),
then P (−i) = P ′(−i) (since the polynomials are real), and hence
P − P ′ is divisible by (x− i)(x + i) = x2 + 1.

W0 0

V V/W

Figure D1

For every linear map A : V → V ′, there is a canonical isomor-
phism Ã : V/KerA → A(V) between the quotient by the kernel of
A, and its range. Namely, Au = Av if and only if u − v ∈ KerA,
i.e. whenever u is equivalent to v modulo the kernel. Thus, one
can think of every linear map as the projection of the source space
onto the range along the null space. This is a manifestation of a gen-
eral homomorphism theorem in algebra, which in the context of
vector spaces can be formally stated this way:

Theorem. Every linear map A : V → V ′ is uniquely repre-
sented as the composition A = iÃπ of the canonical projec-
tion π : V → V/KerA with the isomorphism Ã : V/KerA →
A(V) followed by the inclusion i : A(V) ⊂ V ′:

V A−→ V ′

π ↓ ∪ i

V/KerA
∼=−→ A(V)
Ã

.
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This result, although called a theorem, is merely a rephrasing of
the definitions (of vector spaces, subspaces, quotient spaces, linear
maps, isomorphisms, etc.) and is in this sense tautological,18 void of
new knowledge.

EXERCISES

406. Verify that KS and VS are vector spaces.

407. How many vectors are there in Zp-vector space Z
n
p ? Hom(Znp ,Z

m
p )? �

408. How many vectors are there in the Zp-vector space of strictly upper
triangular n× n-matrices? �

409. Show that the map f 7→
∫ b

a f(x) dx defined by integration of (say)
polynomial functions is a linear form R[x] → R.

410. Find the kernel and the range of the differentiation map D = d
dx :

K[x] → K[x], when (a) K = R, (b) K = Zp. �

411.⋆ Let V = R[x], andW ⊂ V be the subspace of all polynomials divisible
by x2 − 1. Establish an isomorphism between V/W and R{1,−1}, the space
of all functions from {1,−1} to R. �

412. Find the dimensions of spaces of: (a) diagonal n × n-matrices; (b)
upper-triangular n× n-matrices. �

413. Find the dimension of the subspace in RR spanned by functions
cos(x+ θ1), . . . , cos(x+ θn), where θ1, . . . , θn are given distinct angles. �

414. Let W ⊂ V be any subset of V . Define W⊥ ⊂ V∗ as the set of all
those linear functions which vanish on W . Prove that W⊥ is a subspace of
V∗. (It is called the annihilator of W .)

415. LetW ⊂ V be a subspace. Establish a canonical isomorphism between
the dual space (V/W)∗ and the annihilator W⊥ ⊂ V∗. �

416. Show that a field K can be considered as an F-vector space over any
subfield F ⊂ K.

417. Prove that the number of elements in a finite field is a power of its
characteristic. �

18Dictionaries define tautology as “a representation of anything as the cause,
condition, or consequence of itself.”


