
Math 242. HW Solutions

1. Let e1, . . . , er, f1, . . . , fr be vectors in a given subspace W 2r+k ⊂
(R2n, ω) with rk(ω|W ) = 2r, which project to a Darboux basis of
the quotient W/ ker(ω|W ). They span a symplectic subspace W ′ ⊂
W ⊂ R

2n, whose skew-orthogonal complement W ′′ is a complemen-
tary symplectic subspace of dimension 2n − 2r containing isotropic
W0 := ker(ω|W ). Let er+1, . . . , er+k be a basis in W0, and fr+1, . . . , fr+k

be such vectors in W ′′ for which the linear forms ω(fi, ·), when re-
stricted to W0 form the basis in W ∗

0 dual to {ei|i = r + 1, . . . r + k}.
Then {ei, fi|i = r + 1, . . . , r + k} is a Darboux basis in a sumplectic
subspace in W ′′ of dimension 2k. Let W ′′′ be its skew-orthogonal com-
plement in W ′′, and {ei, fi|i = r+ k + 1, . . . , n} be a Darboux basis in
W ′′′. Then {eifi|i = 1, . . . n} form a Darboux basis in R

2n, and W is
spanned by e1, . . . , er+k, f1, . . . , fr as required.

3. For φ =
∑

1≤i<j≤4 φijxi∧xj, the Plücker relation φ∧φ = 0 has the

form 2(φ12φ34 − φ13φ24 + φ14φ23) = 0. Since 4uv = (u+ v)2 − (u− v)2,
this quadratic relation can be rewritten in new coordinates as a21+a22+
a23 − b21 − b22 − b23 = 0. The projective space RP 5 can be identified with
the quotient of the sphere a21 + a22 + a23 + b21 + b22 + b23 = 2 by the central
symmetry (a, b) 7→ (−a,−b). The Plücker relation cuts out in RP 5

the hypersurface Gr2,4, which is thereby identified with the product
S2 × S2 = {(a, b)||a| = 1 = |b|} by this involution. Furthermore,
the restriction of a quadratic form of signature (+ + + − −−) to a
hyperplane, if remains non-degenerate, has the signature (+++−−) or
(++−−−). The zero cone of either form cuts out in RP 4 a hypersurface
identified (similarly to the previous argument) with the quotient of
S2 × S1 by the simultaneous central symmetry σ : (a, b) 7→ (−a,−b).
Thus the Lagrange grassmannian Λ2

∼= (S2 × S1)/σ.

10. The equation of non-linear pendulum is θ̈ = −ω2 sin θ, where
ω2 = g/l, linearizes near θ = π to ẍ = +ω2x. The Hamiltonian (total
energy) H = (ẋ2−ω2x2)/2 has a saddle-like critical point at the origin
(the phase portrait is formed by the level curves of H). In rescaled
Darboux coordinates q =

√
ωx, p = ẋ/

√
ω, H = ω(p2 − q2)/2, and the

phase flow is described by the 1-parametric group

[

coshωt sinhωt
sinhωt coshωt

]

of hyperbolic rotations.

13. In fact it seems easier to answer first the 2nd question (related
to the partitions of the parameter spaces into orbits) by general rea-
soning, and then exhibit miniveral deformations. In C

2, consider the
Hermitian form(s) with the real part 〈z, w〉± = z1w̄1± z2w̄2. For either
sign, the imaginary part is a symplectic form on the realification of C2,
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while the real part |z1|2±|z2|2 is the quadratic hamiltonian whose flow
(if followed during suitable time — perhaps π/2) defines the multipli-
cation by

√
−1. Consequently the group of symplectic automorphisms

preserving the hamiltonian automatically preserves the compmex struc-
ture, and coincides with the group of unitary automorphisms of the
Hermitian form: U(2) for the sign +, and U(1, 1) for −. In particular,
the codimension of the adjoint orbit of either hamiltonian is equal to
4 (the dimension of the stabilizer). Knowing this, let us write down
miniveral deformations of the hamiltonian(s) h± = (p21+q21)±(p22+q22).
The matrix of the correpsponding hamiltonian operator H± turns out
anti-symmetric, H∗

± = −H± and so infinitesimal symplectic transfor-
mations commuting withH∗

± are the same as those commuting withH±
itself. It is not too hard to guess 4 independent quadratic hamiltonians
f Poisson-comuting with h±, i.e. satisfying:

(p1∂f/∂q1 − q1∂f/∂p1)± (p2∂f/∂q2 − q2∂f∂p2) = 0.

Indeed, f = p21+ q21, p
2
2+ q22, p1q2∓ q1p2, p1p2± q1q2 will do (as it is easy

to check). Thus a miniversal deformation of h± can be written as the
germ at (λ, µ, ξ, η) = (1, 1, 0, 0) of the family

λ(p21 + q21)± µ(p22 + q22) + ξ(p1q2 ∓ q1p2) + η(p1p2 ± q1q2).

After a difect computation, I found that the characteristic polynomial
of the corresponding hamiltonian operator equals

t4 + 4

(

λ2 + µ2 ± ξ2 + η2

2

)

t2 + (ξ2 + η2 ∓ 4λµ)2

with the discriminant of the quadratic equation in t2 equal to

16(λ+ µ)2[(λ− µ)2 ± (ξ2 + η2)].

Since λ, µ ≈ 1, multiple eigenvalues occur only when (λ−µ)2 = ∓(ξ2+
η2), hence do not occur in the “+” case unless ξ = η = 0, λ = µ, i.e.
for hamiltonians proportional to h+. As it was clear from the very
beginning, since h+ is positive definite, so are all nearby hamiltonians,
and all of them are stable. In the “−” case, (λ − µ)2 = ξ2 + η2 is the
equation in R

4 of a cylinder over a 3-dimensional cone. The “axis” λ =
µ, ξ = η = 0 of this cylinder corresponds to hamiltonians proportional
to h−, which are stable, but not strongly stable. Indeed, when (λ −
µ)2 < ξ2 + η2, i.e. the discrimiant is negative, the values of t2 are
non-real, and hence the values of t form a quadruple of two pairs of
complex-conjugated eigen-values — one with negative and one with
positive real part. The latter indicate instability.
All of this could be found, however without much computation.

Namely, our 4-dimensional family is in fact a Lie subalgebra in sp(4,R),



3

isomorphic, as we have concluded earlier, to u(2) in the “+” case and
respectively u(1, 1) in the “−” case. It consists of matrices of the form
[

iα + iβ ∓z̄
z iα− iβ

]

, with the characteristic polynomial (t − iα)2 +

(α2 + β2 ± |z|2. In the “+” case, the roots are imaginary (so, all trans-
formations are stable), and in the “−” case, those with α2 + β2 < |z|2
have non-imaginary eigenvalues, and those with α2 + β2 = |z|2 are not
diagonalizable unless they are scalar (i.e. unless β = 0, z = 0).
Coincidentally or not, the partition of the parameter space into

equivalence classes of symplectic transformations coincides with the
partition of the Lie algebra (u(2) or u(1, 1)) into its own adjoint or-
bits. In the u(2) case, they fill parallel 3-dimensional subspaces (the
level sets of the trace function) into concentric spheres (centered at
the scalar matrix with the given trace). In the u(1, 1) case, they fill
parallel 3-dimensional level sets of the trace function with the 1- and
2-sheeted hyperboloids (and a cone with the vertex at the scalar matrix
with the prescribed trace). The latter picture coincides with the par-
tition of sp(2,R) into adjoint orbits — not surprisingly though, since
sp(2,R) ∼= sl(2,R) ∼= su(1, 1) as Lie algebras.

20. We are looking for a family of origin-preserving diffeomorphisms
gt, g0 = Id, such that ft(gt(x)) = f0, where f0 is the quadratic form d20f
(one may assume it is

∑±x2
i ), and ft = f0+t(f−f0). Diferentiating in

t, we obtain (Lvtft)(gt(x)) + (f − f0)(gt(x)) = 0, where x(t) = gt(x(0))
is to be defined by solutions of the ODE system dx/dt = vt(x). More

explicitly, we need to find the components v
(i)
t of the vector field vt

such that
∑

v
(i)
t ∂ft/∂xi = f0− f , where the RHS is given. What helps

is that ∂ft/∂xi can be taken for new (time-dependent) coordinates,
yi. The RHS, which is o(|x|2), can be expressed in these new coordi-

nates as some φt(y), and then expanded as φt(y) =
∑

i w
(i)
t (y)yi using

Hadamard’s lemma. The components v
(i)
t (x) of the vector field vt(x)

are obtained from w
(i)
t (y) by reversing our change of coordinates from

x to y, and come out as o(|x|). Consequently the diffeomorphosms gt
come out not only preserving the origin, but also identical on the tan-
gent space T0R

n. To guarantee smooth time dependence of the solution

w
(i)
t (y), let us recall the proof of Hadamard’s lemma:

φ(0)− φ(y) =

∫ ∞

0

d

du
φ(e−uy)du =

∑

i

yi

∫ ∞

0

∂φ

∂yi
(e−uy)e−udu,

where the integrals on the right clearly depend smoothly on parameters
(such as t) should such parameters be present in the function φ.
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23. The group of affine transfromations on the line can be identified

with the group of matrices G =

[

a b
0 1

]

, where a 6= 0, and its Lie

algebra with that of matrices X =

[

x y
0 0

]

. We have

GXG−1 =

[

ax ay
0 0

] [

1/a −b/a
0 1

]

=

[

x ay − bx
0 0

]

.

Thus, the adjoint orbits are: (i) the origin (x, y) = (0, 0), (ii) the
“punctured” line x = 0, y 6= 0, and (iii) every line x = const 6= 0.
The dual of the Lie algebra can be identified with the space of ma-

trices Θ =

[

µ 0
ν 0

]

using the pairing 〈X, Y 〉 := trXΘ = xµ + yν.

Consequently the coadjoint action (of G−1) is given by trGXG−1Θ =
xµ + (ay − bx)ν, i.e. Ad∗G−1(µ, ν) = (µ − bν, aν) where a 6= 0. Thus,
the coadjoint orbits are (i) every point (µ, 0), and (ii) the rest of the
plane, {(µ, ν) | ν 6= 0}.
24. It is not hard to get the solution directly from the definitions,

but let us exploit our facility with Poisson structures. The coordinates
x, y, z on the dual of our Lie algebra are generators of the Lie algebra
itself, and the Poisson brackets among them are to follow the definition
of the cross-product in an orthonormal basis: {x, y} = z, {y, z} = x,
{z, x} = y. With F = (x2 + y2 + z2)/2, we have (from the Leibniz
rule):

{x, F} = {x, x}Fx + {x, y}Fy + {x, z}Fz = 0x+ zy − yz = 0,

and likewise, {y, F} = {z, F} = 0, implying that F is a Casimir
function, i.e. is constant on symplectic leaves. Since the rank of
the Poisson structure outside the origin equals 2, the level sets are
the symplectic leaves (a.k.a. coadjoint orbits). The Poisson tensor is
W = x∂y ∧ ∂z + y∂z ∧ ∂x + z∂x ∧ ∂y, so we have iW (dx ∧ dy ∧ dz) =
xdx+ ydy + zdz = dF , implying that the contraction between W and
the Leray form equals 1, which on 2-dimensional leaves, means that
the Leray 2-form is the tensor field inverse to the Poisson tensor.
Remark. Actually it was clear a priori that the coadjoint orbits

are concentric spheres, and that the symplectic forms on them are
rotationally-invariant. So, the problem was about the correct normal-
ization of the area form on the shere of radius r. Note that the Leray
form has physical dimension [inches] and therefore differs from both
the Euclidean area form r2 sinφdφ∧ dθ, (whose dimention is [inches]2)
and ix∂x+y∂y+z∂zdx ∧ dy ∧ dz = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy (whose
dimension is [inches]3).
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26. A vector field v on X lifted naturally to a vector field V on T ∗X
preserves not only the symplectic form dα, but the canonically defined
action 1-form α. Thus, 0 = LV α = iV dα + diV α. This relation means
that iV α is the Hamiltonian function of the hamiltonian vector field V .
By the definition of α, its value at p ∈ T ∗

q X on the vector V (p) equals
the value p(v(q)) of the covector p on the projection v(q) of the vector
V (p) to the base.

30. The linearized Poisson structure is described by the commu-
tation relations {Z,X} = X, {Z, Y } = −Y , {X, Y } = Cn, while
brackets involving C1, . . . Cn are zeroes (i.e. Ck are Casimir functions).
It is straightforward to check that XY + CnZ (which is the quadratic
part of the Casimir function xy + zn+1 + c1z

n + · · · + cnz = −cn+1

of the Poisson structure before linearization) is a Casimir function of
the linearized structure too. Therefore typical symplectic leaves of the
linearized structure are paraboloids XY + CnZ = const in the XY Z-
space when Cn 6= 0 (and C1, . . . , Cn−1 take arbitrary values). When
Cn = 0, they degenerate into XY = 0, the pair of intersecting planes
X = 0 and Y = 0. The locus X = Y = Cn = 0 (where the Poisson
tensor vanishes) while Z and all other Ck remain arbitrary, consists of
0-dimensional leaves. The rest of the planes (or half-planes in the real
case) are the remaining 2-dimensional symplectic leaves.
Note that the union of the symplectic leaves containing the origin in

their closure is the surface in the XY Z-space, given by the equation
XY +Zn+1 = 0 before linearization and XY = 0 after it. They are not
isomorphic, because former has an isolated singularity at the origin,
while the latter is singular along the whole line X = Y = 0. This is
one of the (many) features which makes the original Poisson structure
not isomorphic to its linearization.

31. The Poisson structure is described by {z, x} = x, {z, y} = −y,
{x, y} = 3z2 + c2 and vanishes at x = y = 3z2 + c2 = 0, which is
the set of critical points in the family of functions xy + z3 + c2z + c3
(in 3 variables x, y, z and with 2 parameters c2, c3) with zero critical
values. The discriminant in the parameter space is a parametric curve
c2 = −3z2, c3 = −z3 − c2z = 2z3. Eliminating the parameter we find
c32/27 + c23/4 = 0, which is the semicubical parabola, the graph of both

branches of the 2-valued function c3 = ∓
√

4/27c
3/2
2 .

33. A smooth action of a compact group near a fixed point is locally
equivalent to its linear approximation. To prove it, take any Riemann-
ian metric, make it action-invariant by taking the average of its trans-
forms by the group, and use the exponential map (defined by geodesics
of the metric) to equivariantly identify a neighborhood of zero in the
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tangent space at the fixed point with its neighborhood in the manifold.
In particular, this applies to the 2-element group generated by an anti-
symplectic involution. Thus, it suffices to prove the linear version of
the problem. A linear involution has two complementary eigenspaces:
corresponding to the eigenvalues 1 and −1. Since it changes the sign of
the symplectic form, both eigenspaces must be isotropic, and hence La-
grangian. Thus, the fixed point locus of a (non-linear) anti-symplectic
involution is locally diffeomorphic to a middle-dimensional subspace,
and has Lagrangian tangent spaces. Thus, it is a Lagrangian subman-
ifold.

34. The subset in M2n of critical points of π is closed, hence com-
pact. Therefore the set of the critical values of π is (compact and
hence) closed in X, and the set of regular values of π is open (and,
by Sard’s lemma, dense in X). Thus, a connected component X0 of
this set is therefore a n-dimensional submanifold in X. It is still pos-
sible that π−1(X0) is empty, but if not, the projection of it to X (by
the restriction of π) is a proper submersion, and hence a locally trivial
bundle with compact n-dimensional fibers. Since local coordinates on
X0 Poisson-commute with respect to the Poisson bracket on M , their
hamiltonian vector fields (which are tangent to the the common level
sets of the hamiltonians — the fibers) span isotropic n-dimensional
spaces at each point, showing that the fibers are Lagrangian, and the
projection π−1(X0) → X0 a Lagrangian fibration with compact fibers.
Consequently, the fiber of the fibration is the disjoint union of a certain
number (= 0, 1, 2, . . . ) of compact tori.

37. The linear velocity at x ∈ R
n is ωx, where ω ∈ son is an anti-

symmetric matrix, and hence the kinetic energy

T (ω) =
1

2

∫

ρ(x)|ωx|2dnx = −1

2

∫

ρ(x)〈ωtωx, x〉dnx− 1

2
tr Iω2,

where I is the symmetric “inertia” matrix, Iij =
∫

ρ(x)xixj d
nx. When

n > 3, dim son > n and dimS2(son) > dimS2(Rn), implying that most
left invariant Riemannian metric on SOn cannot be obtained from an
inertia matrix I. For n = 3, so3 can be identified with RR3, and as
it is shown below, all left-invariant metrics on SO3 are obtained from
some inertia matrix. For any n, I can be diagonalized in a suitable
orthonormal basis, i.e. Iij = 0 for i 6= j, while Iii ≥ 0 can be arbi-
trary. Indeed, taking ρ to be distributed equally between two centrally
symmetric points ±ei on the ith coordinate axis, we can make Iii an
arbitrary non-negative number, keeping all other Iij = 0, and then can
take the superposition of such distributions to make I any non-negative
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diagonal matrix. For I = diag(d1, . . . , dn),

T (ω) =
1

2

∑

i

di
∑

j 6=i

ω2
ij,

which for n = 3 yields

T (ω1, ω2, ω3) = (d2 + d3)ω
2
1/2 + (d1 + d3)ω

2
2/2 + (d1 + d2)ω

2
3/2.

This is still, modulo rotations, an arbitrary1 non-negative quadratic
form in R

3.

39. The Lagrangian can be taken in the form

L =
ẋ2 + ẏ2

2
+

xẏ − yẋ

2
.

The Euler-Lagrange equations are ẍ = ẏ, ÿ = −ẋ, i.e. the accelera-
tion vector is obtained from the velocity vector by clockwise rotation
through 90◦. Thus, each trajectory is a circle, traversed clockwise, with
the speed equal to the circle’s radius (and therefore with the same pe-
riod 2π).

49. With H0 := 1
2

∫

u2dx and W = 2(∂u + u∂) − ∂3, we have

u̇ = WδH0/δu = W (u) = 6uux − uxxx, and with H1 :=
∫

(

u2
x

2
+ u3

)

dx

and V = ∂ we have u̇ = V δH1/δu = V (3u2 − uxx) = 6uux − uxxx as
well. Next, using integration by parts, we find d

dt
H0 =

∫

uu̇dx

=

∫

u(6uux − uxxx)dx =

∫

(6u2ux + uxuxx)dx =

∫

d(2u3 + u2
x/2) = 0,

i.e. H0 is a conservation law of the KdV flow. The “higher” KdV flow
defined by W and the hamiltonian H1 is

u̇ = WδH1/δu = (2u∂ + ∂u− ∂3)(3u2 − uxx),

which after some computation can be identified with the total deriva-
tive of uxxxx − 5u2

x − 10uuxx + 10u3, which is the variational derivative
of δH2/δu of H2(u) =

1
2

∫

(u2
xx + 10uu2

x + 5u4)dx.
Remark. The problem didn’t ask to check that W is a Poisson

structure, but if desired, it can be done as follows. The operator
U := u∂ − ∂u itself defines a linear Poisson structure. Indeed, if
F [u] =

∫

fudx and G[u] =
∫

gudx are two linear functionals, then
their U -Poisson bracket

{F,G} =

∫

(uf ′ + (uf)′)gdx =

∫

u(f ′g − g′f)dx,

1As was pointed out by some students, this statement is actually incorrect, since

with non-negative di, the numbers d1 + d2, d2 + d3, d3 + d1 satisfy the triangle

ineqiuality.
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i.e. is again linear, with the underlying Lie algebra structure [f, g] =
f ′g − g′f . The point is that this defines a Lie algebra indeed, (and
hence obeys the Jacobi identity); namely it is the Lie bracket [g∂, f∂]
of vector fields on the line. Next, the exterior 2-form on this Lie algebra
given by ω(f, g) =

∫

f ′′′gdx = −
∫

fg′′′ is a 2-cocycle:

ω([f, g], h) = −
∫

(f ′g − g′f)h′′′dx =

∫

f ′′gh′′dx−
∫

g′′fh′′dx,

which after adding the cyclically permuted terms sums to zero. Thus,
any linear combination of u∂− ∂u and ∂3 defines an (“affine”) Poisson
structure.

50. In the basis Lm = −zm+1∂z = eimxi∂x (where z = eix) of the
complexified Lie algebra of polynomial vector fields on S1, we have
[Lm, Ln] = (m − n)zm+n+1∂z = (m − n)Lm+n as required. Clearly,
L−1, L0, L1 span a Lie subalgebra, which is in fact isomorphic to sl2(C),
the Lie algebra of the group PGL2(C) of automorphisms z 7→ (az +
b)/(cz + d) of the Riemann sphere CP 1. The group does contain the
subgroup SL2(R) of projective transformations of the real projective
line RP 1 ≡ S1. But this subgroup preserves the real line (and the
upper half-plane) on the complex z-plane, not the circle |z| = 1. The
subgroup preserving the circle (and the unit disk enclosed by it) is
rather identified with another real form of SL2: the (quotient by ±I)
group SU(1, 1) of automorphisms of C2 preserving an Hermitian form
of signature (+,−).
The 2-form ω on V ect(S1)C is a 2-cocycle because

ω([Lm, Ln], Lk) + cycle = (m− n)(m+ n)3δm+n+k,0 + cycle = 0

by elementary algebra. On Span(L−1, L0, L1), it is the coboundary of
the linear form µ taking values 0, 1/2, 0 on the basis (as it is not hard to
check). However, there is a general argument (based on semisimplicity
of sl2) showing that the cocycle must be a coboundary. More explicitly,
the fact that SL2(C) has another, compact real form SU2 allows one
(via integration over SU2) to construct an Ad-invariant positive-definite
inner product on the central extension defined by the cocycle, and then
split the central extension into the direct sum of Lie subalgebras by
taking the orthogonal complement to the center.

51. The given 2-cochain ω(v(x0), w(x0)) is the evaluation of the
Poisson bracket {hv, hw} of hamiltonians of the hamiltonian vector
fields v and w at the point x0. With the choice of the hamiltoni-
ans to vanish at x0 (unique since M is connected) the cochain de-
scribes (or comes from) the central extension of the Lie algebra of
hamiltonian vector fields by the Poisson algebra of Hamilton functions:
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C(v, w) = {hv, hw}(x0)− h[v,w](x0). It is a 2-cocycle due to the Jacobi
identity in the Poisson algebra. On a compact M2n, the cocycle is a
coboundary, because the central extension splits by another normaliza-
tion of the hamiltonians:

∫

M
hωn = 0. Namely,

∫

M

{hv, hw}ωn =

∫

M

(Lvhw)ω
n =

∫

M

Lv(hwω
n) =

∫

M

div(hwω
n) = 0,

i.e. {hv, hw} = h[v,w] since both sides have zero average.

52. If t → ǫ(t) ∈ G is a curve, ǫ(0) = e, representing a tangent
vector a ∈ TeG = g, then the action of this curve on G by left trans-
lations: (t, g) 7→ ǫ(t)g yields a family of curves invariant with respect
to right translations. That is, the action of G on itself by left trans-
lations corresponds to the embedding g ∈ V ect(G) by right-invariant
vector fields, va. Respectively, the moment map T ∗G → g

∗ (defined
by T ∗

gG ∋ p 7→ [a 7→ p(va(g))] is given by the projection g
∗ × G → g

∗

in the trivialization T ∗G = g
∗ × G of the cotangent bundle by right

translations.

53. For a connection ∇ = d + A∧ where A ∈ Ω1(Σ; g), its curva-
ture ∇2 = dA + A ∧ A which in local coordinates x1, x2 on Σ and for
A = A1dx1 + A2dx2 equals [∂x1

A2 − ∂x2
A1 + A1A2 − A2A1]dx1 ∧ dx2.

Here A1A2 − A2A1 is the commutator of Ai ∈ g in the adjoint (or
any other) representation, or equivalently, the action of [A1, A2] ∈ g

in that representation. Given a ∈ Ω0(Σ; g), consider the hamilton-
ian Ha : ∇ 7→

∫

Σ
tr(a ⊗ ∇2) (of degree ≤ 2 on the affine space of

connections). The value of the differential d∇Ha on a tangent vec-
tor B ∈ Ω1(Σ; g) equals

∫

Σ
tr(a ⊗ ∇B) (where in local coordinates

∇B = (∂x1
B2 − ∂x2

B1 + [A1, B2]− [A2, B1]) dx1 ∧ dx2.) We have:
d tr(a⊗B) = tr(∇a)⊗B+tr a⊗∇B, which is the Leibniz rule for the
connection operator (it acts on sections of all vector bundles associated
with the adjoint one) taking into account that ∇ = d on scalar-valued
functions (where the values of tr belong). Since ∂Σ = ∅, we can rewrite
(d∇Ha)(B) as −

∫

Σ
tr(∇a)⊗B, i.e. (taking into account Arnold’s sign

convention) the hamiltonain vector field generated by the Hamilton
function Ha is ∇ 7→ ∇a. This is exactly the infinitesimal action of
the Lie algebra of currents Ω0(Σ; g) corresponding to the action of the
gauge group on connections: ∇ = d+A 7→ g−1∇g = d+g−1dg+g−1Ag.
Thus, the gauge action is Poisson, with the moment map ∇ 7→ ∇2.

55. The action of the torus of diagonal unitary matrices in C
n+1

(considered as a real symplectic space of dimension 2n + 2) is gener-
ated by the hamiltonians |zi|2. The action by the unitary scalars is
given by their sum: |z0|2 + · · · + |zn|2 (which is Un+1 invariant). The



10

symplectic reduction at the unit (or any other positive) level of the
latter hamiltonian yields the symplectic quotient CP n = S2n+1/U1,
equipped with a Un-invariant symplectic form. It is unique up to a
scalar factor (depending on the level of the hamiltonian and on the
normalization of the initial symplectic form in Cn+1) and, when appro-
priately normalized, coincides with the Fubini-Study one. The action
of the torus descends to the symplectic quotient and is given by the
hamiltonians (z0 : · · · : zn) 7→ |zi|2||z|2=const, i = 0, . . . , n. So, the image
of the moment map is the simplex x0 + · · · + xn = const > 0, xi ≥ 0.
Its vertices are the images of the fixed points of the torus action which
are the coordinate lines in C

n+1 (which are the common eigenvectors
of all the diagonal matrices).

56. Here is Atiyah’s argument:
By considering the representations of T on the normal bundles of

the components Zα of the common critical set Z we get a finite set of
characters, and their kernels give a finite set of codimension-one sub-
tori of T . Taking intersections these generate a finite lattice [poset –
A.G.] of sub-tori. Without essential loss of generality, we may assume
T acts effectively on M . Then the minimal non-zero elements of our
lattice will be circles S1, . . . , Sk and the quotient (n − 1)-torus T/Si

acts effectively on the components Σij of the fixed-point set of Si. Re-
stricting the moment map f to Σij we see therefore that its image in
R

k lies in the hyperplane
∑

λrixr = constant, where φ =
∑

λrifi is the
Hamiltonian corresponding to Si. Moreover f(Σij) will contain (and is
spanned by) the subset of {cα} corresponding to the components of Z
lying in Zα. Thus the union of all these hyperplanes contains the set
of critical values of the map f . A bounding face of the convex poly-
tope f(M) must arise from a maximal or minimal component of the
corresponding function φ.

57. The equality follows from the Duistermaat–Heckman formula.
According to it, the integral

∫

M
e
∑

uiHi ω
∧n

n!
is equal to the principal part

of its stationary phase asymptotics. The Hamiltonians Hj = |zj|2 =
(p2j + q2j ) (where zj = pi +

√
−1qi) generate commuting Z-periodic

hamiltonian flows (zj 7→ e2π
√
−1tzj) with respect to the symplectic form

ω =
1

2π
√
−1

n
∑

i=0

dz̄i ∧ dzi =
1

π

n
∑

i=0

dpi ∧ dqi.

The fixed points of the T n+1-action on proj(Cn+1) are the coordinate
axes span(ei) ∈ C

n+1. In the affine chart z0 = 1 near the critical point
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z1 = · · · = zn = 0 we have

∑

ujHj =
u0 +

∑

j>0 uj|zj|2
1 +

∑

k 6=0 |zk|2
= u0 −

∑

j 6=0

(u0 − uj)|zj|2 + o(|z|2).

By evaluating a 2n-dimensional Gaussian integral, we find the principal
term of the stationary phase asymptotics:

∫

Cn

e
∑

ujHj
1

πn
dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn ∼ eu0

∏n
j=1(u0 − uj)

.

Such principal terms for all fixed points form the residue sum:

n
∑

i=0

eui

∏

j 6=i(ui − uj)
=

1

2π
√
−1

∮

epdp
∏n

j=0(p− uj)
.

Note however, that the equality is a result of a lucky (or clever) choice
of normalization of the symplectic form. Namely, the LHS of the
Duistermaat–Heckman formula in the limit u = 0 yields the symplec-
tic volume

∫

M
ω∧n/n! of the manifold and scales as cn under ω 7→ cω.

(Given the torus action, the hamiltonians scale the same way: Hi 7→
cHi, while their Hessians at the critical points — whose square roots
appear in the denominators of the RHS — remain unchanged.) When
the symplectic form on CP n is obtained as the symplectic reduction
from C

n+1 at a level |z|2 = c, the (cohomology class of the) symplectic
form on CP n depends linearly on c. To find out what cohomology class
corresponds to our choice of normalization, note that in the limit u = 0
our residue integral turns into

1

2π
√
−1

∮

epdp

pn+1
=

1

n!
.

Thus,
∫

CPn ω
∧n = 1, implying that the cohomology class of our sym-

plectic form is a generator of the integer cohomologyH2(CP n;Z) (more
precisely, the one which integrates to 1 over a projective line CP 1 ⊂
CP n equipped with the complex orientation).

58. If α is a contact form on a 3-fold defining locally a given contact
structure, then α∧dα is a volume form, and defines orientation locally.
When α is multiplied by a non-zero function f , the volume form α∧dα
is multiplied by f 2 > 0, and hence defines the same localorientation.
Thus, the orientation does not depend of the local choice of α, but only
on the contact structure itself. The same works on contact manifolds
of dimension 3 modulo 4.
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61. In the parameterization p = sin t, q = cos t, we have

u =

∫ t

0

sin ξ d cos ξ = −
∫ t

0

sin2 ξ dξ =
sin 2t

4
− t

2
=

1

2

(

±q
√

1− q2 − arccos q
)

.

The front is the graph of a multivalued function whose derivative is
±
√

1− q2. Its graph is shown on the figure.

−2π

u

q

−1 1

π

2π

−π

64. Since differentiations ∂qi (multiplications by qj) commute with
differentiations (resp. multiplications), the property [Dm, Dn] ∈ Dm+n−1

follows from [∂qi , f(q)] = ∂f/∂qi ∈ D0 by induction on the order of dif-
ferential operators. Modulo Dm+n−1, we have: Dm(∂q, q)Dn(∂q, q) ≡
Dm(p, q)Dn(p, q)|p=∂q , i.e. the product in Gr(D) coincides with the
multiplication of functions on T ∗X polynomial in p. Furthermore,
modulo Dm+n−2,

[Dm(∂q, q), Dn(∂q, q)] ≡
∑

i,j

[

∂Dm(p, q)

∂pi

∂Dn(p, q)

∂qj
− ∂Dn(p, q)

∂pi

∂Dm(p, q)

∂qj

]

p=∂q

[∂qi , qj ].

This coincides with the Poisson bracket {Dm(p, q), Dn(p, q)} due to the
Heisenberg commutation relations [∂qi , qj ] = δij.
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66. The characteristics of Burgers’ equation uτ = uux (which is
expresses by the hypersurface p0 − up1 = 0 in 1-jet space with the
contact structure du = p0dτ + p1dx satisfy the ODE system

ṗ0 = p0p1, ṗ1 = p21, τ̇0 = 1, ẋ = u, u̇ = p0 − up1,

The equations imply τ(t) = t (assuming that τ(0) = 0), u̇ = 0 (i.e. u
is constant along the characteristics), and x(t) = x(0) + ut, meaning
that the characteristics project to the (u, τ, x)-space to the lines u =
u(0), x = x(0) + u(0)τ . The initial conditions (at τ = 0 and any x)
read u(0, x) = v(x), p1(0, x) = v′(x), p0(0, x) = v(x)v′(x). Therefore
u(τ, x) = v(x(0)) where x(0) as a function of x and τ is determined by
the implicit equation x = x(0) + v(x(0))τ . In particular, it is possible
that through the same point (τ, x), several “rays” x = x(0) + v(x(0))τ
are passing each bringing its own value v(x(0)) of the (then multiple-
valued) function u. (This equation can serve as a model of a collision-
less non-interacting medium filled with particles, each moving with its
own velocity (which is distributed according to the density u(τ, x)dx
at the moment τ), and bringing its velocity to whatever position the
particle occupies at a subsequent moment.)


