
Answers to homework problems

HW1

1.4. The discriminant surface is a swallow-tail. One way to see the
connection is to notice that the graph of the optical distance function (e.g.
to the parabola y = x2 from exercise 1.2) consists of lines in space (because
along each ray, the optical distance changes linearly) tangent to the curve
with the cusp, which is the lift of the caustic from the plane into space by its
arc length function. The discriminant has a similar description. Namely, the
curve (x− t)3(x+3t) = x4−6t2x2+8t3x−3t4 consisting of the polynomials
x4+Ax2+Bx+C with a triple root is the “semi-cubical parabola” (B/8)2 =
(−A/6)3 in the (A,B)-plane (with the same cusp as the caustic) lifted into
space by (C/3) = (−A/6)2. The tangent line to this curve at (x− t)3(x+3t)
is spanned by the t-derivative −12t(x − t)2; adding it with an arbitrary
coefficient yields all the polynomials with at least a double root at x = t
(when t 6= 0). When t = 0, such polynomials form the line x4+sx2 “tangent”
to our cuspidal curve at the very cusp, x4.

This “coincidence” is a part of the general theory of singularities of caus-

tics and wave fronts. According to this theory, in 2D geometrical optics, the
graph of the optical distance function to a generic initial wave front can have
only those singularities which appear at various point of our discriminant
surface.

2.4. Equating the sectorial velocities |L|/2m and the total energies E(<
0) at the perigee (i = 1) and apogee (i = 2), we find

viri =
|L|
m
,
mv2i
2

− G

ri
= E,

where i = 1, 2, and (eliminating vi): |L|2/2m − Gri − Er2i = 0. From the
Vieta theorem we have:

r1r2 =
|L|2

−2mE
, r1 + r2 =

G

−E .

On the other hand, from the geometry of an ellipse with the major semiaxis
a and minor b, we have a = (r1 + r2)/2 and b =

√
r1r2. The period of

revolution

T =
area of the ellipse

the sectorial velocity
=

πab

|L|/2m =

√
π2mG2

2(−E)3
,

i.e. |L| cancels out.
Since m = G/Mγ, and G/(−E) = 2a, we obtain Kepler’s 3rd law: the

square of the periods are proportional to the cubes of the major semiaxes

of the elliptic orbits, with the proportionality coefficient 4π2/Mγ, where M
is the mass of the attracting center, and γ is the universal gravitational
constant.
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2.6. In short, rotations of the cube permute its four diagonals.
In a bit more detail: the previous sentence defines a map f : G → S4

from the group G of rotations of the cube to the group S4 of permutations
on the set of cube’s diagonals. Obviously, f is a group homomorphism, i.e.
it maps compositions of rotations to composition of permutations: f(gg′) =
f(g)f(g′) for all g, g′ ∈ G (and therefore f(e) = id, f(g−1) = (f(g))−1)).
Next, |S4| = 4! = 24, and |G| = 24 too. Namely, a rotation g can map face of
the cube to any of the cub’s 6 faces, and every rotation g′ mapping the first
face into the same face as g does can be uniquely written as the composition
g(g−1g′) of g with a rotation preserving the first face. Since there are 4
elements of G preserving the first face (namely, rotations through 0, 90, 180
and 270 degrees around the axis through the center of the face), the total
number of elements in G is 6 × 4. (Similar arguments based on counting
edges or vertices of the cube give, of course, the same result: 12 × 2 or
8 × 3.) Therefore, to prove that f is a bijection, it suffices to show that f
is one-to-one: f(g) = f(g′) ⇒ g = g′, or, equivalently, (taking h = g−1g′)
id = f(h) ⇒ h = e. Thus, let h be a rotation preserving each diagonal.
The assumption that some diagonals are reversed leads to a contradiction:
picking 3 diagonals of which an odd number is reversed for the axes of a (non-
Cartesian) coordinate system, we find that deth = −1 (i.e. h transforms
right gloves into left ones), so h is not a rotation. Therefore h is the identity
transformation.

3.4. First assume Reβ > 0 and compute Ik :=
∫∞
−∞ e−βy2ykdy. For

k = 2l− 1, Ik = 0 since the integrand is an odd function. For k = 2l > 0 we
integrate by parts:

∫ ∞

−∞
ye−βy2y2l−1dy =

2l − 1

2β

∫ ∞

−∞
e−βy2y2l−2dy.

Writing 2l − 1/2β as 2l(2l − 1)/4βl and continuing inductively, we find

I2l = I0 × (2l)!/4lβll!, where I0 =
√
π/β (as is well-known).

In our problem, we put x =
√
λy and have∫

ei(x
2−x3)/λdx =

√
λ

∫
eiy

2

e−i
√
λy3dy =

√
λ

∫
eiy

2

(
1− i

√
λy3 − 1

2
λy6 +O(λ3/2)

)
dy =

eπi/4
√
πλ

(
1− 6!

43i3!

λ

2
+O(λ2)

)
= eπi/4

√
πλ

(
1 +

15i

16
λ+O(λ2)

)
.

In the above computation, the (divergent!) integral
∫
eiy

2

y6dy is evaluated
by replacing i in the exponent with β = i − ǫ, applying the result of our
auxiliary computation with l = 3, and then passing to the limit ǫ = 0,
i.e., in other words, formally using the result, obtained for Reβ > 0, when
Reβ = 0.
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Remark. The above approach gives an algorithm of formally writing out
terms of the entire asymptotical series, and shows that its coefficients depend
on the Taylor coefficients of the amplitude and phase functions at the (non-
degenerate) critical point of the phase, but do not depend at all on the
interval of integration as long as it contains the critical point. A motivation
for this algorithm, that is, an explanation of what the asymptotical series
thus produced has with the oscillating integral.

In fact, the oscillating integral (which in our case has the amplitude func-
tion a(x) = 1) is supposed to have a compactly supported amplitude. Having
this in mind, introduce the “hat” function σ(x): an infinitely differentiable
even function equal to 1 on some interval [−a, a] around the critical point
x = 0, and equal to 0 outside some greater interval [−b, b] (b > a > 0).
Now, consider the auxiliary integrals as they would occur in the honest
computation:

Ĩk(λ) :=

∫ ∞

−∞
eix

2/λxkσxdx,

where m ≤ k. Integrating by parts as above, we find

Ĩk(λ) =
iλ

2

∫ ∞

−∞
eix

2/λ d

dx
(xk−1σ(x))dx

=
i(k − 1)λ

2
Ĩk−2(λ) +

∫ ∞

−∞
eix

2

xk−1dσ(x)

dx
dx.

Note that dσ(x)/dx is a smooth function vanishing on the interval [−a, a]
containing the critical point. Therefore, as λ tends to 0, the last integral
tends to 0 faster than any power of λ. Denoting the class of such functions
by O(λ∞), we conclude from our inductive integration by parts that

Ĩ2l−1(λ) = 0 +O(λ∞)

Ĩ2l(λ) =
(iλ)l(2l)!

4ll!
Ĩ0(λ) +O(λ∞).

Here Ĩ0(λ) is not a constant but a function of λ. However

Ĩ0(λ) =

∫ b

−b
eix

2/λσ(x)dy =

∫ a

−a
eix

2/λdx+O(λ∞),

because the intervals [a, b] and [−b,−a] don’t contain the critical point.
Finally, the last integral

∫ a

−a
eix

2/λdx =

∫ ∞

−∞
eix

2/λdx+O(λ∞),

i.e. differs from the value eπi/4
√
πλ of Fresnel’s integral by a function of

class O(λ∞), because the rays [a,∞] and [−∞,−a] also don’t contain the
critical point.

Thus, the formal algorithm of writing out the asymptotics of an oscillating
integral yields a series, the finite part of which to order in λ less than N + 1

2

differs from the integral (as a function of λ) by an error of class O(λN+1/2).
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3.5. When u(t, x) = U(x±ct), then, by the chain rule, utt = (±c)2U ′′(x±
ct), while uxx = U ′′(x ± ct), so that the wave equation utt = c2uxx holds.
The solution U(x− ct) takes at x = x0 + ct on the same value as the initial
condition U(x) takes at the point x0. In other words, the graph of U(x− ct)
at the moment t is obtained from the graph of U(x) by the shift through
the distance ct to the right. Thus, the solution describes the running wave
of shape U(x) moving with the speed c toward the positive direction of the
x-axis. Likewise, U(x + ct) describes such a running wave moving to the
left. Note that if U = const, then both U(x ± ct) are the same constant
solution (running nowhere).

A general solution u(t, x) satisfying the initial conditions u(0, x) = w(x),
ut(0, x) = v(x) is the superposition u(t, x) = U+(x + ct) + U−(x − ct) of
two running waves, one moving to the left the other to the right. To fit
the initial conditions, we must have u(0, x) = U+(x) + U−(x) = w(x) (and
hence U ′

+ + U ′
− = w′) and ut(0, x) = c(U ′

+(x) − U ′
−(x)) = v(x). Therefore

U ′
± = (w′ ± v/c)/2. This determines both functions U± uniquely up to

additive integration constants:

U±(x) = C± +
1

2

∫ x

0

(
w′(y)± v(y)

c

)
dy.

Clearly, adding a constant to U+ and subtracting the same constant from
U− doesn’t change the resulting superposition u(t, x). So, only the sum of
the constants matters, and must satisfy C++C− = w(0). Thus, we can take

U±(x) =
1

2
w(x)± 1

2c

∫ x

0
v(y)dy.

4.3. Recall that p̂2 = −~2∂2/∂q2, q̂2 = q2. For any ψ, we have

−~
2 ∂

2

∂q2
q2ψ = −q2 ∂

2

∂q2
ψ − 4~2q

∂

∂q
ψ − 2~2ψ.

Therefore the commutator [p̂2, q̂2] = 4(~/i)q̂p̂− 2~2.
On the other hand, the Poisson bracket {p2, q2} = 4pq. Trying to quantize

pq, we encounter the ordering issue:

p̂q̂ =
~

i

∂

∂q
q = q

~

i

∂

∂q
+

~

i
= q̂p̂+

~

i
.

Either 4p̂q̂ or 4q̂p̂ qualifies as a quantization of 4pq, and neither coincides
with i[p̂2, q̂2]/~, but their arithmetic average (which also qualifies) does:

1

2
(p̂q̂ + q̂p̂) =

i

~
[p̂2, q̂2].

So, perhaps, this arithmetic average is the most satisfying choice as the
quantization of {p2, q2}, since then we have

̂{p2, q2} =
i

~
[p̂2, q̂2].
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5.7. We are looking for solutions to stationary Schrödinger equation
−~2ψ′′/2m = Eψ satisfying the periodicity condition ψ(q+L) = ψ(q). The
eigenfunctions of the differentiation operator d/dq have the form eikq and
satisfy the periodicity condition when kL = 2πn, n = 0,±1,±1, . . . , i.e.
when k = 2πn/L. The functions ψn := e2πinq/L serve as the eigenfunctions
of the Hamiltonian operator at the energy level En = 2π2~2n2/mL2. That
is, when n = 0 the eigenspace is 1-dimensional (spanned by ψ0 = 1), and
when n > 0, the eigenspace is 2-dimensional (spanned by ψ±n). A general L-
periodic initial condition Ψ(q, 0) in the time-dependent Schrödinger equation
can be expanded into the usual Fourier series for L-periodic functions:

Ψ(q, 0) =
∞∑

n=−∞
Cn(0)e

2πinq/L, where Cn(0) =
1

L

∮
Ψ(q, 0)e−2πinq/Ldq,

and the time evolution Ψ(q, t) of the quantum state is described by the
evolution of the Fourier coefficients:

Cn(t) = Cn(0)e
−iEnt/~, where En =

2π2~2n2

mL2
.

Here
∮

means integration over the circle, i.e. any interval of length L.
Therefore, when Ψ(q, 0) is the delta-function on the circle concentrated at
q = 0, i.e. Ψ(q, 0) =

∑∞
m=−∞ δ(q −mL), all the Fourier coefficients

Cn(0) =

∫ a+L

a
e−2πinq/L

∞∑

m=−∞
δ(q −mL) dq =

1

L
.

Thus

Ψ(q, t) =
1

L

∞∑

n=−∞
e−2π2n2~it/mL2+2πinq/L =

1

L
θ

(
q

L
;− 2~

mL2

)
,

where θ(z; τ) is the famous Jacobi theta-function. It was discovered by
Fourier in the context of heat propagation in a circle, which differs from our
situation only by replacing time t with it (the so-called Wick’s rotation).

Finally, the phase area An of the cylinder enclosed within the energy level
En = p2/2m = 2π2~2n2/mL2, i.e. with −2πn~/L ≤ p ≤ 2πn~/L, equals
4πn~. Thus, the phase cylinder (infinite in the p-direction) is partitioned
by the classical trajectories p = 2πn~, n = 0,±1,±2, . . . into a sequence of
finite cylindrical chunks of the same area 2π~.

5.10. A positive energy level E in the finite well problem (with E = V0
corresponding to the top of the well) is represented by E + V0 if the well is
understood as a dip with the bottom E = −V0 and top at E = 0. With this
change of notation, the level E1 is determined as the “leftmost” solution of
the equation

tanµ
√
V0 + E =

√
V0

V0 + E
− 1

(
=

√
−E√

V0 + E

)
, where µ :=

√
m

2

a

~
.

https://en.wikipedia.org/wiki/Theta_function
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When V0a is kept constant and equal to ~2/2md, we have V0 = ~2/2mda→
∞ and µ2V0 = a/4d→ 0 as a→ 0, while µ2V 2

0 remains constant. Rewriting
our equation as

E = −(V0 + E) tan2 µ
√
V0 + E = −V 2

0 µ
2

(
1 +

E

V0

)2 tan2
[
µ
√
V0

√
1 + E

V0

]

[
µ
√
V0

√
1 + E

V0

]2 ,

and using that (tanx)/x → 1 as x → 0, we conclude that as a → 0, the
function of E on the right tends to the required constant V 2

0 µ
2 = −~2/8md2.

Therefore so does the value of E on the left when determined from the
equation.

HW5

5.12. The eigenfunctions have the form

ψ(q) =

{
Aeikq +Be−ikq q < 0
Ce−κq q > 0

,

where k =
√
2mE/~ and κ =

√
2m(V0 − E)/~, and the continuity of ψ

and ψ′ at q = 0 require A + B = C, ik(A − B) = κC, i.e. A = (1 −
iκ/k)C/2, and B = (1 + iκ/k)C/2. Thus, we have a simple continuous
spectrum: for every energy level 0 < E < V0 (and in fact for E = V0 too), the
eigenfunctions form a 1-dimensional space. The probability current under
the barrier (q > 0) is j(q) := i~

2m(ψqψ
∗ − ψψ∗

q ) = 0 (e.g. because e−κq is

real), and for q < 0 (from p. 42 of the book) j(q) = ~k
m (|A|2 − |B|2) = 0 too

(since |A| = |B|) in agreement with “preservation of probability” principle.
The transmission probability jtrans/jinc = 0 and the reflection probability
jref/jinc = |B|2/|A|2 = 1.

Comparing to the problem of the finite well potential V (q) = 0 for −a <
q < 0 and V (q) = V0 for q > 0 or q < −a (which in the limit a → ∞ turns
into the step potential), we find that the eigenfunctions at an energy level
E have the same form as above for q > −a, but for q < −a are given by
ψ(q) = Deκq. The function per se would tend to that in the step problem as
a→ ∞. However, the continuity condition for ψ and ψ′ at q = −a introduce
two more homogeneous linear relations between A,B,C and (only one more
indeterminate) D. As we know from the analysis of the finite well problem
in the book (which differs only by the location of the well from what we
dealing with now), the relations can be satisfied only for discrete values of

E found from the relation
√
V0/E − 1 = tanµ

√
E or = − cotµ

√
E, where

µ = a
√
2m/2~. As a increases, the period of tan and− cot decreases, and the

discrete energy levels (see Figure 11 on p. 36) fill the range 0 < E < V0 more
and more densely. Thus, when the well is “very wide”, the spacings between
the (still discrete) energy levels become practically indiscernible, and so the
system behaves as if the spectrum were continuous — in the same sense a
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pencil (or any other macroscopic object) is perceived as continuous while in
fact it is formed by finitely many (of order 109) atoms per inch.

5.14. We have

d

dt
E [a, b] = 1

2

∫ b

a

(
c−2uttu

∗
t + c−2u∗ttut + uxtu

∗
x + u∗xtux

)
dx

=
1

2

∫ b

a
(uxxu

∗
t + u∗xxut + uxtu

∗
x + u∗xtux) dx

=
1

2

∫ b

a

d

dx
(uxu

∗
t + u∗xut) dx = j(a)− j(b),

if j := −(uxu
∗
t + u∗xut)/2 as suggested.

For a solution u(x, t) = ei(kx−ωt) + Ae−i(kx+ωt) for x < 0 and u(x, t) =

Bei(k
′x−ωt) for x > 0, where ω/k′ = c+ and ω/k = c− (as in problem 5.13),

from continuity of u and ux at x = 0 we have: 1 + A = B and k(1 −
A) = k′B, i.e. 1 − A2 = c−B2/c+. On the other hand, the energy current
j := −(utu

∗
x+uxu

∗
t )/2 equals: |B|2ωk′ = B2ω2/c+ for the transmitted wave

ei(k
′x−ωt) (at any x > 0), and for the the combination of the incident and

reflected wave we have

− 1

2
(−iω)

(
ei(kx−ωt) +Ae−i(kx+ωt)

)
(−ik)

(
e−i(kx−ωt) −A∗ei(kx+ωt)

)
+

− 1

2
(ik)

(
ei(kx−ωt) −Ae−i(kx+ωt)

)
(iω)

(
e−i(kx−ωt) +A∗ei(kx+ωt)

)

which after some simplifications (and taking into account that A is real)
yields (1 − A2)ω2/c− (at any x < 0). Since the total energy current across
the boundary x = 0 must vanish (for, the energy cannot be generated at this
point out of nothing), the currents at x = 0− and at x = 0+ must coincide:
(1−A2)ω2/c− = B2ω2/c+.

HW6

6.8. The expectation values of q̂ and p̂ at the state ψ = e−q2/2σ2

vanish:

〈ψ|q̂|ψ〉 =
∫ ∞

−∞
qe−q2/σ2

dq = 0, 〈ψ|p̂|ψ〉 = −i~
∫ ∞

−∞

−q
σ2
e−q2/σ2

dq = 0.

Therefore the squares of the standard deviations of q̂ and p̂ coincide with the
expectation values of q̂2 and p̂2 respectively. Namely, (∆q̂)2 = ‖q̂ψ‖2/‖ψ‖2
and (∆p̂)2 = ‖p̂ψ‖2/‖ψ‖2, where q̂ψ = qe−q2/2σ2

, and p̂ψ = −i~ d
dqe

−q2/2σ2

=

i~(q/σ2)e−q2/2σ2

. Integrating by parts, we find:
∫ ∞

−∞
q2e−q2/σ2

dq =
σ2

2

∫ ∞

−∞
e−q2/σ2

dq =
σ2

2
‖ψ‖2.

Therefore ∆q̂ = σ/
√
2, ∆p̂ = ~/σ

√
2, and ∆p̂ · ∆q̂ = ~/2. The abstract

uncertainty principle guarantees that ∆p̂ ·∆q̂ ≥ ~/2 (since i[p̂, q̂] = ~). The
example at hands shows that, generally speaking, the inequality cannot be
improved.
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6.13. The evolution of expectation values of quantum observables is

described by differential equations dĀ/dt = i
~
[Ĥ, A]. Take the quantized

hamiltonian Ĥ = (ap̂2+bp̂q̂+bq̂p̂+cq̂2)/2. Using the relation p̂q̂ = q̂p̂+~/i,
we find

i

~
[Ĥ, q̂] = ap̂+ bq̂,

i

~
[Ĥ, p̂] = −bp̂− cq̂.

Therefore dq̄/dt = ap̄+ bq̄ = Hp(p̄, q̄), dp̄/dt = −bp̄− cq̄ = −Hq(p̄, q̄), which
coincides with the classical Hamilton equations for the hamiltonian H.

HW7

7.5. Functions ψk := eikq, k = 0,±1,±2, . . . form a basis of eigenstates,
two per energy level E|k| = k2~2/2m for |k| 6= 0, and one for |k| = 0.
Therefore the ground state of 3 identical fermions is proportional to the
determinant ψ0 ∧ ψ1 ∧ ψ−1:

1

2i

∣∣∣∣∣∣

1 1 1
eiq1 eiq2 eiq3

e−iq1 e−iq2 e−iq3

∣∣∣∣∣∣
=
ei(q1−q2) − ei(q2−q1)

2i
+
ei(q3−q1) − ei(q1−q3)

2i

+
ei(q2−q3) − ei(q3−q2)

2i
= sin(q1 − q2) + sin(q3 − q1) + sin(q2 − q3).

Its energy level is 0 + ~2/2m + ~2/2m = ~2/m. The next energy level
0 + ~2/2m + 22~2/2m = 5~2/2m contains 4 independent eigenstates ψ0 ∧
ψ±1 ∧ ψ±2.

7.6. Functions ψk := e2πikq/L form the basis of eigenstates of a free par-
ticle on the circle of length L, and have energy levels E|k| = 2π2~2k2/mL2.
The states of 2 identical fermions are the coefficients ψk∧ψl := ψk(q1)ψl(q2)−
ψl(q1)ψk(q2) (k < l) of the double-series in Grassmann variables:

( ∞∑

k=−∞
ψkξk

)
⊗
( ∞∑

l=−∞
ψlξl

)
=

∑

−∞<k<l<∞
(ψk ∧ ψl)ξkξl.

The energy level of ψk∧ψl equals 2π
2~2(k2+l2)/mL2. Therefore the number

N(E) of independent 2-fermion states with energy < E equals the number
of integer lattice points (k, l) satisfying inequalities k2 + l2 < mL2E/2π2~2

and k < l, i.e. in the interior of semi-disk of radius R =
√
mE/2L/π~ and

area 1
2πR

2. As E tends to ∞, R tends to ∞ too, and the ratio N(E)/12πR
2

tends to 1.1 Thus, multiplying and dividing N(E)/E by 1
2πR

2, and notic-

ing that 1
2πR

2/E = mL2/4π~2 doesn’t depend on E, we conclude that

limE→∞N(E)/E = mL2/4π~2.

1If this is not obvious, note that the difference | 1
2
πR2−N(E)| comes from unit squares,

centered at the lattice points, which lie partly inside and partly outside the semi-disk. They

are covered by the semi-annulus |
√

x2 + y2−R| ≤
√
2 (x ≤ y) and the strip |x−y| ≤ 1/

√
2

(|x+ y| ≤
√
2R). The areas of these regions (2

√
2πR and 2R) divided by 1

2
πR2 tend to 0

as R tends to ∞.
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HW 8.

8.6. Collecting all terms of order rk−1 in the differential equation on
page 71, we find (from the last displayed formula on that page) that the
coefficients vk of solution v(r) =

∑
k>l vkr

k must satisfy

k(k + 1)vk+1 − 2λkvk + 2mQ~
−2vk − l(l + 1)vk+1 = 0,

i.e.

vk+1 = 2
mQ~−2 − λk

k(k + 1)− l(l + 1)
vk.

Taking vl+1 6= 0, we obtain from this a unique sequence of values for vk
with k > l + 1, which are all non-zero unless λ = mQ~−2/n for some n > l.
When this is the case, vn+1 and all subsequent vk turn out to be 0, and the
solution v polynomial.

8.10. The ground state (quantum numbers n = 1, l = 0) in the hy-
drogen model problem is proportional to ψ = e−λr, where λ = mQ/~2 =
me2/4πǫ0~

2. The corresponding probability density is proportional |ψ|2 =

e−2r2dxdydz = e−2λrr2 sinφdrdφdθ (in spherical coordinates). It achieves
maximum where e−2λrr2 does, i.e. at r0 = 1/λ. The expected value of r is
computed as

r̄ =

∫
R3 re

−2λrdxdydz∫
R3 e−2λrdxdydz

=

∫∞
0 r3e−2λrdr∫∞
0 r2e−2λrdr

=
3

2λ
=

3

2
r0.

The ratio was computed by integrating by parts in the numerator once.
The classical orbit with the total angular momentum |L|2 = l(l + 1) = 0

(since l = 0), and hence L := q × p = ~0, is a degenerate ellipse: the
trajectory of a “stone” falling to the center with the initial velocity 0 from
the altitude r determined by the value of energy: −Q/r = E1 = −mQ2/2~2,
i.e. r = 2/λ = 2r0. The actual value of r can be found (in meters) as

8πǫ0~
2

mee2
≈ 8× 3.14× 8.85 · 10−12 × (1.055 · 10−34)2

9.11 · 10−31 × (1.60 · 10−19)2
≈ 1.06 · 10−10.

HW9.

8.14. In both — gravitational and electrostatic — Kepler problems, the
classical Hamiltonian has the form p2/2me − Q/r, where Q = memnγ in
the gravitational case (here γ ≈ 6.67 × 10−11m3/kg · s2 is the universal
gravitational constant) and Q = e2/4πǫ0 is the electrostatic one. The Bohr
radius (as found in the solution of 8.10) equals 1/λ = ~2/meQ (in the
notation of page 72). Thus, the Bohr radius of “neutrogen” is

~2

mnm2
eγ

≈ (1.05× 10−34)2

1839 · (9.11× 10−31)3(6.67× 10−11)
≈ 1.19× 1029m.

The size of the Universe < 100 billion light years or ≈ 9.46× 1026 < 1027m
is two decimal orders smaller.
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9.9. The map H ∋ x 7→ q1xq
−1
2 , where q1, q2 ∈ Sp1 = SU2 are unit

quaternions, preserves the norm, ‖q1xq−1
2 ‖ = ‖q1‖ · ‖x‖ · ‖q2‖−1 = ‖x‖,

and hence defines an orthogonal transformation in H = R4. Since the space
Sp1×Sp1 ≡ S3×S3 is connected, the group homomorphism Sp1×Sp1 → O4

lands in that connected component of O4 where the unit element (I, I) lands,
i.e. in SO4. The kernel of this homomorphism (i.e. the inverse image of
the identity) consists of those pairs (q,q2) for which q1xq

−1
2 = x for all x,

i.e. (taking x = 1) for the pairs (q, q) where q commutes with all x, and is
therefore real, i.e. consist of two elements: ±(1, 1). Thus, we have a 2-to-1
homomorphism SU2×SU2 → SO4 which factors through an injective homo-
morphism f : (SU2 × SU2)/(±(I, I)) → SO4. To show that the inclusion is
surjective, we note that both the source and the target space have dimension
6 (as it is not hard to check). Considered as a smooth map, a Lie group
homomorphism must have constant rank: f(g0g) = f(g0)f(g) implying that
the rank of the differential def of f at the identity e coincides with the rank
of the differential dg0f at g0. Therefore our f has everywhere maximal rank,
6, i.e. (by the Inverse Function Theorem) it is locally invertible, and thus
has an open image. Since SU2 × SU2 is compact, the image must also be
closed, i.e. must coincide with the whole connected component SO4 of the
target space. We conclude that f factors through SU2×SU2/(±(I, I) to an
isomorphism with SO4.

HW 10.

9.19. By the Clebsch-Gordan rule, Vl+1/2 = V1/2Vl − Vl−1/2, where l =
1/2, 1, 3/2, . . . (while for l = 0 we have, of course: V1/2 = V1/2V0 where
V0 = 1, the unit element in the representation ringR). This gives a recursion
relation expressing Vl+1 as a monic polynomial of degree 2l = 0, 1, 2, 3, . . .
in V := V1/2. For instance, V1 = V 2−1, V3/2 = V 3−2V , V2 = V 4−3V 2+1,

V5/2 = V 5 − 4V 3 + 3V , V3 = V 6 − 5V 4 + 6V 2 − 1. In the coefficients of
these polynomials, it is not hard to recognize the terms of Pascal’s triangle,
albeit alternating in signs, and read not from the same row of Pascal’s
triangle, but along a slant line. (A control test: the sum of the terms
of Pascal’s triangle along these slant lines yield the Fibonacci sequence:
1, 1, 2, 3, 5, 8, . . . .) Namely:

Vl =

⌊l⌋∑

k=0

(−1)k
(
2l − k

k

)
V 2l−2k.

This conjecture (which obviously holds true for l = 0) follows by induction
from the defining property of Pascal’s triangle; namely

(−1)k
(
2(l + 1/2)− k

k

)
= (−1)k

(
2l − k

k

)
−(−1)k−1

(
2(l − 1/2)− (k − 1)

k − 1

)
.
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Another interpretation of this polynomial is obtained by noting that in Vl,

tr e−iSzt/~ =
2l∑

k=0

ei(l−k)t =
ei(l+1/2)t − e−i(l+1/2)t

eit/2 − e−it/2
=

sin(l + 1/2)t

sin t/2
.

This is an even 4π-periodic trigonometric function, and can be expressed as
the above polynomial of sin t/ sin(t/2) = 2 cos(t/2).

9.20. We have: Sx = (J+ + J−)/2, Sy = (J+ − J−)/2i, and therefore

SxSy + SySx =
1

4i

(
J2
+ − J+J− + J−J+ − J2

− + J2
+ + J+J− − J−J+ − J2

−
)

=
J2
x − J2

−
2i

=
~2

2i

(
y2

∂2

∂x2
− x2

∂2

∂y2

)
.

In the basis x2, xy, y2 of V1, the matrix of this operator assumes the form


0 0 i~2

0 0 0
−i~2 0 0


. The spectrum of this (Hermitian) matrix consists of the

roots λ = 0, ~2,−~2 of its characteristic polynomial λ3 − ~4λ.
Alternatively, Sx/i~, Sy/i~, Sz/i~ commute according the cross-product

scheme: i× j = k, etc. for a right-handed basis in R3. Therefore, identifying
V1 with the complexification of the standard representation of SO3 in R3,
we have Sxv = i~(i× v) and Syv = i~(j× v) for any v ∈ R3. Then

(Sx, Sy)v = −~
2 [i× (j× v) + j× (i× v)] .

In the basis v = i, j,k this operator has matrix




0 −~2 0
−h2 0 0
0 0 0


 with the

same characteristic polynomial λ3 − ~4λ.

HW11.

10.3. The Hamilton equations with the hamiltonian H := c2(p · p)/2 −
E2/2 in the extended phase space with coordinates q, τ, p,−E have the form:

q̇ := Hp = c2p, ṗ := −Hq = 0, τ̇ := −HE = E, Ė := Hτ = 0.

Solutions lying in the level set H = −m2c4/2 (where necessarily E 6= 0) are:

q(t) = c2p(0)t+ q(0), p(t) = p(0), τ(t) = E(0)t+ τ(0), E(t) = E(0).

Using p,E, q0, τ0 for p(0), E(0), q(0), τ(0), and eliminating t = (τ − τ0)/E
(where E2 = c2‖p‖2 +m2c4), we find

q − q0
τ − τ0

= c
p

‖p‖ if m = 0, and
q − q0
τ − τ0

=
p/m√

1 + ‖p/m‖2/c2
if m > 0.

These are straight lines in space-time, the graphs of trajectories in space
passing through q0 at the moment τ0 in the direction of p/‖p‖ with speed c

when m = 0, and speed ‖p/m‖/
√

1 + ‖p/m‖2/c2 = c/
√
1 +m2c2/‖p‖2 < c

when m > 0.
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10.9. Trying harmonic running waves Ψ±(q, t) = ψ±ei(k·q−ωt), where
q = (x, y, z), k = (kx, ky, kz), and ψ± ∈ V1/2 ∼= C2 are constant spinors, in
the role of solutions to the Dirac system on page 97, we obtain:

~ωψ± = ±mc2ψ± + c~(kxσx + kyσy + kzσz)ψ∓.

These relations allow one to express ψ± through each other, given the values
of energy E = ~ω and momentum p = ~k of the running wave:

(E ∓mc2)ψ± = c(pxσx + pyσy + pzσz)ψ∓.

Eliminating ψ− or ψ+, we find (using (pxσx+ pyσy + pzσz)
2 = p2x+ p

2
y + p

2
z):

(E2 −m2c4)ψ± = c2(p · p)ψ±,

i.e. the linear relations between ψ+ and ψ− are consistent if and only if
E2 = c2(p · p) +m2c4(or, equivalently, ω2 = c2(k · k) +m2c4/~2). Explicitly,
taking ψ+ to be an arbitrary non-zero vector in C2, we have

Ψ+ = ψ+e
i(p·q−Et)/~, Ψ− =

c

E +mc2

[
pz px − ipy

px + ipy −pz

]
ψ+e

i(p·q−Et)/~,

where E = ±
√
c2(p · p) +m2c4. Equivalently — but not additionally! —

taking arbitrary non-zero ψ− ∈ C2, we have

Ψ+ =
c

E −mc2

[
pz px − ipy

px + ipy −pz

]
ψ−e

i(p·q−Et)/~, Ψ− = ψ−e
i(p·q−Et)/~.

Thus, for each non-zero momentum vector p ∈ R3, and each of the two
values of the square root E = ±

√
c2(p · p) +m2c4, there is a complex 2-

dimensional space of running-wave solutions.

HW12

11.1. Since the potential energy of an oxygen molecule of mass m at the
height h ismgh, where g ≈ 9.8 kg ·m/s2 is the gravitational acceleration, the
probability of finding the atom at an altitude h is, up to normalization, is
given by the Gibbs distribution e−mgh/kT . Respectively, the density changes
with altitude according to the barometric law ρ(h) = ρ(0)e−mgh/kT (within
the range of altitudes where both g and temperature T remain constant).

Alternatively, this can be derived form the ideal gas law PV = kNT ,
where N is the number of atoms in a volume V , which can be rewritten as
the formula for density: ρ = mN/V = mP/kT . Namely, a layer of air of
width ∆h contains ∆h×S×ρ(h) amount of oxygen per area S, whose weight
∆h×S×gmP (h)/kT is supported by the difference S× [P (h+∆h)−P (h)]
of pressure forces. This leads to the differential equation dP (h)/dh =
−mgP (h)/kT , or (in terms of density) dρ(h)/dh = −mgρ(h)/kT . Its solu-

tion ρ(h) = ρ(0)e−mgh/kT coincides with the Gibbs distribution.
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The altitude where the density is half that at the sea level is found from
e−mgh/kT = 1/2, i.e.

h =
kT

mg
log 2 ≈ 1.38 · 10−23 × 300

32× 1.67 · 10−27 × 9.8
× 0.69 ≈ 5.5 · 103 m.

This is, roughly, the altitude of Mt. Elbrus (5, 642 m = 18, 510 ft).

11.8. From the Fermi gas model (at T ≈ 0) EF = (3π2N/V )2/3~2/2me.
The model applies to the “free” electrons, i.e. valence electrons in our alloy,
which for the metals in question are typically 2 per atom. So, taking into
account the mass density 8 ·103 kg/m3 and the weight of one atom 60×1.67 ·
10−27 kg ≈ 10−25 kg, we find the electron density N/V ≈ 2×8 ·103/10−25 =

1.6·1029 m−3. We also have 3π2 ≈ 30, and so (3π2N/V )2/3 ≈ (4.8·1030)2/3 ≈
2.8 ·1020 m−2. On the other hand, ~2/2me ≈ (1.05 ·10−34)2/2×0.9 ·10−30 ≈
0.61·10−38. Thus, in joules, EF ≈ (2.8×.61)·10−18 ≈ 1.7·10−18. Dividing by
k ≈ 1.38 ·10−23, we find the Fermi temperature of our alloy TF ≈ 120, 000 K
(i.e. quite high relative to the normal conditions of ≈ 300 K). Since 1 eV ≈
1.6 · 10−19 joule, we obtain the Fermi energy of our alloy EF ≈ 10 eV .

HW13.

12.8. Since κ−1 sinhκ = a→ a as κ→ 0, at E = 0 we have

M = lim
κ→0

[
coshκa 1

κ sinhκa
κ sinhκa coshκa

] [
1 0
−α

a 1

]
=

[
1− α a
−α

a 1

]
.

At α = 2, M is traceless, with eigenvalues ±i. Its eigenvectors are easily
found from[

−1 a
− 2

a 1

] [
ψ±(0−)
ψ′
±(0

−)

]
= ±i

[
ψ±(0−)
ψ′
±(0

−)

]
as

[
ψ±(0−)
ψ′
±(0

−)

]
=

[
a

1± i

]
.

From ψ′(0+)−ψ′(0−) = −2ψ(0)/a, we find ψ′
±(0

+) = −1±i, while ψ±(0+) =
ψ±(0−) = a. On the interval (0, a), the stationary Schrödineger equation
with E = 0 (and V = 0) reduces to ψ′′ = 0, whose solutions are linear:
ψ(x) = ψ(0+) + xψ′(0+). Therefore

ψ±(x) = a− x± ix for 0 ≤ x ≤ a, while ψ±(x+ na) = (±i)nψ±(x).

The eigenspace of the Schrd̈inger operator at E = 0 consists of arbitrary
complex linear combinations of ψ±.

12.11. The energy of a photon of wave length λ is ~ω = 2π~c/λ, where c
is the speed of light. Since 2π~c ≈ 20 · 10−26 J ·m, for λ in the visible range
(400 – 700 nm), this gives the energy range between 5 · 10−19 and 3 · 10−19

joules. Since 1 eV ≈ 1.6 · 10−19 joules, this gives the energy range 2–3 eV .
This is greater than the energy gap 1.1 eV between valency and conduction
bands for silicon, and smaller than 5 times that (5.5 eV ) for diamond. Thus,
visible light cannot excite the valent electrons in diamond, and hence passes
through it unabsorbed, while in silicon, it interacts with the electrons.



14

12.16. The KdV soliton φ(x − vt) is described by the function φ(x) =
(v/2)/ cosh2(

√
vx/2) satisfying ψ′′+3φ2 = vφ. Take v = 1, and interpret the

ODE as the stationary Schrödinger equation −ψ′′−3φψ = −ψ, where ψ = φ,
the potential energy is 3φ = 3/2 cosh2(x/2) and the eigenvalue E = −1. On
the other hand, the ODE for φ is obtained by integrating φ′′′ + 6φφ′ =
vφ′, which (for v = 1) can also be interpreted as the Schrödinger equation
−ψ′′− 6φψ = −ψ with ψ = φ′, the potential energy 6φ = 3/ cosh2(x/2) and
the eigenvalue E = −1.

HW14.

13.3. For H(u) :=
∮
(u3 − u2x/2) dx, we have: δH/δu = uxx + 3u2,

and d
dxδH/δu = uxxx + 6uux. Take Fφ(u) :=

∮
φ u dx, where φ is a fixed

1-periodic function of x. Then δFφ/δu = φ. The evolution of a classical ob-
servable F under the Hamiltonian flow with Hamilton functionH is governed
by the differential equation Ḟ = {H,F}. Obviously, d

dtFφ(u) =
∮
φ ut dx.

Therefore∮
φ ut dx = −{F ,H} := −

∮
δF
δu

d

dx

δH
δu

dx = −
∮
φ [uxxx + 6uux] dx

for all φ. Thus, ut = −uxxx − 6uux.

13.8. Specializing Wick’s theorem to the case of one variable (D = 1),
b11 = 1/i, ta = 0 for a 6= 3 and t3 = λ/i, and setting ~ = 1, we find that
for each connected graph Γ (equipped with the only possible decoration),

its weight (i~)E(Γ)(i/~)V (Γ)W (Γ)/|Sym(Γ)| = λV (Γ)/|Sym(Γ)| when each
vertex of Γ has valence 3, and = 0 otherwise. This justifies the asymptotical
formula

∑
V GV λ

V . For a 3-valent graph, 3V = 2E, implying that V must
be even. There are two 3-valent graphs with 2 vertices: Γ1 where the vertices
are connected by 3 edges, and Γ2 where they are connected by one edge,
but are equipped with a loop each. We have: |Sym(Γ1)| = 2 × 3! and
|Sym(Γ2)| = 2× 22, and hence G2 = 1/12 + 1/8 = 5/24. Alternatively,

1√
2π

∫ ∞

−∞
e−

x2

2 + λx3

6 dx =
1√
2π

∫ ∞

−∞
e−

x2

2

[
1 +

λx3

6
+
λ2x6

72
+ o(λ2)

]
dx

= 1 + 0 +
5 · 3 · 1
72

λ2 + o(λ3) = exp

[
5λ2

24
+ o(λ3)

]
.


