
Math 214: Differential Manifolds

Alexander Givental

HOMEWORK 1

1. Consider the stereographic projections of the sphere x2+y2+z2 =
1 from the North Pole (0, 0, 1) and from the South Pole (0, 0,−1) onto
the plane z = 0 as two charts, compute the transition maps between
the charts, and show that they are smooth.

2. Find out which of the following manifolds are diffeomorphic to
each other (indicate the map when they are):

(a) the real projective space RP 3;
(b) the intersection of the sphere |z1|2 + |z2|2 + |z3|2 = 1 in C

3 with
the complex cone z2

1
+ z2

2
+ z2

3
= 0;

(c) the manifold T1S
2 of unit tangent vectors to a 2-sphere;

(d) the configuration space ( i.e. the space of all possible positions)
of a (sufficiently general) rigid body in the 3-space, fastened at one
point;

(e) the Stiefel manifold V (3, 2) of 2-frames in R
3 (i.e. of ordered

pairs of unit perpendicular vectors);
(f) the group SO3 of rotations of R

3.
3. State Implicit Function Theorem, Inverse Function Theorem, and

derive each one of them from the other.

HOMEWORK 2

1. Show that the following surgeries on connected 2-dimensional
manifolds are equivalent, i.e. produce homeomorphic manifolds:

(a) In the presence of a Möbius strip embedded into the surface,
attaching a cylinder in the orientation-respecting fashion is equivalent
to attaching a cylinder in the disorienting fashion.

(b) Attaching two Möbius strips is equivalent to attaching a cylinder
in a disorienting fashion.

(c) Convince yourself that any surface obtained from the sphere by
the surgeries of attaching cylinders and/or Möbius strips is homeomor-
phic to one of the following: S2

g (the sphere with g handles), P 2
g (the

projective plane with g handles), K2
g (the Klein bottle with g handles),

g = 0, 1, 2, ...

2. Show that any maximal ideal in the algebra C∞(M) of smooth
functions on a manifold M is the maximal ideal mx of some point x ∈
M , i.e. consists of all smooth functions vanishing at x. Deduce from
this that any algebra homomorphism C∞(M) → C∞(N) is induced
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by a smooth map N → M . (For simplicity, you may assume in this
problem that M is compact.)

3. Let W be a real vector space of finite dimension, and let G :=
Grk(W ) denote the Grassmann manifold of all k-dimensional vector
subspaces in W . Consider such a subspace V ⊂ W as a point v ∈ G,
and show that the tangent space TvG can be canonically identified with
the space of linear maps Hom(V, W/V ).

HOMEWORK 3

1. A hunter is positioned at the origin of the coordinate plane, and
at all other integer points of the plane are occupied by identical rabbits.
Show that however small are the rabbits, the hunter cannot miss no
matter what direction he shoots.

2. Consider a smooth free action of a compact Lie groups G on a
smooth manifold M . Equip the quotient space M/G with the structure
of a smooth manifold such that the canonical projection π : M →
M/G is a submersion. Prove that π∗(C∞(M/G)) = C∞(M)G (the
subalgebra of G-invariant functions).

3. The map S2n−1 → CP n−1, defined by associating to a unit vector
in C

n, the complex line spanned by it, is called a Hopf bundle. Show
that a Hopf bundle is a locally trivial bundle with the fiber S1. For
n = 2, sketch the way the fibers of the Hopf bundle S3 → S2 fill in the
space R

3 obtained from S3 by a stereographic projection.

HOMEWORK 4

1. Prove that a (non-compact) n-dimensional submanifold in a eu-
clidean space can be smoothly embedded into R

2n+1 as a closed subset.
2. Prove that a compact n-dimensional manifold with boundary

can be embedded into the half-space R
2n+1
+ so that the boundary of

the manifold lies in the boundary of the half-space, the interior of the
manifold lies in the interior of the half-space, and the tangent spaces
to the manifold at the points on the boundary are perpendicular to the
boundary of the half-space.

3. (a) Compute pairwise Lie brackets of the basis

{xm∂/∂x, m = 0, 1, 2, . . . }
in the Lie algebra of polynomial vector fields on the line, and
(b) identify inside it a Lie subalgebra isomorphic to the Lie algebra of
traceless 2 × 2-matrices equipped with the matrix commutator opera-
tion [A, B] := AB −BA.

Could you think of any a priori explanation of the isomorphism?
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HOMEWORK 5

1. Let v and w be two vector fields on a manifold M , and let
gt : M → M be a family of diffeomorphisms such that g0 = idM , and
d/dt|t=0gtx = v(x) for all x ∈ M (e.g. gt can be the flow gt of v).
Compute the Lie derivative of w along v, defined by:

Lvw :=
d

dt
|t=0(gt)∗w.

2. Given a bilinear form A on a vector space V , denote by Aut(V,A)
the Lie group of linear transformations on V preserving A, and by
aut(V,A) the corresponding Lie algebra.

Let S : V → V ∗ and A : V ∗ → V be two linear transformations
between dual spaces, and suppose that S∗ = S, and A∗ = −A. Prove
that

AS ∈ aut(V,S), where S(x, y) = 〈Sx, y〉,
and

SA ∈ aut(V ∗,A), where A(u, v) = 〈u, Av〉.
3. Prove that the exponential map exp : g → G provides a dif-

feomorphism between sufficiently small neighborhoods of 0 ∈ g and
e ∈ G. Compute the range of the exponential map for G = GLn(C).
Give an example of a connected Lie group G whose exponential map
is not surjective.

HOMEWORK 6

1. Find the maximal dimension of integral submanifolds of the 3-
dimensional distributions in R

4 − 0 given by the equation:

(a) x1dy1 − y1dx1 + x2dy2 − y2dx2 = 0;

(b) x1dy1 + y1dx1 + x2dy2 + y2dx2 = 0.

2. Study the Cartan distribution in the space where the graphs of
functions (u) in one variable (x) together with their derivatives up to
order r “live.” What is the dimension of the space? Of the Cartan dis-
tribution? Describe the distribution explicitly. To a smooth function
u = u(x), associate an integral curve of the distribution. Is the distri-
bution integrable? Does it have 2-dimensional integral submanifolds?

3. Find a necessary and sufficient condition for a left-invariant dis-
tribution on a Lie group to be integrable. Apply your criterion to
the 2-dimensional distribution on S3 = {|z|2 + |w|2 = 1} defined by
orthogonal complements to the fibers of the Hopf bundle.



4

HOMEWORK 7

1. Let E = R × M → M be the trivial R-bundle over a simply-
connected n-dimensional manifold M , and let Π be an n-dimensional
distribution on E which is everywhere transverse to the fibers of the
bundle and is invariant with respect to translations in the direction of
R. Prove that a global section M → E of the bundle integral to the
distribution exists if and only if the distribution is involutive.

2. Which of the Grassmann manifolds Grk,n(R) are simply-connected?
3. Classify up to isomorphism all connected Lie groups with the Lie

algebra so4(R).

HOMEWORK 8

1. Let A and B be two anti-symmetric 4 × 4-matrices. For how
many values of t can the matrix A + tB degenerate?

2. Plücker embeddings of grassmannians. An exterior k-form ω ∈
ΛkV ∗ on V is called decomposable if it is an exterior product of k linear
forms. Prove that in the projective space Proj(ΛkV ∗), the locus defined
by non-zero decomposable k-forms is isomorphic to the Grassmann
manifold of k-dimensional subspaces in V ∗.

3. Prove that a non-degenerate quadratic hypersurface in CP 5

(i.e. a hypersurface defined in Proj(C6) by a homogeneous equation
Q(z0, ..., z5) = 0 written in linear coordinates (z0, ..., z5) on C

6 and cor-
responding to a non-degenerate quadratic form Q) is diffeomorphic (in
fact isomorphic as a complex algebraic manifold) to the Grassmannian
Gr2,4(C).

HOMEWORK 9

1. An n-dimensional manifold is called orientable if it admits an
atlas all of whose transition functions have positive Jacobians. Show
that an n-dimensional manifold is orientable if and only if it admits a
nowhere vanishing differential n-form (such a form is called a volume

form).
2. Let ωn be a volume form on a manifold M .
(a) Show that the contraction operation

V ect(M) → Ωn−1(M) : v 7→ ivω

(defined by substituting v into ω as the 1st argument) defines an iso-
morphism of C∞(M)-modules.

(b) Characterize those vector fields whose flows preserve ω, in terms
of the differential n − 1-forms corresponding to them under the con-
traction isomorphism.



5

3. Let α be a non-vanishing differential 1-form on an n-dimensional
manifold. Prove that the n − 1-dimensional distribution kerα (i.e. a
“Pfaff equation”) is integrable if and only α ∧ dα = 0.

HOMEWORK 10

1. Prove that H•

DR(T n) = (Ω•(T n))
T n

(i.e. the space of translation
invariant differential forms on the torus).

2. Show that any complex manifold, if considered as a real manifold,
is orientable.

3. The equation F (z1, z2) = 0, where F is a polynomial of degree d,
defines an algebraic degree d curve in C

2. Let us assume for simplicity
that the complex curve is non-singular, and orient the curve considered
as a real surface by requiring that the direction of the 90◦ rotations
in its tangent planes, defined as the multiplication by

√
−1, is called

counter-clockwise.
Let Cr be the part of this curve inside the ball |z1|2 + |z2|2 ≤ r2 of

radius r. Compute the limit:

lim
r→∞

1

r2

∫

Cr

dx1 ∧ dy1 + dx2 ∧ dy2,

where xi and yi are the real and imaginary parts of zi respectively.

HOMEWORK 11

1. Among smooth curves t 7→ (x(t), y(t)) ∈ R
2, identify extrema of

the functional (k is a constant parameter)
∫

[

ẋ2 + ẏ2 + k(xẏ − yẋ)
]

dt.

2. Compute explicitly the Laplace operator ∆ = dd∗ + d∗d on the
space Ω∗

c(R
3) of compactly supported differential forms in R

3, equipped
with the inner product

(α, β) =

∫

R3

α ∧ (⋆β),

where ⋆ is Hodge’s star-operator.
3. On a connected Riemann manifold, define the distance between

any two points to be the infimum of arc lengths over all (piecewise)
smooth curves connecting the points. Prove that the manifold, equipped
with this distance, is a metric space (complete if compact). Deduce that
any (connected) manifold (not necessarily compact) can be equpped
with the structure of a complete metric space.
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HOMEWORK 12

1. (The tubular neighborhood theorem via exponential maps for
geodesics.) Let ⊂ M be a compact submanifold in a Riemann manifold.
Given x ∈ N , to a non-zero vector v ∈ TxM normal to N , associate
a point in M , defined as the endpoint of the geodesic curve of length
|v| issued from x in the direction of the vector v/|v|. Prove that this
construction provides a diffeomorphism between a neighborhood of N
in M and a neighborhood the zero section in the normal bundle of N .

2. Construct a C1-function f : [0, 1] → [0, 1] whose critical value set
coincides with the standard Cantor set. Show that the critical value
set of the C1-function g : [0, 1] × [0, 1] → [0, 2], defined by g(x, y) =
f(x) + f(y) has positive measure.

3. Prove that on any manifold, functions with only non-degenerate
critical points form a massive subset in C∞(M).


