
Answers to Homework Exercises

HW1

1. From z2 − 2z +
√
3i = 0, using the “quadratic formula”, we find

z = 1±
√

1−
√
3i = 1±

√
2

(√
3

2
− i

2

)

= 1±
√

3

2
∓ i√

2
.

2. The set given by |z| < 1, |z + 1| < 1,Re(iz) < 0 is the intersection of
two open disks of radius 1 centered at z = 0 and z = −1 respectively with
each other and with the open upper half-plane:

−1 0 1

i

3.

tanX =
sinX

cosX
=

X −X3/6 +X5/120 + · · ·
1− (X2/2−X4/24 + · · · )

= X

(

1− X2

6
+

X4

120
+ · · ·

)

(

1 +

(

X2

2
− X4

24
+ · · ·

)

+

(

X2

2
+ · · ·

)2

+ · · ·
)

= X +X3

(

1

2
− 1

6

)

+X5

(

1

120
− 1

12
− 1

24
+

1

4

)

+ · · ·

= X +
X3

3
+

2X5

15
+ · · · =: Y.

For X = arctanY solve X = Y −X3/3− 2X5/15 + · · · by iterations:

X = 0 (on the right) ⇒ X = Y + · · · (on the left)

X = Y + · · · ⇒ X = Y − Y 3/3 + · · ·

X = Y − Y 3

3
+ · · · ⇒ X = Y − (Y − Y 3/3)3

3
− 2Y 5

15
+ · · · ,

i.e. arctanY = Y − Y 3/3 + Y 5/5 + · · · Alternatively, this can be found by
termwise anti-differentiation from (arctanY )′ = 1/(1+Y 2) = 1−Y 2+Y 4−
· · · .
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4. The derivative of order p−1 of 1/(1−X) equals (p−1)!/(1−X)p. This
is true for functions, but also follows (from the product rule) by induction
on p for the formal power series. Therefore





∑

n≥0

Xn





p

=
1

(p− 1)!

dp−1

dXp−1





∑

n≥0

Xn



 =
∑

m≥0

(

m+ p− 1

p− 1

)

Xm.

HW2

I.4. (a)
∑

qn
2

zn has infinite convergence radius since |qn2 |1/n = |q|n →→
0 when |q| < 1. (b)

∑

npzn has convergence radius 1 since (np)1/n =

(n1/n)p → 1p = 1. (c) is essentially the sum of two geometric series with

convergence radii 1/a and 1/b. Therefore |an|1/n consists of two convergent
sequences with the limits a and b, and so ρ = 1/max(a, b) = min(1/a, 1/b).

I.8 bc. Indeed, from (1− αz − βz2)(
∑

anz
n) = z we have an − αan−1 −

βan−2 = 0 for n ≥ 2, while a0 = 0 and a1 = 1. Thus, within the convergence
radius of series S =

∑

anz
n, the identity holds for the functions:

S(z) =
z

1− αz − βz2
=

z1z2
z2 − z1

[

1

1− z/z1
− 1

1− z/z2

]

,

where we assume z1 6= z2. Therefore an = (z−n
1 − z−n

2 )/(z−1
1 − z−1

2 ). As in
I.4(c), the radius of convergence equals min(|z1|, |z2|). When z1 = z2 =: z0,
S(z) = z/(1 − z/z0)

2 =
∑

n≥0 nz
−n
0 zn (as in Problem 4 from HW1 with

p = 2), which has convergence radius |z0| (since n1/n → 1 as n → ∞), and
implies an = n/|z0|n.

I.11. From the binomial formula, we have

(

1 +
z

n

)n
=

n
∑

p=0

n!

(n− p)!p!

zp

np
=

n
∑

p=0

(

1− 1

n

)(

1− 2

n

)

· · ·
(

1− p− 1

n

)

zp

p!
.

For every ǫ > 0 and every z, there exists N large enough so that
∑

p>N |z|p/p! < ǫ/3, and hence
∑n

p=N+1(1−1/n) · · · (1−(p−1)/n)|z|n/p! <
ǫ/3. For such N ,

∣

∣

∣
ez −

(

1 +
z

n

)n∣
∣

∣
<

ǫ

3
+

ǫ

3
+

N
∑

p=0

[

1−
(

1− 1

n

)

· · ·
(

1− p− 1

n

)] |z|p
p!

.

The last expression is a polynomial in |z| of fixed degree N whose coefficients
tend to 0 as n → ∞, and so the expression becomes smaller than ǫ/3 for n
large enough.

I.16. (i) Indeed, as suggested,

α1β1 + α2β2 + · · ·+ αnβn = α1(β1 − β2) + (α1 + α2)(β2 − β3)

+ (α1 + α2 + α3)(β3 − β4) + · · ·+ (α1 + · · ·+ αn)βn.
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Therefore, since |∑k
i=1 αi| ≤ M for all k, and β1 ≥ β2 ≥ · · ·βn ≥ 0, we have

∣

∣

∣

∣

∣

n
∑

i=1

αiβi

∣

∣

∣

∣

∣

≤ M [(β1 − β2) + (β2 − β3) + · · ·+ βn] ≤ Mβ1.

(ii) Given ǫ > 0 pick m large enough so that M := supn |am+1+· · ·+an| < ǫ.
Such m exists since the series

∑

i ai is assumed to converge), and hence its
partial sums form a Cauchy sequence. Take αi = am+i, βi = xm+i, where
0 ≤ x ≤ 1. Then by (i)

∣

∣

∣

∣

∣

m+n
∑

i=m+1

aix
i

∣

∣

∣

∣

∣

≤ Mxn+1 < ǫ.

Therefore polynomials sn(x) :=
∑n

i=0 anx
n form a Cauchy sequence in the

complete metric space of continuous functions on [0, 1] with respect to the
norm ‖sm−sn‖ = max0≤x≤1 |sm(x)−sn(x)| of uniform convergence. There-
fore s(x) :=

∑

i aix
i is a uniform limit of {sn}, and is therefore a continuous

function on [0, 1]. The continuity means that limx→1− s(x) = s(1) =
∑

i ai.

Finally, we can apply (ii) to
∑

i(−1)k−1xk/k (since
∑

(−1)k−1/k con-
verges). For |x| < 1, this is the power series expansion of log(1+ x). There-
fore

∑

(−1)k−1/k = limx→1− log(1+x) = log 2 since log(1+x) is continuous
at x = 1.

HW3

1. tanh z := (ez−e−z)/(ez+e−z) = (e2z−1)/(e2z+1) is πi-periodic (since
e2z is πi-periodic). Its zeroes are found from e2z = 1, i.e. z = πin, n ∈ Z. In
particular, tanh z has no other periods except integer multiples of πi (since
the set of zeroes must be invariant under translations by periods of the
function). The poles of tanh z are found from e2z = −1, i.e. z = πi(n+1/2),
n ∈ Z. By definition, sin z := (eiz − e−iz)/2i, cos z := eiz + e−iz)/2, and
hence tanh z = i tan iz. From Problem 3 of HW1, tanX expands nearX = 0
as X +X3/3 + 2X5/15 + · · · . Therefore near z = −πi we have:

tanh z = −i · i(z + πi)− i

3
i3(z + πi)3 − 2i

15
i5(z + πi)5 + · · ·

= (z + πi)− 1

3
(z + πi)3 +

2

15
(z + πi)5 + · · ·

2. sin 2πz is analytic in C and has zeroes at z = n = 0,±1,±2, . . . . Thus
1/ sin(2π/z) has poles at z = 1/n, and can be considered as a meromorphic
function in the half-plane Re z > 0 (or, alternatively, in C− {0}).

II.6. Parameterizing the ellipse E as z(t) = a cos t + ib sin t, we have
ż(t) = −a sin t+ ib cos t, and żz̄ = (b2 − a2) sin t cos t+ iab. Therefore

2πi =

∮

E

dz

z
= i Im

∫ 2π

0

żdt

z
= i Im

∫ 2π

0

żz̄ dt

zz̄
=

∫ 2π

0

iab dt

a2 cos2 t+ b2 sin2 t
.
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II.8. If f = u+ iv is holomorphic, then (a− bi)f is holomorphic too, and
au + bv is its real part. If it is constant (= c) then the Cauchy-Riemann
equations imply that (in a connected domain), the imaginary part is also
constant, i.e. (a− bi)f = const. Since a− bi 6= 0 (for otherwise c = 0 too in
contradiction with the hypothesis), we conclude that f = const.

HW4

II.3. Since φ is holomorphic, it is differentiable and hence continuous.
Therefore Γ := φ ◦ γ is continuous when γ : t 7→ z(t) = x(t) + iy(t) is. On
each interval of differentiability, this composition of differentiable functions
is differentiable, but it is not obvious from the definition of holomorphy
that the derivative dφ(γ(t))/dt = φzγ̇ + φz̄ ˙̄γ is continuous. (In fact the 2nd
summand is zero due to the Cauchy-Riemann equations for φ, while φz in the
first summand coincides with φ′.) However, by definition of differentiable
paths, ẋ and ẏ are continuous, while φ is in fact infinitely differentiable due
to the established analyticity of holomorphic functions. Finally,

∫

Γ
f(w) dw :=

∫ b

a
f(φ(γ(t))

dφ(γ(t))

dt
dt

=

∫ b

a
f(φ(γ(t)) φ′(γ(t)) dt =:

∫

γ
f(φ(z)) φ′(z) dz.

II.7. We have |tn| = Rn when |t| = R, while P (t)/tn−1 = a1/t+a2/t
2+

· · ·+ an/t
n → 0 as R → ∞. Therefore for R sufficiently large, |P (t)− tn| <

|tn|, and consequently for 0 ≤ ǫ ≤ 1, we have |tn+ǫ(P (t)− tn)| > |tn|/2 > 0.
When ǫ varies from 0 to 1, we obtain a homotopy between the loop z =
tn||t|=R and z = P (t)||t|=R which lies in C− {0} for R large enough. Thus,
for such R, the loops have the same index relative to z = 0, while the index
is equal to n for z = tn||t|=R (for any R > 0):

∮

dz/z = n
∮

dt/t = 2πin.

On the other hand, if P doesn’t vanish anywhere,
∮ dP (t)

P (t) =
∮ P ′(t) dt

P (t) = 0

for any closed integration path, because the plane is simply-connected. This
contradiction (2πin 6= 0 for n ≥ 1) proves the Fundamental Theorem of
Algebra: a positive degree polynomial has a complex root.

II.10. When f is holomorphic in a domain D, define f̄(z) := f(z̄) (in the
reflected domain D̄, which coincides with D when D is symmetric). Then f̄
is also holomorphic inD. Indeed, under the complex conjugation (reflection)
of both the domain and target planes of f , the linearization w 7→ f ′(z)w

of f (at some point z) becomes w 7→ f ′(z)w̄ = f ′(z)w, i.e. remains the

multiplication by a complex number (and moreover, f̄ ′(z̄) = f ′(z).) On the
real axis, f(x) = g(x) + ih(x), f̄(x) = g(x) − ih(x), where the real-valued
functions g, h : I = D ∩ R → R are the real and imaginary parts of f |I .
Since I is assumed to be non-empty (and open in R), and D connected, the
functions g(z) := [f(z)+f̄(z)]/2 and h(z) := [f(z)−f̄(z)]/2i are holomorphic
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in D, and are uniquely determined (via analytic continuation) by their real-
valued restrictions to I. In particular, ḡ(z) = g(z) and h̄(z) = h(z) for all
z ∈ D, since this is true for all z ∈ I.

II.11. Since (log f)′ = f ′/f and (log g)′ = g′/g, we have

f(z) = exp

∫ z

a

f ′(t)

f(t)
dt, g(z) = exp

∫ z

a

g′(t)

g(t)
dt,

where the integrals are taken along any piece-wise differentiable path in D
connecting a with z. (In other words, f(z) = elog f(z) where the ambiguity of
the logarithm is compensates by the periodicity of the exponential function.)
Since f ′/f − g′/g has a sequence of zeroes an converging to a, we conclude
that a is a non-isolated zero, and hence f ′/f = g′/g on D. Thus, f and g
coincide up to the multiplicative “integration constant” i.e. if f(a) = c(g(a),
then f(z) = cg(z) for all z ∈ D.

Alternatively (as some students suggested during my office hours), instead
of integration, one can differentiate the (already established) identity f ′/f =

g′/g, and conclude inductively that, if f(a) = cg(a), then f (n)(a) = cg(n)(a)
for all n. Then f and cg have the same Taylor series at a, and therefore (by
analytical continuation) coincide in the entire connected domain D.

HW5

1. Arguing ad absurdum, assume that for every N = 1, 2, 3, ... there is
an 1/N × 1/N square �N (one of the N2 of those) such that F (�N ) is
not contained in any of the neighborhoods Ux ⊂ D where the property P
holds. Due to compactness of [0, 1]2, the sequence of the centers vN of the
squares �N has a convergent subsequence vNk

. Let v be its limit. Then
V := F−1(UF (v)) is an open subset in [0, 1]2, and hence for k large enough
the 1/Nk × 1/Nk-square �Nk

lies in V . (Indeed, for some ǫ > 0, V contains
all points of [0, 1]2 of distance < ǫ to v, and hence, when k is large enough
so that |vNk

− v| < ǫ/2, and 1/2Nk < ǫ/
√
2, all points of �Nk

lie within
the distance ǫ from v.) Thus, F (�Nk

) ⊂ UF (v) in contradiction with the
hypothesis.

Alternatively, for each u ∈ [0, 1]2, let Vu be a open disk centered at u such
that P holds in F (Vu), and let ǫu be its radius. From the cover of [0, 1]2

by open disks of the radiuses ǫu/2 centered at u, pick a finite subcover
(which exists due to compactness of the square) by such disks (let they be
centered at u1, . . . , un), and put ǫ := min(ǫu1

, . . . , ǫun). Then for N such
that 1/N < ǫ/2

√
2, any 1/N×1/N -square is contained in one of Vui (because

its center lies within the distance ǫ/2 from one of ui, i = 1, . . . , n.)

2. Answer: w = eiθ(z − z0)/(1− z̄0z) where |z0| < 1.
Indeed, this transformation is invertible, maps the unit circle |z| = 1 (in

which case 1/z = z̄) to the unit circle:

|w| = |z| |1− z0/z|
|1− z̄z| =

|1− z0z̄|
|1− z̄0z|

= 1
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since complex conjugate numbers have the same absolute values, and the
interior to interior, since the interior point z = z0 is mapped to w = 0.

Conversely, the function w = (az + b)/(cz + d) is non-constant (and in-

vertible) provided that the determinant of the matrix

[

a b
c d

]

is non-zero.

Moreover, the composition of two fractional-linear transformations is again
fractional-linear, and is given by the matrix product of their coefficient ma-
trices. The value w = 0 corresponds to z = −b/a =: z0, and in particular
a 6= 0. Pre-composing this map with the inverse of z 7→ (z−z0)/(1− z̄0z), we
obtain a fractional-linear transformation mapping the unit disk bijectively
onto itself and preserving the center of the disk. Explicitly, it has the form
w = z/µz + ν, and if |w| = 1 (and hence |z| = 1), then |µz + ν| = 1, i.e.
z 7→ µz+ ν (the composition of stretch, rotation, and translation) maps the
unit circle to itself. This is possible only if both the stretch and translation
are trivial, i.e. |µ| = 1 and ν = 0. Thus, the composite map is z 7→ eiθz.

3. Let the two fixed points of f be z0 and z1. Consider the map g = h◦f ◦
h−1, where h is a fractional-linear automorphism of the unit disk mapping
z0 to 0. Then g has two fixed points w = 0 and one more, w = w0 6= 0.
Therefore |g(w0)| = |w0| for an interior point of the disk, and so by Schwarz’
lemma g(w) = λw (with |λ| = 1), where actually λ = 1 (since λw0 = w0.
Thus, g is the identity map, and hence f = h−1 ◦ g ◦ h is the identity map
too.

4. Let U be a bounded connected component of C − |f |−1(c) (i.e. |f | =
c on the compact boundary Ū − U of the open set U) where f has no
zeroes. Then both f and 1/f are holomorphic in U and hence obey the
maximum modulus principle, i.e. |f | ≤ c and 1/|f | ≤ 1/c in U . This is
possible only |f | = c in Ū , in which case (according to the maxim modulus
principle) f must be constant in U , and hence (by the principle of analytical
continuation) everywhere in C.

HW6

1. The exterior |w| > 1/ǫ of any radius 1/epsilon disk contains (infinitely
many) strips 2πn < Imw ≤ 2π(n + 1) where the 2πi-periodic function ew

assumes all its values C − 0. Therefore the function e1/z in a punctured
neighborhood 0 < |z| < ǫ of z = 0 assumes all non-zero values infinitely
many times, and this is true for any ǫ > 0 no matter how small.

2. z/ sin z = 1/(1− z2/6 + z4/120 + · · · . Consequently
( z

sin z

)5
=

[

1 +
z2

6
− z4

120
+

(

z2

6

)2

+ · · ·
]5

=

[

1 +
z2

6
+

7z4

360
+ · · ·

]5

= 1 + 5
z2

6
+ 5

7z4

360
+ 10

(

z2

6

)2

+ · · · = 1 +
5z2

6
+

3z4

8
+ · · ·

Thus, sin−5 z = z−5+5z−3/6+3z−1/8+· · · , and so Resz=0 sin
−5 z dz = 3/8.
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3. In the ring 2 < |z + 1| < 3, we have

1

(z − 1)(z − 2)
=

1

z − 2
− 1

z − 1
=

1

(z + 1)− 3
− 1

(z + 1)− 2

−
∑

n≥0

(z + 1)n

3n+1
−
∑

n>0

2n−1

(z + 1)n
.

4. Since the Riemann sphere is compact, a meromorphic function f
on it has only finitely many poles (one of which could be z = ∞). Put

p(z) =
∏k

i=1(z − zi)
mi where zi are finite poles of f , and mi are their or-

ders. Then g(z) := p(z)f(z) is entire (i.e. holomorphic in C), and has no
essential singularity at z = ∞. Being entire, g expands in C into a power
series

∑

n≥0 anz
n =

∑

n≥0 an/w
n, where w = 1/z. Since neither f(1/w)

nor p(1/w) have essential singularities at w = 0, the same is true about
g(1/w), implying that the sum is actually finite. Thus, g is a polynomial,
and f = g/p is rational.

HW7

III.20(i). This is a type 2 integral. With a, b > 0, we find (using the

change x =
√
ay/

√
b):

∫ ∞

0

dx

(a+ bx2)n
=

√
a

2an
√
b

∫ ∞

−∞

dy

(1 + y2)n
=

2πi
√
a

2an
√
b
Resz=i

dz

(z − i)n(z + i)n
.

The residue at the nth order pole is computed as the value at z = i of

1

(n− 1)!

dn−1

dzn−1

1

(z + i)n
=

(−1)n−1

(n− 1)!

(2n− 2)!

(n− 1)!

1

(z + i)2n−1
.

Therefore the value of the integral is

2πi
√
a

2an
√
b
× (2n− 2)!

22n−1i[(n− 1)!]2
=

(

2n−2
n−1

)

π

(4a)n−
1

2 b
1

2

.

III.20(ii). This reduces to type 3b integrals. Assuming a, b > 0, we have
∫ ∞

0

cos 2ax− cos 2bx

x2
dx =

1

2

∫ ∞

−∞

cos 2ax− cos 2bx

x2
dx

=
1

4

∫ ∞

−∞

e2iax − e2ibx

x2
dx+

1

4

∫ ∞

−∞

e−2iax − e−2ibx

x2
dx

=
πi

4
Resz=0

e2iaz − e2ibz

z2
dz − πi

4
Resz=0

e−2iaz − e−2ibz

z2
dz

=
πi

4
(2ia− 2ib)− πi

4
(−2ia+ 2ib) = π(b− a)

Note that near x = 0, the numerator cos 2ax−cos 2bx = 2(a−b)x2+ · · · has
a 2nd order zero, and so the initial integrand is non-singular at x = 0. The
initial integral converges at |x| → ∞ because the numerator is bounded, and
∫∞
1 x−2dx = 1 < ∞. However, the complex integrands (e±2iaz − e±2ibz)/z2
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have a first order pole of at z = 0. They have to be integrated along a
semicircular contour avoiding z = 0 in the upper half-plane in the case
of the sign “+”, and in the lower half-plane in the case of the sign “−”.
Respectively, they contribute ±πiResz=0[· · · ]. The residues per se are equal
to the derivative of the numerator e±2iaz − e±2ibz evaluated at z = 0.

III.20(iii). This is also type 3b integral. The integrand has no singu-
larity at x = 0 (since (sinx)/x is smooth), and converges (due to the sign
alternation of sinx) as x → ∞, though not absolutely (since

∫∞
1 dx/x = ∞).

Using integration over semi-circular contours in the upper half-plane avoid-
ing z = 0 (and assuming a > 0), we find:
∫ ∞

0

x2 − a2

x2 + a2
sinx

x
dx =

1

2
Im

∫ ∞

−∞
eix

x2 − a2

x2 + a2
dx

x

= Im 2πiResz=ia
eiz(z2 − a2) dz

2z(z2 + a2)
+ ImπiResz=0

eiz(z2 − a2) dz

2z(z2 + a2)

= Im2πi
e−a(−2a2)

(2ia)2
+ Imπi

−a2

2a2
= π

(

e−a − 1

2

)

.

III.20(iv). Assuming −1 < a < 1, we reduce it to type 1 integrals:
∫ π

0

cosnt dt

1− 2a cos t+ a2
=

1

2

∫ π

−π

(cosnt+ i sinnt) dt

1− 2a cos t+ a2

=
1

2

∫

|z|=1

zn

1− a(z + 1/z) + a2
dz

iz
= πiResz=a

zn dz

−ia(z − a)(z − 1/a)

=
πan

1− a2
.

The case |a| > 1 reduces to the previous one by the change a 7→ 1/a, which
yields the answer πa−n/(a2 − 1).

HW8

1 (III.21). The integral of dz/(z2 + a2) log z over the boundary of the
annulus 0 < ǫ ≤ |z| ≤ r cut along the negative ray of the real axis equals

−
∫ ǫ

r

dx

(x2 + a2)(log x+ πi)
+

∫ r

ǫ

dx

(x2 + a2)(log x− πi)

−
∮

|z|=ǫ

dz

(z2 + a2) log z
+

∮

|z|=r

dz

(z2 + a2) log z
.

The latter two integrals tend to 0 as ǫ → 0 and r → ∞ respectively (the
1st one, because 2πǫ log ǫ → 0, the 2nd one because 2πr/r2 log r → 0). The
sum of the former two integrals tends to

−2πi

∫ ∞

0

dx

(x2 + a2)(log2 x+ π2)
,

which is therefore, by the Residue theorem, equal to 2πi times the sum
of residues at the three poles: z = ±ai = elog a±πi/2, and z = 1 (where
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the logarithm vanishes). The latter residue is equal to 1/(1 + a2) (since
d(log z)/dz|z=1 = 1). The other two residues yield
∑

±

Resz=ae±πi/2

dz

(z2 + a2) log z
=

1

2ai(log a+ πi/2)
+

1

−2ai(log a− πi/2)

=
−πi

2ai(log2 a+ π2/4)
.

Thus,
∫ ∞

0

dx

(x2 + a2)(log2 x+ π2)
=

π

2a(log2 a+ π2/4)
− 1

1 + a2
.

2 (III.22). Due to the parity of the integrand, we have

I = Re

∫ ∞

−∞

eiνx dx

ex + e−x + 2 cosh a

ex=z
= Re

∫ ∞

0

ziν dz

z2 + 2(cosh a)z + 1
,

which seems analogous to both type 3 and type 4 integrals. Let us use the
contour of integration as in the case of type 4: the boundary of the annulus
between the circles of radii r and 1/r centered at z = 0, cut along the positive
part of the real axis. On the circles z = r±eiθ, we find ziν = e±iν log r − νθ
bounded uniformly for all r > 0. In the limit r → ∞, the integrals over the
outer circle vanishes because the rest of the integrand decays as 1/r, and
over the inner circle, it vanishes because the circle’s length 2π/r tends to 0.
The integrands on the north and south shores of the cut differ by the factor
e−2πν due to the analytical continuation of ziν := eiν log z around the origin.
Therefore in the limit r → ∞ we obtain the identity

(1− e−2πν)I = Re 2πi
∑

±

Resz±
ziν dz

z2 + 2(cosh a)z + 1
,

where z± = −e±a are the roots of the denominator. The residue sum is

eiνae−πν

e−a − ea
+

e−iνae−πν

ea − e−a
= −ie−πν sin νa

sinh a
.

Thus

I =
2πe−πν

1− e−2πν

sin νa

sinh a
=

π sin νa

sinh νa sin a
.

Note that on the plane of x = log z, the contour of integration we used turns
into the boundary of the rectangle with the vertices ± log r,± log r + 2πi,
which is exactly the contour suggested in the formulation of the exercise.
Thus, our approach, based on the change of variables x = log z is not really
different from the one in the textbook.

3. Since the plane R
2 is simply connected, a function harmonic in the

entire plane is the real part of an entire function f : C → C. If the given
harmonic function Re f is everywhere positive, then |e−f | = e−Re f < 1.
Thus, by Liouville’s theorem, e−f is constant, and hence so is f and its real
part.
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4. Instead of checking that g(x, y) := sinx cosx/(cos2 x+sinh2 y) satisfies
the Laplace equation, it suffices to show that g(x, y) is the real part of the
holomorphic function tan(x+ iy) (as the textbook suggests). We have:

tan(x+ iy) = −i
ei(x+iy) − e−i(x+iy)

ei(x+iy) + e−i(x+iy)

= −i
e−y(cosx+ i sinx)− ey(cosx− i sinx)

e−y(cosx+ i sinx) + ey(cosx− i sinx)
=

sinx cosh y + i cosx sinh y

cosx cosh y − i sinx sinh y

=
(sinx cosh y + i cosx sinh y)(cosx cosh y + i sinx sinh y)

cos2 x cosh2 y + sin2 x sinh2 y

=
sinx cosx+ i sinh y cosh y

cos2 x cosh2 y + (1− cos2 x) sinh2 y
=

sinx cosx+ i sinh y cosh y

cos2 x+ sinh2 y
.

Thus, Re tan(x+ iy) = g(x, y) indeed.

HW9

1 (V.1). For |z| ≤ r < 1, |f(z)| ≤ A|z| where A = max|z|≤r |f(z)/z|
(which exists because f(0) = 0, and hence f(z)/z is holomorphic in |z| < 1,
and hence continuous on the compact disk |z| ≤ r). Consequently |f(zn)| ≤
A|zn| ≤ Arn for |z| ≤ r < 1, and therefore

∑

n>0 |f(zn)| ≤ A
∑

n>0 r
n < 1,

i.e. the series converges normally on this disk. Since these disks exhaust
the open unit disk, the series converges normally (and hence uniformly) on
every compact subset of the open unit disk.

2 (V.2). Since A := minz∈∂K |f(z)| > 0, and maxz∈∂K |fn(z) − f(z)| ≤
A/2 for n large enough, we find for any such n that |(1− ǫ)f(z) + ǫfn(z)| ≥
A/2 > 0 for all 0 ≤ ǫ ≤ 1 and z ∈ ∂K. Therefore

∮

∂K d log fn =
∮

∂K d log f ,
i.e. the numbers of zeroes inside K for fn and f coincide.

3. (a) For every point z0 ∈ D, find a disk |z− z0| < 1/n still contained in
D (it exists since D is open), then pick a point z′0 with rational coordinates
inside such that |z′0 − z0| < 1/2n, and associate to z0 the disk centered at
z′0 of rational radius 1/2n (whose closure is still contained in D). Given a
compact subset K ∈ D, cover it by open disks with rational centers and radii
associated as above to the points z0 ∈ K (one such disk per each point).
Pick a finite subcover (existing due to the compactness of K). Then the
closures of these finitely many disks still contained in D and cover K.

(b) The series
∑

n>0(−1)n/n converges (to − log 2), but not absolutely
(since

∑

n>0 1/n = +∞). Considered as a series of (constant!) holomorphic
functions, the series converges uniformly, but not normally.

4 (V.4). The L.H.S. has 1-st order poles at z = n∓ ai, n ∈ Z, with the
residues

πi sinh 2πa

π(−1)n sinπ(n∓ 2ai)
=

sinh 2πa

±i sin 2πai
= ∓1.

The same is true about the fractions ∓1/(z − n± ai) on the R.H.S. Analo-
gously to the estimates in no. 2 of V.2 in the textbook (or in the lectures)
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the R.H.S. converges uniformly on compact subsets to a function mero-
morphic in C, and both the L.H.S. and R.H.S. are 2-periodic and tend
to 0 uniformly with respect to Re z as | Im z| → ∞. This implies that
L.H.S. − R.H.S. is an entire functions which tends to 0 at infinity, and
hence is identically zero by Liouville’s theorem. Using the trigonometric
identity 2 sinα sinβ = cos(α − β) − cos(α + β) on the L.H.S., and clearing
the denominators on the R.H.S., we arrive at the required identity

π

a

sinh 2πa

cosh 2πa− cos 2πz
=
∑

n∈Z

1

(z + n)n + a2
.

HW10

1. A doubly-periodic meromorphic function f on the elliptic curve E =
C/Ω with a single pole of order 1 doesn’t exist because then the differential
form f(z)dz would have a non-zero residue at this pole, and hence the overall
non-zero sum of residues — in conflict with the Residue Theorem (according
to which 2πi

∑

Res f(z)dz =
∫

∂E f(z)dz =
∫

∅ f(z)dz = 0).

2. The Newton equation ẍ = x + /2x2 implies the energy conservation
law ẋ2/2− (x2+x3)/2 = const where const = 0 due to the initial conditions
x(0) = −1, ẋ(0) = 0. Parameterize the curve y2 = x2 + x3 rationally by
taking y = kx, and hence x = k2 − 1 and y = k3 − k. To solve dx/dt =√
x2 + x3, rewrite it as

∫

dt =
∫

y−1dx and use the above parameterization
to compute the integral on the right:

t =

∫

d(k2 − 1)

k3 − k2
=

∫

2dk

k2 − 1
=

∫

dk

k − 1
−
∫

dk

k + 1
= ln

1− k

1 + k
+ Const.

From the initial conditions we find that k = 0 and hence Const = 0. There-
fore et = (1− k)/(1 + k), or k = (1− et)/(1 + et) = −(sinh t/2)/(cosh t/2).
Thus, x(t) = k2 − 1 = −1/ cosh2(t/2).

3. The elliptic curve (C − Ω)/Ω corresponding to a period lattice Ω =
{m1ω1 + m2ω2 | m1,m2 ∈ Z} is mapped by C − Ω ∋ z 7→ (x, y) =
(℘(z), ℘′(z)) ∈ C

2 bijectively onto the cubic curve in C
2 given by the re-

lation y2 − 4x3 + 20a2x+ 28a4 = 0, where

a2 = 3
∑

ω∈Ω−{0}

ω−4, a4 = 5
∑

ω∈Ω−{0}

ω−6.

Replacing each ω ∈ Ω with kω, where k ∈ C − {0}, results in a new cubic
equation where a2 and a4 are replaced with a2k

−4 and a4k
−6 respectively.

However, rescaling (x, y) into (k−2x, k−3y) restores the original cubic equa-
tion (up to the overall non-zero factor k−6 which does not affect the zero
locus of the polynomial).
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Remark. Note that z 7→ kz identifies C/Ω with C/kΩ, which explains
the “restoring” transformation. Namely, it follows from the definition of the
Weierstrass ℘-function that ℘kΩ(kz) = k−2℘Ω(z) (where the subscript indi-
cates the lattice from which the ℘-function is constructed), and respectively
℘′
kΩ(kz) = k−3℘′

Ω(z).

4. Square lattices Ω ⊂ C are characterized by their invariance under
multiplication by i: iΩ = Ω. Taking in the previous solution k = i, we find
the transformed cubic equation to be y2−4x3+20a2x−28a4 = 0. Therefore
the cubic curves corresponding to square lattices (being invariant under the
transformation) must have a4 = 0. By suitably rescaling x and y, all such
equations can be normalized to y2 = x3 − x. Likewise, “hexagonal” lattices
are those invariant under the multiplication by eπi/3. The transformed cubic
equation becomes y2−4x3−20e−πi/3a2x+28a4 = 0, and remains unchanged
if an only if a2 = 0. All such equations can be rescaled into y2 = x3 − 1.

Conversely (and more to the point), taking k = eπi/2 = i in the above Re-
mark, we find that the transformation (x, y) 7→ (k−2x, k−3y) = (−x, iy) is a
symmetry of the curve y2 = x3−x induced by the simultaneous transforma-
tion z 7→ iz of the ℘-function’s domain and the period lattice — which
therefore must be square. Analogously, taking k = eπi/3, we find that
the transformation (x, y) 7→ (e−2π/3x,−y) is a symmetry of the equation

y2 = x3 − 1, implying that eπi/3Ω = Ω.

HW11

1 (V.6). We have:

d

dz

(

Γ′(z)

Γ(z)

)

=
∞
∑

n=0

1

(z + n)2
.

Therefore, for a positive integer p,

d

dpz

(

Γ′(pz)

Γ(pz)

)

=
1

p2

∞
∑

n=0

1

(z + n/p)2
=

1

p2

p−1
∑

r=0

d

dz

(

Γ′(z + r/p)

Γ(z + r/p)

)

.

From this, by two integrations, we obtain
∏p−1

r=0 Γ
(

z + r
p

)

= eaz+bΓ(pz),

where a and b are integration constants. To find the constants, substitute
z = 1/p and z = 1. Since Γ(p) = (p − 1)!, Γ(1) = 1, and Γ(1 + r/p) =
(r/p)Γ(r/p), we obtain:

ea/p+b =

p−1
∏

r=1

Γ

(

r

p

)

and (p− 1)! ea+b =
(p− 1)!

pp−1

p−1
∏

r=1

Γ

(

r

p

)

.

Since
∏p−1

r=1 Γ(r/p) =
∏p−1

r=1 Γ((p − r)/p) we conclude, using the identity

Γ(z)Γ(1− z) = π/ sinπz,
∏p−1

r=1 Γ(r/p) =
√

∏p−1
r=1 π/ sin(πr/p). To evaluate
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∏p−1
r=1 sin(πr/p), note the polynomial identity

p−1
∏

r=1

(x− e−2πir/p) =
xp − 1

x− 1
= xp + xp−1 + · · ·+ x+ 1.

Therefore (using the value p of this polynomial at x = 1)

p−1
∏

r=1

sin
πr

p
=

p−1
∏

r=1

eπir/p

2i
(1− e−2πir/p) =

eπip(p−1)/2p

2ip−1
p =

p

2p−1

since eπi(p−1)/2 = ip−1. Collecting everything together, we find

ea/p+b = (2π)(p−1)/2p−1/2 and ea+b = (2π)(p−1)/2p−1/2p−(p−1).

Consequently (after some manipulation),

ea = p−p and eb = (2π)(p−1)/2p1/2.

Thus,

Γ(z)Γ

(

z +
1

p

)

· · ·Γ
(

z +
p− 1

p

)

= p−pz+1/2(2π)(p−1)/2 Γ(pz).

2. A family of continuous (say, complex-valued) functions on a metric
spaceK is called equicontinuous if for every ǫ > 0 there exists δ > 0 such that
whenever the distance d(x, y) between x, y ∈ K is less than δ, |f(x)−f(y)| <
ǫ for all functions f from the family. The negation of this requirement says:
There exists ǫ > 0, two sequences of points xn, yn ∈ K, and a sequence fn of
functions from the family, such that d(xn, yn) → 0 but |fn(xn)− fn(yn)| ≥ ǫ
for all n. When K is compact, the sequence (xn, yn) in K × K (which
is also compact) has a subsequence (xnk

, ynk
) converging to some (x∗, y∗)

as k → ∞. Since d(xnk
, ynk

) < 1/nk → 0 as k → ∞, it follows that
x∗ = y∗. We claim that the sequence fnk

has no uniformly convergent
subsequence. For, suppose the opposite, i.e. that the subsequence fnkl

,

l = 1, 2, ... converges uniformly (as l → ∞) to a function f∗ : K → C, which
is therefore continuous. By the triangle inequality

|fnkl
(xnkl

)− f∗(x∗)| ≤ |fnkl
(xnkl

)− f∗(xnkl
)|+ |f∗(xnkl

)− f∗(x∗)| → 0

as l → ∞, because on the right, the 1st summand tends to 0 due to fnkl
→

f∗, and the 2nd tends to 0 due to xnkl
→ x∗ (and the continuity of f∗).

Since the same is true for ynkl
, we have

lim
l→∞

fnkl
(xnkl

) = f∗(x∗) = f∗(y∗) = lim
l→∞

fnkl
(ynkl

)

in conflict with |fnkl
(xnkl

)− fnkl
(ynkl

)| ≥ ǫ for all l = 1, 2, ....

3. The sequence of functions fn := sinnx (on the compact space R/2πZ)
together with the two sequences of points xn := π/2n, yn := −π/2n satisfy
the requirements from the solution of Exercise 2, with ǫ = 2.
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4. We have: 1/(1−qk) = 1+qk+q2k+· · ·+qlk+· · · . Multiplying out these
geometric power series with k = 1, 2, 3, . . . , we find that the coefficient at qn

is equal to the number of representations of n as the sum l11+l22+...+lkk+
· · · (where lk ≥ 0 and hence all but finitely many lk = 0). This is indeed the
number P (n) of partitions of n = m1+· · ·+mr, 0 < m1 ≤ · · · ≤ mm, where lk
is the number of the terms mi of the partition, which are equal to k. On the
other hand, the reciprocal infinite product

∏∞
k=1(1−qk) converges uniformly

on the disks |q| ≤ r < 1 by the criterion
∑

k>0 | − q|k ≤ r/(1 − r) < ∞.
Since the factors have zeroes only on the circle |q| = 1 (at the roots of unity),
the initial product 1/

∏

k>0(1− qk) is holomorphic in |q| < 1. Therefore its
Taylor expansion at q = 0 has convergence radius ρ ≥ 1. Since at q = 1 the
series obviously diverges, ρ = 1.

Note that this fact imposes some constraints (e.g. in the form of Cauchy’s
inequalities) on the rate of growth of the sequence P (n).

HW12

1. As it was explained at the end of Lecture 33, the cross-ratios of the
permutted 4-tuple of distinct points (0, 1,∞, λ) are obtained by atternating
application two transpositions ((0,∞) and (0, 1)):

λ 7→ 1

λ
7→ λ− 1

λ
7→ λ

λ− 1
7→ 1

1− λ
7→ 1− λ( 7→ λ).

The grooup S3 = S4/K4 consists of 3 conjugated transpositions, two inverse
elements of order 3, and the identity. The fixed points of the transpositions
are found from λ = λ−1, λ = λ/(λ−1) and λ = 1−λ, which yields λ = −1, 2,
and 1/2 respectively (while the 2nd solution in each case, i.e. λ = 1, 0, and∞
is a “forbidden” value for configurations of distinct points). The fixed points
of the order 3 elements are found from λ = (λ−1)/λ or λ = 1/(1−λ), which

both yielding the non-trivial cubic roots of −1: λ = e±πi/3. This implies,
that up to Möbius transformations and permutations, there is a unique
configuration with a symmetry of order 2, and a unique configuration with
a symmetry of order 3. The model examples are: 0,∞, 1,−1 for the former,
and 0 and the 3 cubic roots of unity for the latter.

2. The “Zhukovsky’s map” w = (z + z−1)/2 maps the semi-disk |z| <
1, Imz < 0 bijectively onto the upper half-plane Rew > 0, and thus z 7→
(−iz + iz−1)/2 does the job.

3. Transformations z 7→ e2πik/nz, k ∈ Z/nZ, form the cyclic group of
order n fixing z = 0 and infinity. Therefore, conjugating these transfor-
matiosn by an automorphism h of CP 1 mapping 1 and −1 into 0 and ∞
will do the job. For h, we can take w = (z − 1)/(z + 1), whose inverse is
z = (1 + w)/(1− w). Hence the transformations

z 7→ h−1
(

e2πik/nh(z)
)

=
1 + e2πik/n z−1

z+1

1− e2πik/n z−1
z+1

=
z cosπk/n− i sinπk/n

cosπk/n− iz sinπk/n
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form the required subgroup.

4. A holomorphic function f from the punctured disk 0 < |z| < 1 to
the annulus 1 < |w| < 2 is bounded, and hence doesn’t have an isolated
singularity at z = 0, i.e. it extends holomorphically to the whole disk
|z| < 1. Then f(0) must lie in the closure of the annulus, i.e. in 1 ≤ |w| ≤ 2,
and yet be an interior point of it (since a non-constant holomorphic map
is open). Assuming f bijective onto the annulus, we would conclude that
there exist another point z0 in the disk with f(z0) = f(0). But then f
could notbe bijective, since the the values w close to f(0) would have at
least two inverse images: one in a punctured neighborhood of 0, another in
a punctured neighborhood of z0.

HW13

1. The Möbius transformation w = (z + 1)/(z − 1) sends the imaginary
axis z = iy to the circle |w| = 1 (since |(iy + 1)/(iy − 1)| = 1), and the left
half-plane to the interior of the disk (since z = −1 is mapped to 0). Thus
z 7→ 1 + 2(z + 1)/(z − 1) = (3z + 1)/(z − 1) does the job.

2 (VI.2). The line of the centers of two circles in the Euclidean plane in-
tersects them at the 90-degree angles at 4 points, which therefore determine
the whole configuration of the two circles. Without loss of generality we
may assume that for our configuration (of one circle inside the other), the
line of the centers is the real axis. It intersects the circles at 4 points with a
certain real value of their cross-ratio, which — we claim — can be realized
in the case when the circles are concentric. The real Möbius transformation,
mapping the first configuration of the 4 points on the real axis to the second
one, preserves the real axis, maps circles to circles, and preserves the angles
they make with the axis, and thus transforms the original configuration into
the concentric one.

More specifically, we may assume that the outer circle intersects the real
axis at 1,−1, and the inner one at c + ρ, c − ρ, where ρ (0 < ρ < 1) is the
radius and c the coordinate of the center (|c| < 1 − ρ). The configuration
(z1, z2, z,z4) = (−1, c− ρ, c+ ρ, 1) has the cross-ratio

(z2 − z3)(z4 − z1)

(z2 − z1)(z4 − z3)
=

(−2ρ)(2)

(1− ρ+ c)(1− ρ− c)
= − 4ρ

(1− ρ)2 − c2
< 0.

When c = 0 and ρ = r varies between 0 and 1, the function −4r/(1 − r)2

assumes all negative values, confirming our claim.

3. The map w = exp(πiz) is 2-periodic and maps the lines z = 0, 1 to
the rays argw = 0, π respectively, and the strip 0 < Re z < 1 to the upper
half-plane 0 < argw < π. Thus z 7→ −i exp(πiz) does the job.
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4. In homogeneous coordinates (X : Y : Z) on CP 2, the curve y2 =
4x3 − 20a2x − 28a4 is given by the homogeneous cubical equation Y 2Z =
4X3 − 20a2XZ2 − 28a4Z

3, where x = X/Z and y = Y/Z. The infinite line
of our CP 2 consists of points with Z = 0, and intersects our cubical curve
at one (hence inflection) point where 4X3 = 0, i.e. X = 0, while Y 6= 0. In
the chart x̃ = X/Y = x/y, z̃ = Z/Y = 1/y on CP 2 this point is the origin,
and our curve is given by the inhomogeneous equation

z̃ = 4x̃3 − 20a2x̃z̃
2 − 28a4z̃

3.

This is an implicit equation on z̃ as a function of x̃ near x̃ = 0. In the
power series form, the solution1 has a triple zero at x̃ = 0: z̃ = 4x̃3 +
(higher order terms). (Indeed, z̃ = 0 is the tangent line at an inflection
point!) We are ready now to examine the differential 1-form (dx)/y near
the point at infinity. We have: y = 1/z̃, x = x̃/z̃, and

dx

y
=

d(x̃/z̃)

1/z̃
= dx̃− x̃

dz̃

z̃
.

In this expression, the logarithmic differential (dz̃)/z̃, when restricted to
our curve, i.e. expressed in terms of the local coordinate x̃ near x̃ = 0,
has a 1-st order pole (as any logarithmic differential) with the residue 3
(equal to the order of the zero of z̃ as a function of x̃). Thus, (dx)/y =
(−2+higher order terms) dx̃, i.e. has no pole at infinity, and doesn’t vanish
there either.

1In fact, the power series expansion for this function can be found by the method of
iterations. Starting from z̃ = 0, we obtain the next approximation of z̃ (on the left) by
substituting the previous approximation on the right: First z̃ = 4x̃3, next z̃ = 4x̃3

−

20a4x̃(4x̃
3)2 − 28a4(x̃

3)3, and so on.


