
Math 140. Homework.

Homework 1. Due by Tuesday, 01.25.05

1. Let Dd be the family of domains in the Euclidean plane
bounded by the smooth curves ∂Dd equidistant to a bounded

convex domain D0. How does the perimeter Length(∂Dd) de-

pend on the distance d between ∂Dd and D0?

2. Verify the invariance of the arc length
∫ b

a

√

ẋ2(t) + ẏ2(t) dt

under reparameterizations t = t(τ).

3. (a) Prove the formula k = (ẍẏ−ÿẋ)/(ẋ2+ẏ2)3/2 for the cur-
vature of a regular parameterized plane curve t 7→ (x(t), y(t)).

(b) Compute the curvature of the graph of a smooth function

y = f(x).

(c) Take f = xa/a and find the limit of curvature at x = 0
for a = 5/2, 2, 3/2, 1, 1/2.

4. Draw the typographic symbol ∞ (“infinity” or “figure

eight”) increased 100 times and then draw an equidistant curve
as follows: orient all normal lines to the large figure eight in a

continuous fashion, and connect all points removed 1 cm from

the large figure eight in the positive normal direction. Which

curve is longer — the large figure eight or the curve equidistant
to it?
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Homework 2. Due by Tuesday, 02.01.05

1. Show that maps R
2 → R

2 : x 7→ y which preserve all Eu-

clidean distances are given by linear inhomogeneous functions,

namely by compositions of translations with rotations or reflec-
tions.

[ Hint: Show that two isometries of the plane coincide if they

act the same way on the vertices of your favorite triangle.]

2. Compute the curvature of the ellipse

x2

a2
+

y2

b2
= 1

at the point (x0, y0) = (0, b).

3. Let t 7→ (x(t), y(t)) be a closed regular plane curve. Let

t 7→ (ẋ(t), ẏ(t)) be the closed regular plane curve formed by the

velocity vectors. Prove that the integral

1

2π

∮

ẋdẏ − ẏdẋ

ẋ2 + ẏ2

is an integer.

[ Hint: Use Green’s theorem from Multivariable Calculus.]

Point out geometric interpretations of this integer in terms

of the velocity curve and of the original curve.

4. Compute the cutvature and torsion of the parameterized

space curves (t, t2, t3), (t, t2, t4), (t, t3, t4) at t = 0.
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Homework 3. Due by Thursday, 02.10.05

1. Prove that a space curve with the identically zero torsion

is contained in a plane.

2. The inner product 〈·, ·〉 on Rn is related to the length ‖ · ‖

by means of the polarization identity:

〈x, y〉 =
1

2
(‖x + y‖2 − ‖x‖2 − ‖y‖2).

Prove this identity, and deduce from it that if T : Rn → Rn

is any length-preserving linear transformation, then T preserves

the inner product, i.e.

〈T (x), T (y)〉 = 〈x, y〉

for all x, y ∈ R
n.

3. Let A(t) be an anti-symmetric n × n-matrix depending

continuously on t, and U0 be an orthogonal n × n-matrix (i.e.

A∗ = −A, and U ∗
0

= U−1

0
, where ∗ means transposition).

Consider the system Ṁ = A(t)M of n2 linear ordinary dif-

ferential equations in the space Rn2

of n × n-matrices M .

Prove that the solution t 7→ M(t) to this system satisfying

the initial condition M(t0) = U0 consists of orthogonal matrices
M(t).

4. Does there exist a closed space curve with constant nonzero

curvature and (somewhere) nonzero torsion?
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Homework 4. Due by Thursday, 02.17.05

1. For each of the 5 Platonic solids (tetrahedron, cube, oc-

tahedron, icosahedron and dodecahedron), compute the angular

defect at each vertex, i.e. the difference between 2π and the sum
of face’s angles adjecent to this vertex. What do the angular de-

fects of all vertices add up to?

2. Given two skew-lines in R
3 (i.e. two straight lines which

are not parallel and have no common points), rotate one of them

about the other, find the equation of the resulting surface of

revolution and show that the surface is a hyperboloid of one

sheet.

Monic degree-3 polynomials P (x) = x3 + ax2 + bx + c form

a 3-dimensional space with coordinates (a, b, c). In this space,

consider the discriminant ∆ — the surface formed by those poly-
nomilas which have a multiple root. Such polynomials have the

form P (x) = (x− u)2(x− v) which provides a parameterization

of ∆ by (u, v).

3. (a) Sketch the section of the discriminant by the plane
a = 0.

(b) Show that the transformation P (x) 7→ P (x + t) defines a

(non-linear) flow in the space of polynomials which preserves ∆
and transforms the plane a = 0 to a = 3t. Use this to sketch ∆.

4. (a) Show that singular points of ∆ form the curve C

consisting of polynomials (x − a)3 with a triple root, and show

that ∆ is the osculating surface of C (i.e. is swept by tangent
lines to C).

(b) Sketch the osculating surface of the curve (t, t2, t3) to-

gether with its osculating plane at t = 0. (Hint: the curve can
be identified with C by stretching the coordinates.)
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Homework 5. Due by Thursday, February 24.

1. Show that the Riemannian area
∫ ∫

D

√

AC − B2 dUdV

of a region D on the plane equipped with a Riemannian metric

A(U, V )(dU)2 + 2B(U, V )(dU)(dV ) + C(U, V )(dV )2

is invariant with respect to changes of variables U = U(u, v), V =
V (u, v).

2. (a) Compute the Riemannian metric, induced by the stan-

dard embedding of the sphere of radius r into the Euclidean
3-space, in terms of spherical coordinates.

(b) Using (a) compute the Riemannian area of the spherical

triangle bounded by the equator and by two meridians making
the angle φ to each other.

3. In cartography, a popular way to obtain a plane image of

the Earth’s surface is based on the projecting the sphere x2 +
y2 + z2 = r2 onto the cylinder x2 + y2 = r2, |z| ≤ r by rays in

the planes z = const radiating away from the z-axis:

(x, y, z) 7→ (xr/
√

r2 − z2, yr/
√

r2 − z2, z).

Show that this projection of the sphere to the cylinder preserves
areas. Is this projection an isometry, i.e. preserves lengths of all

curves?

4. Compute the geodesic curvature of the circle z = r/2 on
the surface of the sphere x2 + y2 + z2 = r2 and compare it with

the curvature of the same circle considered as a curve in the

space.
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Homework 6. Due by Tuesday, March 8.

1. Perform the parallel transport around the loop on the

sphere x2 + y2 + z2 = r2 cut out by the plane z = r/2. Find the

area enclosed by this curve on the sphere.

2. Prove that meridians on a surface of revolution are geodesics.

Are all paralleles geodesics too?

3. Express the rotation angle under parallel transport around
a curvilinear triangle on a Riemannian surface in terms of angles

at the vertices of the triangle and the total geodesic curvature

of its sides.

4. Prove the n-dimensional version of the Key Lemma: Any

Riemannian metric in R
n near any point is Euclidean modulo

terms of order ≥ 2 in a suitable local coordinate system, which

is unique up to linear orthogonal transformations and modulo

terms of order ≥ 3. Deduce that Riemannian metrics do not

have local invariants depending only on the derivatives of the

metric of order ≤ 1.
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Homework 7. Due by Tuesday, March 15.

1. Show that the Gaussian curvature K(p) at a point p on a

Riemann surface depends only on the derivatives of order ≤ 2

of the Riemannian metric at this point.

2. Let us call a coordinate system (u, v) on a Riemann sur-

face Gaussian with respect to the point (0, 0) if the Riemannian

metric has the form

(du)2 + (dv)2 −
K

3
(udv − vdu)2 + (terms of order ≥ 3).

Show that the coefficient K equals the Gaussian curvature of

this Riemannian metric at the origin.

3. Show that in a Gaussian coordinate system geodesics pass-

ing through the origin coinside with straight lines up to order 3,
i.e. not only have r′′(0) = 0 but also r′′′(0) = 0.

Hint: check that any straight line through the origin is a

symmetry line of the metric (du)2 + (dv)2 − K(udv − vdu)2/3
(without higher order terms).

4. Show that any quadratic form ax2 + 2bxy + cy2 on the

plane can be transformed by a linear change of coordinates to
one and only one of the following six forms

0, X2, −Y 2, −X2 − Y 2, X2 − Y 2, X2 + Y 2.
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Homework 8. Due by Tuesday, March 29.

1. Classify plane curves given by quadratic equations

ax2 + 2bxy + cy2 + dx + ey + f = 0

(a) up to rigid motions of the plane;

(b) up to affine (i.e. linear inhomogeneous) transformations

on the plane.

2. Show that the directions of meridians and parallels at

every point on a surface of revolution are principal, and compute

the Gaussian curvature of the surface obtained by rotating the
graph of the function x = f(z) about the z-axis.

3. Let C be a regular curve on the surface of the unit ball,

and let S be the cone over C with the vertex at the center of

the ball. Find principal directions, principal curvatures and the
Gaussian curvature of S at regular points.

4. Show that a regular surface near a non-umbilical point

(i.e. a point where the two principal curvatures are distinct)
posesses a local coordinate system such that both the 1st and

the 2nd fundamental forms are diagonal:

I = A(u, v)(du)2+C(u, v)(dv)2, II = a(u, v)(du)2+b(u, v)(dv)2.
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Homework 9. Due by Tuesday, April 5.

1. Let V,E, F denote the numbers of vertices, edges, faces

of a combinatorial surface (i.e. a “polyhedron” whose edges and

faces are allowed to be curved), and let χ = V − E + F denote
its Euler characteristics.

(a) Verify additivity of the Euler chracteristics in the follow-

ing form: let X and Y be two combinatorial surfaces whose

intersection Z is a combinatorial sub-surface in each of them.
Then χ(X ∪ Y ) = χ(X) + χ(Y ) − χ(Z).

(b) Show that the Euler characteristics of closed regular sur-

faces (spheres, projective planes and Klein botles with g handles)
are respectively

χ(S2

g) = 2 − 2g, χ(P 2

g ) = 1 − 2g, χ(K2

g) = −2g.

2. Show that gluing a disc and a Möbius strip along their

boundaries results in the projective plain P 2. Identify the sur-

face obtained by gluing two Möbius strips along their bound-

aries.

3. Let Σ be a connected regular surface containing a Möbius

strip. Show that detaching 2 discs from Σ and replacing them

with 2 Möbius strips is equivalent to attaching a handle to Σ
(i.e. that the resulting two surfaces are homeomorphic).

4. Show that any closed regular surface in R
3 has elliptic

points. Can it have no hyperbolic, parabolic points? How does
the answer depend on the genus?
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Homework 10. Due by Thursday, April 14.

1. Angular defects of all vertices of a convex polyhedron (with

linear edges and faces this time) in R
3 add up to 4π. Prove this

statement and its generalization to polyhedra homeomorphic to
other (than S2) closed surfaces following the argument in the

proof of the Gauss-Bonet theorem.

2. (a) Express the total Gaussian curvature of a Riemannian
metric on the disc D in terms of the geodesic curvature of the

boundary ∂D.

(b) Generalize the Gauss-Bonnet theorem to compact sur-

faces with boundaries.

3. Show that the total Gaussian curvature of the surface

x2 + y2 − z2 = r2 does not depend on r and compute it.

4. Let P (z) and Q(z) be relatively prime polynomials of
degree p and q with complex coefficients. Consider the rational

function P (z)/Q(z) of a complex variable as a map from S2 =

C ∪∞ to S2 = C ∪∞ and compute the degree of this map.

Hint: First consider the operation C → C : z 7→ (a + bi)z of

multiplication by a given complex number as a linear map from
the plane C = R2 to itself and compute its determinant.
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Homework 11. Due by Thursday, April 21.

1. Describe the spherical image of the surface x2+y2−z2 = r2

under the Gauss map and find its signed area. Compare the

result with the total Gaussian curvature found in problem 1 of
the previous homework.

2. Angular defects of all vertices of a convex polyhedron (with

linear edges and faces this time) in R
3 add up to 4π. Prove

this statement by mimicking the proof of Gauss-Bonnet theorem

based on the Gauss map.

3. (a) Show that the torus and the Klein bottle can be
equipped with a Riemannian metric of zero curvature.

(b) Are all tori of zero Gaussian curvature isometric to each

other?

4. In the Minkovsky 3-space, consider three planes passing
through the origin and intersecting pairwise along three lines

situated on the light cone. The there planes cut out a triangle

on the “upper” sheet of the Minkovsky sphere of radius R. Find
the Riemannian area of this triangle.
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Homework 12. Due by Thursday, April 28.

1. Show that all plane elements tangent to a given space

curve C form an integral surface LC ⊂ Q5 in the quadric of all

plane elements.

2. A surface is called ruled if together with each point it con-

tains a straight line passing through this point. Prove that the

surface S∗
C ⊂ V ∗, obtained from the curve C ⊂ V by projecting

to V ∗ the corresponding integral surface LC ⊂ Q5 ⊂ V × V ∗, is

ruled.

3. Let the space curve C in Problem 1 be the circle x2 +y2 =
r2, z = 1. Let LC ⊂ Q5 be the corresponding integral surface

LC ⊂ Q5. Compute the surface S∗
C ⊂ V ∗ obtained by projecting

of LC from Q5 ⊂ V × V ∗ → V ∗. Show that S∗
C is a quadratic

surface and indentify it.

4. Let S ⊂ V = R3 be a quadratic surface given by the

equation (Av, v) = 1 where A is a symmetric 3 × 3-matrix,

and (·, ·) is the dot-product in R
3. Compute the dual surface

S∗ ⊂ V ∗.
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Homework 13. Due by Thursday, May 5.

1. Show that a ruled surface cannot have positive Gaussian

curvature, and give an example of a ruled surface of negative

Gaussian curvature.

2. A regular curve C on a regular surface S ⊂ R3 is called

asymptotic if the 2nd fundamental form of S vanishes on the

tangent lines to C.
(a) Show that each point on a hyperbolic (K < 0) surface is

contained in two asymptotic curves.

(b) Prove that the geodesic curvature of an asymptotic curve

C on a surface coincides with the curvature of C considered as
a space curve.

3. Show that if a regular curve C is asymptotic on a regular

surface S, then C∗ is contained in S∗ and is asymptotic on S∗ (at
non-singular points). Vice versa, when the images in S and S∗

of the same curve in LS = LS∗ ⊂ Q5 happen to be dual curves

C and C∗, then these curves are asymptotic respectively on S

and S∗.

4. Describe regular surfaces S ⊂ V whose tangent planes

form in V ∗ a plane curve.
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