
Answers and hints to homework problems.

HW1
1.1(6) A subset of the set {1, . . . , n} set is specified by n independent

binary choices: to include each of 1, 2, . . . , n into the subset or not.
Thus there are 2n subsets.

1.1(11) Any symmetric and transitive binary relation of a set S
can be described as follows: S is represented as the disjoint union of
subsets S ′ and S ′′, such that elements of S ′′ are not in the relation
to any element of S, and the binary relation on S ′ is an equivalence
relation (i.e. symmetric, transitive, and reflexive). When S ′′ is non-
empty, reflexivity does not hold ttue on the whole of S. Thus the error
in the “proof” that “2 + 3 ⇒ 1” is the tacit assumption that every
a ∈ S is in the relation with at least one b ∈ S.

1.2(7) In defining a permutation σ on the set {1, . . . , n}, there are
n choices for σ(1), n − 1 choices of σ(2)(6= σ(1)), n − 2 choices of
σ(3)(6= σ(1), σ(2)), etc., i.e. totally n× (n− 1)× (n− 2)× · · ·× 1 = n!
choices.

1.3(7b) Using the Euclidean algorithm, we find (6540, 1206) = 6.
1.3(10a) If the set of those n ≥ m0 for which P (n) is false is non-

empty, then it has the minimal element m > m0 (since P (m0) is true),
and hence P (m−1) is true, in conflict with the hypothesis that P (m−
1) ⇒ P (m) holds true for all m > m0.

1.3(17) [a][b] = [0] in Zn is equivalent to n|ab. The fact that n|ab
implies n|a or1 n|b is the definition of n being prime.

Cantor–Bernstein Theorem. Given injectiones f : A → B and
g : B → A, construct a bijection h : A→ B as follows. If the sequence
a, g−1(a), f−1g−1(a), . . . does not terminate or terminates with an ele-
ment from B, put h(a) = g−1(a). If it terminates with an element in
A, then put h(a) = f(a).

HW2
2.3(1c) Yes, this is a group ismorphic to Z7.
2.3(3) Multiplying (ab)(ab) = a2b2 by a−1 on the left and b−1 on the

right, obtain: ba = ab (for all a, b ∈ G), i.e. the group G is abelian.
2.3(7) In S3, the three transpositions and the identity satisfy x2 = e,

and the two ciclic shifts and the identity satisfy y3 = e.
2.3(11) The operation x 7→ x−1 pairs each element with its inverse,

unless the element is its own inverse, i.e. satisfies a2 = e. If the order of
the group is even, there have to be even number of solutions to a2 = e,
and since one is a = e there must exist another such a.

1The formulation and in the book is an error
1
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2.3(25) (a) The matrix enties are taken from Z3 (whose elements
can be added and multiplied). To have a non-zero 2 × 2 determinant
the 1st column (a, c) can be any except (0, 0) (which gives 33 − 1 = 8
choices), while the secod column (b, d) must be non-proportional to
(a, c) (which gives 32 − 3 = 6 choices). Thus the order of the group is
8 × 6 = 48.
(b) Furthermore, dividing the 2nd column by the (non-zero, i.e. equal
to ±1 ∈ Z3) value of the determinant, we obtain a matrix with the
determinant = 1. Thus the order of the group of such matrices is
48/2 = 24.

Compute the determinant of the n×n-matrix with all entries on the
diagonal equal to 2, right under and right above the diagonal −1, and
0 everywhere else.

Let ∆n denote the determinant. Using the expancion with respect
to the 1st row, and then the expansion of the 2nd determianant of size
n−1 with respect to the 1st column, we obtain the following recursion:
∆n = 2∆n−1 − ∆n−2. It follows by induction on n that ∆n = n+ 1.

HW3
2.5(3) If G( 6= {e}) has no non-trivial subgroups, then it must coin-

cide with the cyclic group of any of its non-identity elements, and thus
must be cyclic itself, and of prime order (since cyclic groups of infinite
or composite order do have non-trivial subgroups).

2.5(5) The operation x 7→ x−1 of inversion on a group G transforms
left H-cosets to right H-cosets, and in particular establishes a 1–1
correspondence between them.

2.5(15) The center Z of a group G (i.e. the set of those elemets
which commute with all elements of the group) is the centralizer C(H)
(formed by those elemets of G which commute with all elemets from a
subgroup H) of the whole group, i.e. Z = C(G).

2.5(29) Z×

8 has 4 elements 1, 3, 5, 7 and is not cyclic since all of its
elements satisfy x2 = 1.

2.7(2) On a group G, the conjugation x 7→ gxg−1 by a given element
g ∈ G is an automorphism (called interior), because: (gxg−1)(gyg−1) =
gxyg−1 for all x, y ∈ G.

Groups G and G′. The inversion operation x 7→ x−1 establishes an
isomorphism of a group G with the group G′ (defined as the same
set G but equipped with the opposite product a · b := ba) because
(ba)−1 = a−1b−1.

HW4
2.6(1) If ∀a, b, HaHb ⊂ Hab, then ∀a ∈ G, h ∈ H, ∃h′ ∈ H such

that eahe = h′ae, i.e. aha−1 = h′ ∈ H .
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2.6(2) If [G : H ] = 2, then one of the two cosets is H , and the other
(no matter left or right) is its complement G\H .

2.6(8) Take G = GL2(R), H the set of integer upper-triangular
matrices with 1s on the diagonal, and a the diagonal matrix with the
entries diagonal entries 2 and 1 in the 1st and 2nd rows respectively.

2.6(13) Every subgroup of a cyclic group T is invariant under every
automorphism of T . Indeed, if T ∼= Z, then the only non-trivial au-
tomorphism of T is the inversion t 7→ t−1, which leaves each subgroup
invariant. When T ∼= Zn is finite, then for each m|n there is only one
subgroup in Zn of order n/m (namely, mZn), and hence any automor-
phism of Zn must leave this subgroup invariant. When T is a normal
subgroup of G, then conjugation by any a ∈ G preserves T and acts on
it by an automorphism. Thus each subgroup of T is invariant under
conjugations by any elements of G and is therefore normal in G.

2.7(5ab) Put xyx−1y−1 =: z. Then gzg−1 = (gzg−1z−1)(xyx−1y−1),
i.e. congugation of a commutator xyx−1y−1 by g is the product of two
commutators. Therefore the subgroup G′ generated by commutators
is invariant under conjugations and hence normal. In G/G′ we have:
[x][y][x]−1[y]−1 = [xyx−1y−1] = G′ = [e]. Thus [x][y] = [y][x], i.e. G/G′

is abelian.
2.7(19) If a = detA, b = detB, then detABA−1B−1 = aba−1b−1 =

1. Thus the commutator subgroup G′ of G = GL2(R) lies in N . To
show that detA = 1 implies that A ∈ G′, note that A can be written
as the product (in a certain order) of a lower-triangular matrix with
1s on the diagonal, an upper-triangular matrix with 1s on the diag-

onal, a diagonal matrix, and possibly the matrix

[

0 −1
1 0

]

. (These

factors correspond to elementary row operations which reduce a ma-
trix to the identity.) An upper-(lower-) triangular matrices with 1s
on the diagonal are commutators of upper-(lower-)triangular matrices
with diagonal ones (like in 2.6(8)), which therefore lie in G′. Products
of such matrices (one lower- and one upper-triangular) yield matrices
with arbitrary values of the trace, and in particulr, matrices similar to
diagonal matrices with arbitrary eigenvalues λ 6= λ−1 — which there-
fore also lie in G′ (because G′ is normal). We have:

[

0 −1
1 0

]

=

[

1 −1
0 1

] [

1 0
1 1

] [

1 −1
0 1

]

∈ G′.

Finally, powers of this matrix yield ±I which are the only diaginal
matrices with eigenvalues λ = λ−1.
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The 6th grade problem. It is required to find a positive integer
x such that 2(10x+ 2) = x+ 2 · 10n, where n is the number of decimal
digits in x. We have: 2(10n−2) = 19x, i.e. we need to find n such that
10n ≡ 2 mod 19. Note that 20 ≡ 1 mod 19, i.e. 2 ≡ 10−1 mod 19. By
the LFT, 1018 ≡ 1 mod 19, and hence 1017 ≡ 10−1 ≡ 2 mod 19. Thus
x = 2(1017 − 2)/19 will do.

HW5
2.7(13) The center of a dihedral group Dn, n ≥ 3, is trivial when n is

odd and consists of ±I when n is even. Indeed, congugating a rotation
by reflection we get a rotation in the opposite direction. The only way
how it can coincide with the original one is if the rotation is through π
i.e. is the central symmetry −I (which indeed commutes with all linear
transformations). Since n ≥ 3, the group contains rotations other than
±I which do not commute with any reflection, and so the latter ones
cannot lie in the center.

2.7(14) The commutator subgroup D′

n ⊂ Dn must lie in the kernel
of the determinant homomorphism, i.e. in the subgroup of rotations
through the angles multiple to 2π/n. Computing commutators of (a)
two reflections, (b) a rotation and reflection (two rotations in Dn com-
mute), we find them to be rotations through angles multiple of 4π/n.
For odd n they generate the whole cyclic group of rotations; for even
n, they generate only the cyclic subgroup of index 2 in it.

2.8(7a) A subgroup invariant w.r.t. all automorphisms is invariant
w.r.t. interior ones in particular, which are conjugations by elements
of the groups. Thus such a subgroup is normal.

2.8(16) An integer a satisfies an ≡ 1 mod(an − 1), and geberates
the multiplicative cyclic subgroup {1, a, a2, . . . , an−1} of order n. By
Langange’s theorem, n divides the order φ(an−1) of the multiplicative
group Z×

an
−1.

2.10(22) The symmetry group Dn of a regular n-gon can be real-
ized by permutations of its n. Taking a rotation through 2π/n and
one of the reflections as generators of Dn, we can represent them
by the permutations: (1, 2, . . . , n − 1, n) (one cycle of length n) and
(1, n)(2, n − 1)(3, n − 2) . . . ([n/2] 2-cycles) respectively. Of course,
Cayley’s theorem provedes another repesentation of Dn — as a sub-
group in S2n.

A. The isomorphism between the rotation group of the cube and S4

is obtained by associating to a rotation the permutation it induces on
the set of 4 diagonals of the cube.
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B. Since Zn is generated by 1, a homomorphism Φ : Zn → Zn is de-
termined by k := Φ(1) ∈ Zn. It is surjective (and hence bijective) only
when Φ(1) is relatively prime to n. Let Ψ be another homomorphism,
such that Ψ(1) = l. Then the composition Ψ(Φ(1)) = Ψ(k) = kl.
i.e. the operation in the group of automorphisms coincides with the
multiplication operation in Z×

n .

HW6
2.8.(5) If φ is an automorphism of a group G, and ψg is the interior

automorphism definied as the conjugation x 7→ gxg−1 by an element
g ∈ G, then φψgφ

−1(x) = φ(gφ−1(x)g−1) = φ(g)xφ(g)−1, i.e. φψgφ
−1

is the automorphism of conjugation by φ(g).
2.9(8) In a group G of 2p elements (p prime), a Sylow p-subgroup

has order p (if p 6= 2) and is normal as any subgroup of index 2. If
p = 2, then o(G) = 4, and G (whether cyclic or not) must have an
element of order 2.

2.10(11) Conjigations of the transposition (1, 2) by powers of the
cyclic shift (1, 2, . . . , n) yield transpositions (2, 3), (3, 4), . . . , (n− 1, n)
of any pair of consecutive indices, which obviously generate the whole
group Sn. (Think of lining up a row of n people according to their
heights by comparing neighbors and transposing them when necessary.)

2.10(13) If a normal subgroup ofAn contains a 3-cycle (say, (1, 2, 3)),
then it contains all 3-cycles. Indeed, permuting the entries in the Yu-
oung tableaux (1, 2, 3)(4)(5) . . . (n), we can get any 3-cycle (a, b, c), and
if the permutation happened to be odd, we can transpose a and c and
thus get the inverse 3-cycle (c, b, a) as a conjugation of (1, 2, 3) by an
element of An. In either case, both (a, b, c) and (c, b, a) will lie in the
subgroup, if one of them lies there. Now, any subgroup of An con-
taining all 3-cycles coincides with An since the product of any pair
of transpositions (commuting or not) can be written as a product of
3-cyces:

1234 7→ 3124 7→ 3412 is (13)(24), and 123 7→ 213 7→ 231 is (123).

2.11(7) The order of a permutation is the Least Common Multiple
(LCM) of the lengths of its cycles. In Sp (p prime), the order p of a
permutation means that it has one cycle of length p. All such permuta-
tions form one conjugacy class containing p!/p = (p−1)! permutations.
Elements of Sp satisfying xp = e are these (p− 1)! permutations plus 1
more: the identity.
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Problem. Show that the group of rotations of a dodecahedron is
isomorphic to the alternating group A5.

Each of the 12 pentagonal faces of the dodecahedron has 5 diagonals,
all of the same length. The key observation is that these 60 diagonals
are edges of 5 cubes. (Each cube has 12 edges — one in each face of the
dodecahedron.) The 5 cubes are permuted by the symmetry group of
the dodecahedron. This defines a homomorphism G→ S5 of the group
G of rotations of the dodecahedron to the group of permutations. It
is easy to see geometrically that rotations of order 5 (about centers of
faces) 3 (about vertices), and 2 (midpoints of edges) generate permu-
tations of the 5 cubes which are: a 5-cycle, a 3-cycle, and the product
of two commuting 2-cycles respectively. (Think how the diagonals in
a face, around a vertex, and next to an edge are permuted.) All such
permutations are even and non-trivial. Thus the range of the homo-
morphism lies in A5, the kernel is trivial, and since both groups G and
A5 are known to have the same order 60, the monomorphism must be
bijective.

HW7
2.11(17) In a group G of order 15, the number of Sylow subgroups

P of order 5 must be congruent to 1 modulo 5 but cannot exceed
3 = 15/5 (since such subgroups form one orbit under conjugations,
and the normalizer of P contains P ). Thus there is only one subgroup,
P ∼= Z5, of order 5 which is therefore normal. Conjugations by G act on
P by automorphisms, which defines the homomorphism: G→ G/P →
Aut(P ). Since Aut(Z5) ∼= Z×

5 has order 4, and G/P has order 3, we
conclude that the homomorphism is trivial, i.e. P lies in the center of
G. Let x be a generator of P , and y /∈ P . If y has order 15, then it
generates G which is therefore cyclic. If y has order 3, then, since y
commutes with x, we have: G ∼= Z5 × Z3

∼= Z15.
2.12(5) Partition the set {1, . . . , p2} into p subsets of order p:

{1, . . . , p}, . . . , {(p− 1)p+ 1, . . . , p2}.

Then the p permutations:

(1, . . . , p), . . . , ((p− 1)p+ 1, . . . , p2)

(each is a cycle of order p) generate a subgroup of Sp2 isomorphis to
Zp × · · · × Zp (p times). Together with the cyclic shift σ of those p
subsets (i.e. the permutation σ(1) = 1 + p, σ(2) = 2 + p, . . . ) they
generate a subgroup of order pp+1. It is a Sylow p-subgroup of Sp2 since
(p2)! contains the factor of p exactly p2/p+ p2/p2 = p+ 1 times.
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2.12(8) In a group G of order 231, the number of elements in the
orbit of a Sylow subgroup P ∼= Z11 under conjugations must divide
231/11 = 21 and have remainder 1 modulo 11. Thus it is unique, and
hence normal. Now, conjugations by G/P act trivially on P since the
order φ(11) = 10 of Aut(P ) ∼= Z×

11 is relatively prime to o(G/P ) = 21.
Thus P is central.

2.12(20) The groupGLn(Zp) of invertible n×n-matrices with entries
from Zp (p a prime) has the order (pn−1)(pn−p)(pn−p2) · · · (pn−pn−1).
(Any non-zero column of n entries from Zn as the 1st column, any
column non-proportional to the 1st one as the 2nd column, any column
which is not a linear combination of the 1st and 2nd column as the
3rd one, etc.) The maximal power of p which divides this product is
0+1+2+· · ·+(n−1). The subgroup of upper-triangular matrices with
1 on the diagonal and arbitrary entries from Zp above the diagonal has
the required order and is therefore a Sylow p-subgroup of GLn(Zp).

2.13(5) We did this in class. In a finite abelian group G of order
pn1

1 · · · pnk

k (pi are distinct primes, ni > 0), the Sylow pi-subgroups Gi

have orders pni

i . Consider the map

G1 × · · · ×Gk → G : (g1, . . . , gk) 7→ g1 · · · gk.

It is a homomorphism (since G is abelian), and its kernel is trivial.
Indeed, if g1 · · · gk = e, then g1 = (g2 · · · gk)

−1 has the order which is a
common factor of pn1

1 and pn2

2 · · ·pnk

k . Thus g1 = g2 · · · gk = e, and by
induction, g2 = · · · = gk = e as well. Therefore the homomorphis is
injective, and since o(G1 × · · · ×Gk) = o(G), it is surjective as well.

Problem. Prove that if pk (p prime) divides the order of — a group
G, then G has a subgroup of order pk.

This is obvious for cyclic groups. In general, passing to a Sylow p-
subgroup, we may assume that o(G) = pn, n ≥ k. Use induction on
n. If n = 1, then the trivial subgroups have orders p0 and p1. For
arbitrary n, we want to find subgroups of G of orders pn−1 and apply
the induction hypothesis. The group G has a non-trivial center Z.
Take in Z any non-trivial cyclic subgroup, and a subgroup Z ′ of order
p in it. Then G/Z ′ has the order pn−1. Thus G/Z ′ contains a subgroup
of order pn−2, and its inverse image in G is a subgroup of order pn−1.
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HW8
2.13(4ab). Since the operation in G × G is component-wise, it is

obvious that G→ G×G : g 7→ (g, g) is a group homomorphism, Since
its composition with the projection G × G → G : (g1, g2) 7→ g1 is the
identity map G → G, the image ∆ of the first map is isomorphic to
G. If ∆ is normal, then (e, x)(g, g)(e, x−1) = (g, xgx−1 ∈ ∆ for all
x, g ∈ G, i.e. g = xgx−1, or equivalently: gx = xg.

2.13(7). When (m,n) = 1, and hence the L.C.M.(m,n) = mn, the
homomorphism Z → Zm ×Zn : x 7→ (xmodm, xmodn) has the kernel
mnZ, and hence the range containing mn elements. It is therefore
surjective.

2.13(11). The group G is isomorphic to the direct product of cyclic
groups whose orders are powers of primes. Since the factors are sub-
groups with pairwise trivial intersection, there can be only one factor,
i.e. G ∼= Zpn for some prime p and n > 0.

2.13(15). When G = Zp × Zp (p prime), Aut(G) = GL2(Zp), and
hence G has (p2 − 1)(p2 − p) automorphisms.

2.13(16). The center of the direct product of groups is the di-
rect product of the factor’s centers, because arrays (x1, ..., xn) and
(y1, ..., yn) commute in the direct product if and only if they commute
componentwise.

2.14(6). Let G ∼= Zpn1 × · · ·×Zpn
k , where p is prime. Let ∆ be the

Young diagram whose rows contain n1 ≥ · · · ≥ nk > 0 cells. Suppose
H is a subgroup in G, and ∆′ is the corresponding Young diagram. We
will prove by induction on the nuber of cells in ∆ that ∆′ is contained
in ∆. This is obvious for the trivial group G (the base of induction).
Now, consider the homomorphism G → G : x 7→ xp. The kernel of it
contains pn1 elements, and its range is a subgroup G̃ whose diagram
is obtained by discarding the 1st row of ∆. The same homomorphism
restricted to H has the kernel containing ph1 elements where h1 ≤ n1,
and the range H̃ ⊂ G̃. We conclude that the number h1 of cells in the
1st row of ∆′ does not exceed n1. Furthermore, applying the induction
hypothesis to the groups H̃ ⊂ G̃, we conclude that by discarding the
1st rows of ∆′ and ∆ we obtain two diagrams of which the former
is contained in the latter. Thus the same is true about the original
diagrams ∆′ and ∆.

HW9
3.2(3). In an associative ring, (a0 + a1)

n expands as the sum of 2n

monomials ai1 · · ·ain , where each ik = 0 or 1. Generally speaking, this
sum contains no similar terms.
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3.2(7,11) Zp[x] is an example of an infinite integral domain of finite
characteristic p, and (along with Z) also provides an example of integral
domain that is not a field.

3.2(12). In a field, there are no divisors of zero; namely if ab = 0
but a 6= 0, then b = (a−1a)b = a−1(ab) = a−10 = 0.

3.2(14). To prove that the decimal representation of every fraction
p/q is repeating, consider the process of long division of p by q, each
step of which consists in finding the next decimal digit as the quotient
of division by q of the remainder of the previous division. Since there
are only q possible remainders (including 0), after no more than q steps
some of the previous remainders will occur again, and the therefore the
algorithm will enter the mode of cyclic repetition.

The King Arthur Problem. Let f0 : Zn → R be the function
on the set of knights (which of course are elements of the cyclic group
Zn) describing the initial (i.e. at T = 0) distribution of cereal. Let
g : Zn → R be the function equal to 1/2 at 1 and −1, and equal to
0 everywhere else on Zn. Then the distribution of cereal at a moment
T > 0 is given by the function fT = g∗Tf0 = (g ∗ · · · ∗ g) ∗ f0 (i.e. is the
convolution by g applied T times to f0). Since the Fourier transform

f → f̂ on C[Zn] transfroms convolution into pointwise product of

functions, we have: f̂T = ĝT f̂0 = (ĝ · · · ĝ)f̂0. Let us compute the
value of ĝ (which is a function of the group of characters of Zn) at the
character φl : Zn → U : k 7→ e2πikl/n (here k, l are integers modulo n).
We have:2

ĝ(l) =

n−1
∑

k=0

g(k)φl(−k) =
e−2πil/n

2
+
e2πil/n

2
= cos(2πl/n).

When l 6= 0 or n/2, the values of cos(2πl/n) are smaller than 1 in the
absolute values, and therefore their powers (cos 2πl/n)T tend to 0 as
T → ∞. When the number n of knights is odd (and thus n/2 is not an
integer), the only exception is ĝ(0) = cos 0 = 1. We have in this case:

f̂∞ := lim
T→∞

f̂T = lim
T→∞

ĝ(l)T f̂0(l) =

{

f̂0(0) if l = 0
0 if l 6= 0

.

The inverse Fourier transform then yields the distribution f∞ of sereal
in the limit T → ∞:

f∞(k) =
1

n

n−1
∑

l=0

f̂∞(l)φl(k) =
1

n
f̂0(0)φ0(k).

2In other words: eigenvalues of the operator of convolution by g are
cos(2πl/n), l = 1, . . . , n.
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Since φ0(k) = 1 for all k, and f̂0(0) =
∑

f0(k), we conclude that in the
case of odd n, the amount of cereal is redistributed as T → ∞ evenly
between the knights. A similar analysis for even n shows that as T
becomes large, the amount of cereal for knights at even (respectively
odd) seats becomes the same, and equal at even moments of T to the
their average initial amount, and at the odd moments of T becomes
equal to the everage initial amount of knights at the odd (respectively
even) seats.

HW10
3.4(3). A field F has only the trivial ideals {0} and F , and therefore

each homomorphism from F is either injective (when the kernel is {0},
or zero (when the kernel is F ).3

3.4(12). To prove that the ring M of all n × n matrices has no
nontrivial two-sided ideals J , let us prove that together with any non-
zero matrix A, the ideal J contains each of matrices Eij all of whose
entries are 0 except the ijth entry equal to 1. Let v be a vector such
that Av 6= 0. Introduce the linear transfromation B in Rn which sends
all unit coordinate vectors ek to 0 except ej mapped to v. Take any
linear transformation C that maps w = Av to the unit coordinate
vector ei. Then CAB = Eij . Thus, if A ∈ J , then every Eij ∈ J , and
therefore every sum of scalar multiples of the matrices Eij is in J , and
thus J = M .

3.4(20). If a ring homomorphism φ : R → R′ is surjective, then
for every a′ ∈ R′ there is a ∈ R such that φ(a) = a′. Then φ(1)a′ =
φ(1a) = φ(a) = a′ = φ(a) = φ(a1) = a′φ(1). Thus φ(1) is the unit
element in R′.

3.6(5bdef). We proved this in class for S = R − 0, and the proof
is the same word-for-word for an arbitrary multiplicative system S.

3.6(6). If (m,n) = 1, then we may assume there exist k, l > 0
such that km − ln = 1. Then akm = bkm, and hence ac = bc where
c = aln = bln. In an integral domain, this implies: a = b.

HW11
Ch. 3 (4). If a commutative ring R with the unit element is finite,

then for every prime ideal I, the quotient integral domain R/I is also
finite, and is therefore a field. hence the ideal I is maximal.

Ch 3 (8). In a commutative ring R, if A is an ideal, and xn, ym ∈ A,
then (x+y)l =

∑
(

l
k

)

xkyl−k ∈ A if l ≥ m+n. Thus the radical N(A) is
an additive subgroup. Also, for every z ∈ R we have: (zx)n = znxn ∈

3The formulation in the book is erroneous: an injection (e.g. R ⊂ C does not
have to be an “isomorphism.”
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A, and so N(A) is an ideal. Furthermore, if as ∈ N(A), then there
exists n such that A ∋ (as)n = ans, i.e. a ∈ N(A).

A. Let f(x, y) be a non-constant polynomial with complex coeffi-
cients. We can write it as f = xng0(y) + · · · + gn(y) where gi are
polynomials in y, and assume (possibly after switching the roles of x
and y) that g0 6= 0. Since g0 has at most finitely many roots, we can
pick infinitely many complex values y = y1, y2, . . . such that g0(yi) 6= 0,
and then for each yi, find a complex root xi of the degree n > 0 polyno-
mial f(x, yi). Then (xi, yi), i = 1, 2, . . . form infinitely many solutions
to the equation f(x, y) = 0.

B. Hilbert’s Nullstellensatz applied to 1 ∈ C[x1, . . . , xn] and an ideal
I = (f1, ..., fk), shows that if the system f1 = · · · = fk = 0 has no
complex solutions, then for some n > 0, I ∋ 1n = 1, and hence I is
trivial. This property fails over R, as the example of the ideal (x2+1) ⊂
R[x] shows: the equation x2 + 1 = 0 has no real solutions, but 1 is not
divisible by x2 + 1.

C. Answer. Maximal ideals in C[x, y] are (x−a, y−b), where a, b ∈ C
in R[x] are (x− a) and (x2 − 2ax+ a2 + b2) where a ∈ RR, b ∈ R×; for
an ideal I ⊂ R[x, y], if the algebraic set XI has no points in C2, then
1 ∈ I, and hence I = R[x, y]. Thus, if the ideal I is maximal, it must
coincide with its radical, and define a non-empty algebraic setXI ⊂ C2.
If XI consist of one real point (a, b), or a pair of complex conjugate
points (a, b), (ā, b̄), then the corresponding ideal I = (x − a, y − b)
in the first case, and in the second consists of all polynomilas with
real coefficients vanishing at these two complex conjugate points. The
generators of the latter ideal can be taken as: (x−a)(x−ā), (y−b)(y−b̄),
(x − a)(y − b̄) + (x − ā)(y − b). When XI contains more than one of:
a real point, a pair of complex conjugate points, the ideal cannot be
maximal, since it is contained in the kernels of at least two different
evaluation homomorphisms.

HW12
3.7(7). The condition a|x and b|x means (x) ⊂ (a) ∩ (b). In a PID,

the ideal (a)∩ (b) = (c) for a suitable element c. Since (x) ⊂ (c) means
c|x, we conclude that c = [a, b] (least common multiple of a and b).

3.7(8). If a =
∏

pki

i , b =
∏

pli
i are prime factorizations of a and

b, then it follows from the unique factorization theorem, that (a, b) =
∏

p
min(ki,li)
i , [a, b] =

∏

p
max(ki,li)
i , and hence [a, b] = ab/(a, b).

3.8(3b). Using the Euclidean algorithm in Z[i], we find:

18 − i = (11 + 7i) + (7 − 8i), 11 + 7i = i(7 − 8i) + 3,

7 − 8i = (2 − 3i)3 + (1 + i), 3 = (1 + i)(1 − i) + 1,
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and hence (18 − i, 11 + 7i) = 1.
3.8(4). Since a prime p = 4n + 3 cannot be factored in Z[i], we

find that F := Z[i]/(p) is a field. Then the polynomial x2 + 1 factors
as (x − i)(x + i) in F [x], and cannot have factors of the form x − a,
a ∈ Z/pZ ⊂ F . Thus x2 + 1 has no roots in Z/pZ.

3.8(6). Let p1, ..., pk be some primes of the form 4n − 1. Then
p1 · · ·pk+2 (when k is even) or p1 · · · pk+4 (when k is odd) is congruent
to −1 modulo 4 and thus must be divisible by at least one prime of the
form 4n− 1, but is not divisible by any of p1, ..., pk. Thus no finite set
of promes of the form 4n− 1 exhausts all of them.

A. 5 = (2 + i)(2 − i), 13 = (3 + 2i)(3 − 2i), 17 = (4 + i)(4 − i), and
thus there are four ways of writing 5 ·13 ·17 as (a+bi)(a−bi) which are
essentially different (i.e. are not obtained from each other by changing
(a, b) to (±a,±b) or (±b,±a)), namely:

a + bi = (2 + i)(3 + 2i)(4 + i), a+ bi = (2 − i)(3 + 2i)(4 + i),

a+ bi = (2 + i)(3 − 2i)(4 + i), (2 + i)(3 + 2i)(4 − i).

Multiplying out, we find respectively:

a+ bi = 9 + 32i, a+ bi = 31 + 12i, a+ bi = 33 + 4i, a+ bi = 23 + 24i.

Thus

1105 = 92 + 322 = 122 + 312 = 42 + 332 = 232 + 242.

B. Let p1 · · ·pk = a2 + b2 = (a + bi)(a − bi). Then, since (a + bi)
must have a non-integer prime factor, at least one of pi must also have
such a factor in Z[i]. Such a pi cannot be of the form 4n− 1.

HW13
3.9(3). If f, g ∈ F [x] are relatively prime, then 1 = af+bg for some

a, b ∈ F [x], and this remains true in K[x] hence for any field K ⊃ F .
3.9(7). If f ∈ F [x] is irreducible of degree n, then E := F [x]/(f)

is a field extension of F of dimension n as a vector space over F , and
when F is finite and consists of of q elements, then K ∼= F n consists of
qn elements.

3.10(2). When p is prime, xn − p is irreducible over Q by the
Eisenstein criterion.

3.10(5). If a = m/n is rational, and x − a divides a monic integer
polynomial, then n divided the top coefficient 1 of this polynomial, and
hence n = ±1, and a = ±m is an integer.

Suppl. Prob. in Ch 3 (18). If F is a finite field, then there is
a smallest positive integer p such that 0 = 1 + · · · + 1 (p times), and
since (1+ · · ·+1)(1+ · · ·+1) = 1 + · · ·+ 1 (m times, n times, and mn
times), the number p must be prime (otherwise F would have divisors
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of 0). Moreover, the cyclic subgroup of (F,+) generated by 1 is in fact
the subfield Z/pZ. Then F is a vector space over Z/pZ of a certain
finite dimension p, and hence consists of q = pn elements. The order
of the multiplicative group F× is q − 1, and hence aq−1 = 1 for every
a 6= 0. It follows, that aq = a, which remains true even for a = 0.

Besides, if the abelian group F× were not cyclic, it would follow
(from the classification of finite abelian groups) that there exists a
proper divisor n of q − 1, such that an = 1 for all a ∈ F×. This would
yield a degree n polynomial, xn − 1, having q − 1 > n roots, which is
impossible. Thus F× is cyclic.

HW14
5.1(3a). If V is a vector space over K with a basis v1, ..., vn, and the

degree m field extension K ⊃ F has a basis u1, ..., um ∈ K as a vector
space over F , then {ujvi} form a basis of V as a vector space over F .

5.1(4). Let a =
√

2+
√

6. Then a2 = 5+2
√

6, and a4 = 49+20
√

6.
Therefore a4 − 10a2 + 1 = 0. The polynomial f := x4 − 10x2 + 1 has
four roots ±

√
2 ±

√
3, none of which is rational, and no two of which

have rational sum and product. This shows that f has no factors in
Q[x] of degree 1 or 2, and thus f is irreducible over Q. Thus the degree
of Q(a) over Q is 4, while the degree of Q(

√
6) over Q is 2.

5.4(7c). The degree 3 polynomial f := x3+x2−2x−1 is irreducible
over Q since it has no rational roots. (Indeed, only m/n = ±1 could
qualify, but the coefficient sum of f is odd.)

5.4(8). Take a = e2πi/7, and put b = a + a−1 = 2 cos 2π/7. Then
b2 = a2 + a−2 + 2, b3 = a3 + 3a+ 3a−1 + a−3. Thus

b3 + b2 − 2b− 1 = 1 + a + a2 + a3 + a−3 + a−2 + a−1 = 0

as the total sum of the 7th roots of unity.
5.4(13). A circle cannot be divided by straightegde and compass

into 9 congruent arcs, because each arc would measure 40◦, and bisect-
ing it, one would construct the angle of 20◦, which is impossible.

Problem. If (m,n) = 1, then 1 = am+ bn for some integers a and
b. Therefore

2π

mn
= a

2π

n
+ b

2π

m
,

i.e. the central angle 2π/mn can be constructed from 2π/n and 2π/m
by adding (subtracting) |a| copies of the former and |b| copies of the
latter.


