
Math 215A. Fall 2019. Final exam. Solutions

1. Give a homotopy theory proof of the following algebraic theorem: A
subgroup of a free group is a free group.

Solution. The bouquet of circles labeled by the generators of a free
group F has F as its fundamental group. (In fact, it is the Eilenberg-MacLane
space K(F, 1).) The universal cover of the bouquet is an infinite graph — a
connected tree, or 1-dimensional CW-complex — on which a given subgroup
H ⊂ F acts by deck transformations (in fact by automorphisms of the graph).
The quotient of the tree by H is still a connected graph which has H as
its fundamental group (and is in fact K(H, 1)). By contracting a maximal
tree of it (here the axiom of choice is used to guarantee its existence, and
the Borsuk property of CW-pairs is used to guarantee that the contraction
does not change the homotopy type) we obtain a bouquet of circles whose
fundamental group H is therefore free.

Remark. Many exam solutions resembled too much the arguments from
Hatcher, and unfortunately not everyone acknowledged the influence.

2. Prove that each skeleton sknX of a contractible CW-complex X is
homotopy equivalent to a bouquet of n-spheres.

Solution. For n = 0, the skeleton is a discrete set and hence a bouquet
of 0-spheres. For n = 1, it is a graph, connected since π0(sk1X) = π0(X),
and hence homotopy equivalent to a bouquet of circles as in the argument
above. Since in general πk(X) is determined by the (k + 1)-skeleton of X,
we conclude that sknX is (n− 1)-connected. For n > 1, Hurewicz’ theorem
implies that Hk(sknX) = 0 for all k < n, and πn(sknX) = Hn(sknX). The
latter is a free abelian group, since for an n-dimensional cell space is, it the
kernel of the boundary operator in the cellular chain complex, and hence a
subgroup in the free abelian group of chains. Now take a bouquet Yn on
n-spheres labeled by a set of free generators of πn(sknX), and map it to
sknX by the bouquet of spheroid maps realizing the generators. This map
induces isomorphism in homology, and hence is a homotopy equivalence by
Whitehead’s homological theorem.

Remark. Some attempted solutions neglecting to use Hurewicz’ and
Whitehead’s theorems argued (correctly) that skn−1X is contractible in sknX
to conclude (incorrectly) that sknX is homotopy equivalent to the bouquet
of n-spheres sknX/skn−1X. To see what’s wrong it suffices to look at the
example of, say, disk D2, which is not homotopy equivalent to D2/∂D2 = S2.
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3. Prove that ΩG+(∞, n) is weakly homotopy equivalent to SOn.

Solution 1. It follows from homotopy sequences of the fibrations EG
G
→

BG and P (BG)
ΩBG
→ BG (where P (X) stands for the space of based paths

in (X, x0), and is contractible, as well as EG is) that πk(G) = πk+1(BG) =
πk(ΩG) for all k. To guarantee the WHE, we need a map between the spaces
that would induce the isomorphisms.

A map ΩBG → G would require a canonical lifting of loops; in terms of
the bundle V (∞, n) → G+(∞, n), picking an orthonormal frame for every
loop of oriented n-dimensional subspaces in R

∞. There is no a natural way of
doing this. However, on can introduce and use a connection (a “gauge field”
in physicists’ terms). To realize this plan, one shows first that smooth loops
form a subspace ΩsmG+(∞, n) weakly homotopy equivalent to ΩG+(∞, n).
Then, using a Riemannian metric on the Stiefel manifold, one takes at each
point of it the tangent subspace orthogonal to the fiber (i.e. to the orbit of
SOn). The usual notion of connection requires such a field of tangent orthog-
onal complements to the fibers to be SOn-invariant, which can be achieved
by first taking the Riemannian metric invariant (by averaging any seed met-
ric over the action of the compact group). In any case, once such orthogonal
complements are selected, smooth paths from the base can be canonically
lifted (by solving appropriate ODEs) to paths in the Stiefel manifold start-
ing an a base point (an initial frame) over the base point in the grassmannian.
Assigning to a path from Psm(G+(∞, n)) the endpoint of its lift, we obtain a
map Psm(G+(∞, n)) → V (∞, n) which commutes with the projections to the
base, and thus induces the needed maps between the homotopy sequences,
and (by the five-lemma) a WHE ΩsmG+∞, n) → SOn between the fibers.

Solution 2. It is actually easier to construct a map in the opposite
direction: G → ΩBG. Namely, for a finite-dimensional Lie group G and
cellular BG, one may assume EG also cellular (in any case, our Stiefel mani-
fold V (∞, n) is an inductive limit of compact manifolds, and this is all that’s
needed), and so EG is contractible. Let Φ : EG×[0, 1] → EG be a homotopy
between the constant map EG → x0 ∈ EG and the identity. Composing Φ
with the projection π : EG→ BG, we obtain a map from EG to the space of
paths in BG starting at y0 = π(x0). This map commutes with the projections
of both spaces to BG, and hence provides the needed morphism between the
homotopy sequences, and a WHE between the fibers.
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Solution 3 (inspired by one exam paper). Put M = {(x, p) ∈ EG ×
P (BG, y0) | p(1) = π(x)}. Projection (x, p) 7→ p is a locally trivial fibration
ofM over the (contractible!) path space with the fiber π−1(p(1)) ∼= G. Thus,
the inclusion G ⊂ M of the fiber into the total space is a WHE. Projection
(x, p) 7→ x is a Hurewicz fibration over (weakly contractible!) EG with the
fiber ΩBG (over any x0 ∈ π−1(y0)). Thus, the inclusion ΩBG ⊂ M of the
fiber into the total space is a WHE.

Solution 4 (inspired by another exam paper). For any cell space X,
π(X,BG) = St(X;G), the set of equivalence classes of principal G-bundles
over X. Likewise, π(X,ΩBG) = π(ΣX+, BG) = St(ΣX+;G).

There are some subtleties here. First, BG has no natural base point, so
one needs to pick one. Next, since X comes without base point, the first
equality requires introducing X+ = X ⊔ pt, so that the suspension ΣX+ is
in fact a Thom space — one-point compactification of X × R. The second
equality requires therefore the base-point version of the bundle classification
theory, where one may assume that the fiber over the base point is identified
with G once and forever.

Now, such a principal G-bundle over the suspension ΣX+, which is glued
from two cones C±X over their bases and at the vertices, can be trivialized
over the cones C±X and then described by the comparison map g : X 7→ G
over the glued bases. Thus, St(X;G) can be described as the quotient of the
group GX of maps X → G by the action of the group of re-trivializations
ψ± : C±X → G, which must be standard at the vertices: ψ±(v±) = e,
and act via the left and right translations: g 7→ ψ+|X g ψ−1

− |X . The group
of re-trivializations satisfying ψ±(v±) = e is contractible (together with the
cones themselves), so we obtain a (surjective) map St(ΣX+;G) → π(X,G)
to the set of path-connected components of GX . Injectivity is also clear: if
G : X × [0, 1] → G is a homotopy between g0 and g1, then G(x, t)g0(x)

−1

factors through the map ψ : (CX, v) → (G, e), and g1 = ψ|t=1g0. Thus, we
obtain a bijection between π(X,ΩBG) and π(X,G), which is (as it is easy to
see) natural in X. Therefore ΩBG and G are weakly homotopy equivalent.

4. Prove that S2 smoothly embedded (or even immersed) in C
2 has at

least two distinct points where the tangent planes are complex lines.
Solution. In fact replacing “embedded” (as it is stated in our text) with

“immersed”, I am afraid, I was overly optimistic (and I suspect, counterex-
amples exist). So, my solution does use the fact that the surface is embedded
in R

4.
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Namely, both the tangent and normal bundles are orientable, and are in-
duced by the Gauss map g : S2 ∋ x 7→ TxS

2 ∈ G+(4, 2) from the tautological
bundle over the grassmannian and from its complementary bundle respec-
tively. The self-intersection index of the zero section in the tangent bundle is
equal to the Euler characteristic χ (as for any closed oriented manifold), i.e.
2 for the sphere. The similar self-intersection index for the normal bundle is
0. This is because it coincides with the self-intersection index of the surface
in R

4, which is acyclic (or, simply speaking, since one can translate the sur-
face far away from itself). Here is where the answer for immersions would
be different: each transverse self-intersection point of the immersed surface
would add ±2 to the self-intersection index in the normal bundle, with the
zero total as the self-intersection index in the ambient R4.

On the other hand, G+(4, 2) = S2 × S2 has its 2nd homology group
isomorphic to Z

2. The idea now is that the two intersection numbers, χ = 2
and 0, determine the homology class g∗[S

2] ∈ Z
2. Then the intersection index

of this class with [CP 1] ⊂ G+(4, 2) formed by complex lines in C
2 = R

4

can be found from any example. E.g. take the standard unit sphere in
R

3 = C × R ⊂ C
2 to find that it has two tangent planes parallel to C × 0,

of which just one is oriented as the complex line. So, the intersection index
equals 1, implying that every embedded sphere must have a point where the
oriented tangent plane is a complex line with the complex orientation. The
same result for the CP 1 of complex lines with the anti-complex orientation
(they form a locus in G+(4, 2) disjoint from the previous CP 1) guarantees
the existence of a 2nd tangent plane parallel to a complex line.

To show that the two intersection numbers determine the Gauss class
g∗[S

2], one only needs to check that the 1-st Chern classes of the two SO(2) =
U(1)-bundles over G+(4, 2) — the tautological one, and its complementary
— form a coordinate system on H2(G+(4, 2)). This can be approached by
direct computation, which may look rather arbitrary.

In fact the situation is somewhat subtle. One could think that the 1st
Chern classes of the two complementary SO(2)-bundles should be opposite
(and hence linearly dependent). However, the sum of the bundles is trivial
as an SO(4)-bundle, not as a U(2)-bundle, and as a result the expectation
is incorrect. (According to Michael Atiyah, this is what physicists call an
anomaly: you solve a problem, and discover that your expectations were
wrong!) Instead, there are two inclusions of S2×S2 = G+(4, 2) into G+(∞, 2)
(which, as we know, is homotopy equivalent to CP∞), each inducing one of
the two tautological SO(2)-bundles. In terms of Plücker coordinates Pij,
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1 ≤ i < j ≤ 4 on the grassmannian P12P34−P13P24+P14P23 = 0,
∑
P 2
ij = 1,

the involution interchanging an oriented plane in R
4 with its orthogonal

complement, acts as the Hodge ∗-operator: P12 ↔ P34, P13 ↔ −P24, P14 ↔
P23. In terms of the product S2 × S2, this operation acts as the central
symmetry on one of the factors (and identity on the other). In the coordinates
(x, y) on H2(S

2×S2) = Z
2, let the involution be (x, y) 7→ (x,−y), let ax+by

be the 1st Chern class of the tautological bundle, and hence ax− by be the
1st Chern class of the complementary one. For the aforementioned standard
embedding of S2 in R

4, the Gauss map lands in a plane P34 = P24 = P23 = 0
(in suitable Plücker coordinates). In terms of S2×S2, this is a diagonal sphere
(or anti-diagonal, depending on the choice of orientations of the factors). So,
we may assume that g∗[S

2] = (1, 1) in our coordinates. Then the values
a + b = 2 and a− b = 0 show that a = b = 1, i.e. the two 1st Chern classes
have the form x+ y and x− y and are indeed linearly independent.

Well, maybe there is a shorter way of checking this.

5. Let f be a continuous map f from the n-torus Rn/Zn to itself, and let
A : Zn → Z

n denote the homomorphism induced by f on the fundamental
group of the torus. Prove that f has at least | det(I − A)| distinct fixed
points.

Solution. The homology H•(T
n) of the torus T n = R

n/Zn is the “ex-
terior algebra” Λ•(Zn) of the lattice. Consequently, det(I − A), as it was
calculated in some exam papers, is the super-trace of f∗ on H•(T

n). Thus,
det(I − A) is the Lefschetz number of f . When it is non-zero, the linear
map x 7→ Ax : T n → T n has | det(I − A)| non-degenerate fixed points each
contributing ±1 = sign det(I − A) into the Lefschetz formula. Thus, A has
as few fixed points as the map f having only non-degenerate fixed points
can possibly have in agreement with Lefschetz’ lower bound. Yet, this is
not what the problem is about, since it asks to show that even when fixed
points are allowed to degenerate, their number cannot become smaller than
this bound.

Intuitively this suggests that somehow the fixed points of A are all “topo-
logically different” in nature, and when A is deformed into a (non-linear) f ,
new fixed points can be born or die (usually in pairs), but there should remain
at least one such fixed point of each of | det(I − A)| topological types.

One way to make sense of this intuition would be to start with the linear
map I−A : Rn/Zn → R

n/Zn. It is a covering of degree det(I−A) (assuming
that the number is non-zero), and maps Z

n = π1(T
n) to its own sublattice
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of index | det(I − A)|. Since T n is a group, we can consider the difference
id−f even when f is non-linear (think of mapping T n to the graph of f
in T n × T n, and then projecting along the diagonal). The hypothesis that
A = f∗ implies that (id−f)∗ = I − A, i.e. that the image (id−f)∗π1(T

n)
is the same sublattice of index | det(I − A)| in π1(T

n). Now the homotopy
lifting property of coverings shows that id−f = (I − A) ◦ g, i.e. factors
through a degree-1 map g : T n → T n. The fixed points of f are zeroes of
id−f , i.e. inverse images under g of the fixed points of A. Since g, being a
non-zero degree map, is surjective, the result follows.

6. In a closed manifold M , let Z1, . . . , Zn be closed submanifolds of
positive codimensions such that the cup-product of the Poincaré-duals of
their fundamental classes in non-zero inH•(M ;Z2): D

−1[Z1]∪· · ·∪D
−1[Zn] 6=

0. Prove that a smooth function on M has at least n + 1 distinct critical
points, and conclude that this lower bound holds for functions on RP n, CP n,
and HP n.

Solution. The solutions of this problem submitted in the exam were
from those who had mastered the Lusternik-Schnirelmann theory before-
hand, and knew that the number of geometrically distinct critical points of a
function on a manifold is bounded below by the so-called category, and that
the latter one is bounded below by the so-called cup-length. This approach
brings to mind the joke about a mathematician who, instead of boiling a
water-filled tea-kettle by putting it on the stove (as every physicist would
do), pours the water out, thereby reducing the problem to the previous,
“already solved” one, when the given tea-kettle was empty.

Here is a straightforward, “physicist’s” solution. Given a smooth function
f :M → R, suppose we have a cycle (e.g. the fundamental cycle [C] of some
submanifold) sitting in the part M+ = {x ∈ M | f(x) ≤ fcrit + ǫ} of the
manifold beneath a level of f slightly above a critical one. We can try to use
a Riemannian metric and the flow of the gradient vector field ẋ = −∇f(x) in
order to pull the cycle to the part M− ⊂M+ beneath a level fcrit− ǫ slightly
below the critical one. We will succeed, provided that C is disjoint from ǫ-size
neighborhoods of the critical points of f with the critical value fcrit, since
outside such neighborhoods the gradient flow contractsM+ toM−. However,
even if we fail, i.e. in the process of deformation C “gets stuck” at the critical
points, we can take the cap-product C ∩D−1[Z] of C with a class Poincaré-
dual to a positive codimension cycle. We can assume that such a cycle avoids
those dangerous ǫ-neighborhoods of the critical points, since the critical point
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are isolated (if not, they are infinitely many, so there is nothing to prove).
To avoid technical complications with Peano maps, triangulations, or smooth
approximations of singular cycles, we assume that Z is a submanifold. Since
the cap-product is supported near Z, it is represented (geometrically by the
transverse intersection [C ∩ Z]) by a cycle which can be pulled down to M−

without obstructions.
Now, imagine that the total number of critical points of f is finite, but

the number of critcal levels ≤ n. Then, starting with [M ], and replacing it
inductively with [M ] ∩ D−1[Z1], then [M ] ∩ D−1[Z1] ∩ D−1[Z2], etc. every
time we cross a critical level, we end up after n steps with a nonzero class
D−1[Z1] ∪ · · · ∪ D−1[Zn] Poincaré-dual to a cycle in the empty set {x ∈
M | f(x) < min f} — a contradiction!

7. Prove that H•(CG(4, 2)) can be described as the ring generated by
classes c1 and c2 of degrees 2 and 4 respectively, which satisfy the relation
(1 + c1 + c2)(1 + c′1 + c′2) = 1. More precisely, this identity allows one to
express classes c′1 and c′2 of degrees 2 and 4 via c1 and c2, and in addition to
provide a complete set of relations between c1 and c2.

Solution. The trivial bundle C
4 over the grassmannian is topologically

the direct sum of the two 2-dimensional bundles: the tautological one and
its complementary. The relation represents, of course, the total Chern class
1 of the trivial bundle as the product of the total Chern classes of the two
summands. Two things are left to show: (i) that classes c1, c2 generate the
whole ring, and (ii) that all relations follow from the given one.

For (i), note that the standard inclusion CG(4, 2) ⊂ CG(∞, 2) (it induces
the tautological C2-bundle from the universal one) induces an epimorphism
in cohomology (because it is injective at the level of Schubert cells, and hence
in homology, which is freely generated by the cells). Since H•(CG(∞, 2)) is
the polynomial ring generated by the universal Chern classes, we conclude
that indeed H•(CG(4, 2)) is generated as a ring by the Chern classes c1, c2
of the tautological bundle.

It is likewise generated by the Chern classes c′1, c
′

2 of the complementary
tautological bundle, and as we will see, the above relation allows one to re-
express c′i via cj and vice versa. So far everything carries verbatim to any
CG(m + n, n). However, in the absence of any algebraic (or topological)
machinery, it would be challenging to establish part (ii) in general.

Componentwise, the relation reads: c1 + c′1 = 0, c2 + c′2 + c1c
′

1 = 0,
c1c

′

2+c2c
′

1 = 0, and c2c
′

2 = 0. The first two yield c′1 = −c1 and c
′

2 = c21−c2 (as
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promised). Eliminating the primes from the last two, we get: c31 − 2c1c2 = 0
and c22−c

2
1c2 = 0. Form this, it is not hard to see that in degrees 0,2,4,6,8, the

monomials 1, c1, c
2
1 and c2, c1c2, c

2
1c2 form a Z-basis, while all other monomials

of the same degrees (namely c31, c
4
1 and c21c2) are their linear combinations

due to the above relations. Thus the dimensions of the graded components
of the ring Z[c1, c2]/(c

3
1 − 2c1c2, c

2
2 − c21c2) in these degrees are 1, 1, 2, 1, 1 just

as the corresponding numbers of the Schubert cells of CG(4, 2).
All the papers I’ve got stopped here, but didn’t show that this quotient

ring has no components in higher degrees. This is not hard, but can be messy
— unless one resorts to the pictorial technique of Newton diagrams.

2c

c1

The grid’s axes labeled c1 and c2 represent not the values of the letters,
but the exponents of monomials cm1 c

n
2 . The solid colored lines connect the

monomials participating in the generators c31 − 2c1c2 (blue) and c22 − c21c2
(red) of the ideal. The dashed lines are the consequences of these relations
obtained by multiplying the same-color relations by c1 and c2 (red) and c1, c

2
1,

and c2 (blue). Note that c2(c
3
1 − 2c1c2) = 0 and c1(c

2
2 − c21c2) = 0 (shown as

coinciding blue and red lines) are linearly independent (due to the coefficient
2 lost in our pictorial notation), and hence imply that both participating
monomials, c1c

2
2 and c21c2, are in the ideal. Once a monomial is in the ideal,

all its products with other monomials cm1 c
n
2 are also in the ideal. This is shown

by shading the whole quadrants with the corners at our two monomials. Now,
each relation line with one vertex in the shaded area has therefore the other
vertex in the ideal two. This way we can shade the quadrants with vertices
c51 and c

3
2. This shades the entire diagram except a few remaining monomials.

The circles show which ones can be taken for a Z-basis, while the lines show
how to express the uncircled monomials via the circled ones. It remains to
mention that the numbers of the circles and Schubert cells match.
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