
Math 53. Multivariable Calculus.

Final Exam. 12.15.15. Solutions

1. Change the order of integration:
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f(x, y, z) dydzdx .

Solution. The region is 0 ≤ x4 ≤ y2 ≤ z ≤ 1. Respectively the
integral is equal to
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f(x, y, z) dydzdx.

2. In what proportion is the surface of the sphere of radius r divided
by a plane passing at the distance d < r from the center? Justify your
answer.

Solution. There are several ways to compute the area of the part
of the sphere x2 + y2 + z2 = r2 above the plane z = d.
A. The area of the graph of the function z(x, y) =

√

r2 − x2 − y2

over the domain x2 + y2 ≤ r2
0
:= r2 − d2 is found by integrating

√

1 + z2x + z2y =

√

1 +
x2

r2 − x2 − y2
+

y2

r2 − x2 − y2
=

r
√

r2 − x2 − y2
.

In polar coordinates δ =
√

x2 + y2, θ = arctan y
x
, we find:
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= 2πr(r − d), since r2
0
= r2 − d2, and hence

√
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0
= d.

B. Alternatively, in spherical coordinates the surface are of this piece
of the sphere is given by the formula
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sinφ dφdθ = 2πr2
(
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.

C. Perhaps, the most illuminating way is based on representing the
sphere as the surface of revolution about the z-axis with the cylindrical
equation δ(z) =

√
r2 − z2, whose surface area is given by the integral

2π

∫ r
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1 + δ2z δ(z) dz = 2πr

∫ r

d

dz = 2πr(r − d).

The rest of the sphere has the area 2πr(r + d). Thus, the required
ratio is (r − d)/(r + d).
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3. To a table’s surface with coordinates (x, y), a square piece of
rubber 0 ≤ u, v ≤ 1 is glued according to the rule

x(u, v) = 3u+ v2, y(u, v) = v + (3u+ v2)2.

Find the area of the region covered by this piece of rubber.

Solution. The Jacobian
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and hence the area of the image of the square is 3 times the area of the
square, i.e. 3.

4. Find the maximum and minimum values of the function 2x2 +
4xy − y2 on the unit circle x2 + y2 = 1.

Solution. By the Lagrange multiplier method, we get the system
of two linear equations

4x+ 4y = 2λx, 4x− 2y = 2λy,

which has solutions under the constraint x2 + y2 = 1 only when
∣

∣
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= λ2 − λ− 6 = 0,

i.e. λ = 3 or λ = −2. The solutions have x/y = 2 and y/x = −2 re-
spectively. The respective critical points are: (x, y) = ±(2/

√
5, 1/

√
5)

and (x, y) = ±(1/
√
5,−2/

√
5). The corresponding critical values are 3

and −2. Therefore the maximum value is 3, and the minimum −2.

5. Does there exist a function f(x, y) satisfying fxx(0, 0) = 8,
fxy(0, 0) = 4, fyy(0, 0) = 2 which at (x, y) = (0, 0) has: (a) a local
minimum? (b) a local maximum? (c) a critical point which is neither
local minimum nor local maximum? In each case (a),(b),(c), if the an-
swer is “no” explain “why”, if “yes”, give an example of such a function
and explain why the required property holds.

Solution. (a) g(x, y) := 4x2+4xy+y2 = (2x+y)2 has the required
values of gxx, gxy, gyy, and a local minimum at the origin. (b) Since
fxx(0, 0) = 4 > 0, the function f(x, 0) has an isolated local minimum
at x = 0, and hence f(x, y) cannot have a local maximum at the origin.
(c) f(x, y) := (2x + y)2 − (x4 + y4) on the line 2x + y = 0 is negative
unless (x, y) = (0, 0), and hence f has neither minimum nor maximum
at the origin.
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6. A Microsoft Mouse crawls on the grid mousepad from the origin
(0, 0) straight to the point (2, 2), then to (2, 1), then to (0, 1), then to
(3, 4), then to (3, 0), and then back to (0, 0). Compute the total work

that the force field V = (xy−1)y~i+x(xy+1)~j performs on the Mouse
during this voyage.
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Solution. Taking Q = (xy − 1)y and P = x(xy + 1), we find
Qx − Py = 2. By Green’s Theorem, the work is twice the signed area
enclosed by the path. Since during the voyage, the region stays on the
right of the Mouse, the sign is negative. Since the small triangle is
enclosed twice, the total area is 7.5. Thus the work is −15.

7. Show that the curl of a vector field has zero flux across any sphere
contained in the domain of the vector field, and give an example of a
divergence-free vector field which has non-zero flux across this sphere.

Solution. By Stokes’ Theorem, for a sphere S
∫∫

S

(∇×V) · dS =

∫

∂S

V · dl = 0

since ∂S = 0. If r0 is a point inside the sphere (e.g. the center), the
flux of the divergence-free vector field r− r0/|r− r0|3 across the sphere
will be equal to ]pm4π (depending on the orientation), i.e. non-zero.

8. Compute the flux of vector field

V =
x

x2 + y2
~i+

y

x2 + y2
~j+ 0~k

across the surface of the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1

oriented by the exterior normal.
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Solution. We have: V = ~r/|~r|2, where ~r = x~i+ y~j + 0~k. Therefore

∇ · V =
∇ · ~r
|~r|2 + ~r · ∇ 1

|~r|2 =
2

|~r|2 − 2~r · ~r
|~r|4 = 0.

Yet, V is not defined on the z-axis. An attempt to apply Gauss’ Theo-
rem to the region enclosed by the ellipsoid is illegal (and gives incorrect
result 0). Instead, take the region R between the surface of the ellip-
soid and a cylinder of large radius r > a, b around the z-axis, whose
top and bottom touch the ellipsoid at its points ±(0, 0, c) on the z-axis
(see Figure). By Gauss’ Theorem,

∫∫

∂R

V · dS =

∫∫∫

R

∇ · V dx dy dz = 0.

Therefore the flux of V across the ellipsoid is equal to the flux across
the cylinder. Since V has zero z-component, its flux across the top and
the bottom of the cylinder vanishes. The flux across the lateral surface
of the cylinder, with normal vector is ~n = ~r/|~r|, is easily computed as

∫ c

−c

∮

2π

0
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· ~r
r
rdθ dz = 2π
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dz = 4πc.
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