Math 110. Fall-2011 Final Exam:

1. Express $\det(\text{adj}(A))$ in terms of $\det A$, where A is an $n \times n$-matrix.

2. Solve system of linear equations:
 \[
 \begin{align*}
 x_1 - 2x_2 + 3x_3 - 4x_4 &= 4 \\
 x_2 - x_3 + x_4 &= -3 \\
 x_1 + 3x_2 - 3x_4 &= 1 \\
 -7x_2 + 3x_3 + x_4 &= -3
 \end{align*}
 \]

3. Use Sylvester’s rule to find inertia indices of quadratic form:
 \[x_1x_2 - x_2^2 + x_3^2 + 2x_2x_4 + x_4^2.\]

4. Transform quadratic form $x_1x_2 + x_3x_4$ to the normal form by an orthogonal transformation.

5. Find the Jordan normal form of matrix:
 \[
 \begin{bmatrix}
 0 & 3 & 3 \\
 -1 & 8 & 6 \\
 2 & -14 & -10
 \end{bmatrix}
 \]

6. Can a non-zero anti-symmetric matrix be nilpotent? If “yes” give an example, if “no” provide a proof.

7. Classify all linear operators in \mathbb{R}^2 up to linear changes of coordinates.

8. Find all those values of a_1, \ldots, a_n for which the following matrix is nilpotent:
 \[
 \begin{bmatrix}
 0 & 1 & 0 & \ldots & 0 \\
 0 & 0 & 1 & \ldots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \ldots & 0 & 0 & 1 \\
 -a_n & -a_{n-1} & \ldots & -a_2 & -a_1
 \end{bmatrix}
 \]

9. Find out if the following quadratic hypersurfaces in \mathbb{C}^4 can be transformed into each other by linear inhomogeneous changes of coordinates:
 \[z_1z_2 + z_2z_3 + z_3z_4 = 1 \quad \text{and} \quad z_1^2 + z_2^2 + z_3^2 + z_4^2 = z_1 + z_2 + z_3 + z_4.\]

10. Prove that any orthogonal transformation in \mathbb{R}^4 with the determinant equal to -1 has an invariant 3-dimensional subspace.
Math 110. Fall-2014 Final Exam:

11. For a linear map $A : \mathbb{K}^n \to \mathbb{K}^n$, prove that if the null-space of the cofactor matrix $\text{adj}(A)$ is non-zero, then it contains the range of A.

12. Let $Q(x) := \sum_{i,j=1}^{n} q_{ij} x_i x_j$ be a quadratic form with integer coefficients $q_{ij} = q_{ji}$. Prove that $\det[q_{ij}]$ of the coefficient matrix does not change under integer changes of variables, i.e. linear changes $x = Cx'$ where C is an integer square matrix invertible over \mathbb{Z}.

13. Prove that $\text{rk}(A + B) \leq \text{rk} A + \text{rk} B$ for any $m \times n$-matrices A and B.

14. Given three 3-dimensional linear subspaces $\mathcal{U}, \mathcal{V}, \mathcal{W}$, such that $\mathcal{U} \cap \mathcal{V}$ and $\mathcal{V} \cap \mathcal{W}$ have dimension 2 each. Prove that $\dim(\mathcal{U} \cap \mathcal{V} \cap \mathcal{W}) > 0$.

15. In \mathbb{R}^6, find a subspace of maximal dimension on which the quadratic form $x_1 x_2 + x_3 x_4 + x_5 x_6$ is positive definite.

16. Find an orthonormal basis of eigenvectors of the operator U in the standard Hermitian space \mathbb{C}^5 given by the permutation of the coordinates: $(z_1, z_2, z_3, z_4, z_5) \mapsto (z_3, z_4, z_5, z_1, z_2)$.

17. State Courant–Fischer’s minimax principle about eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$ of a quadratic form S in the standard Euclidean space \mathbb{R}^n, and deduce from it that the eigenvalues do not decrease when a positive definite quadratic form is added to S.

18. Find the Jordan canonical form of e^N where N is a regular nilpotent operator on \mathbb{C}^n.

19. Prove that for $n > 1$, a regular nilpotent operator $N : \mathbb{C}^n \to \mathbb{C}^n$ does not have a cubic root (i.e. an operator M such that $M^3 = N$).