
FIELD EXTENSIONS

0. Three preliminary remarks. Every non-zero homomorphism
between fields is injective; so we talk about field extensions F ⊂ K.
Every field F is an extension of Q (in the case when 1 ∈ F has

an infinite additive order), or of Zp = Z/pZ (when 1 has finite, and
necessarily prime order, p). We say that the field has characteristic
charF = 0 and charF = p respectively.
Given a field extension K ⊃ F , one can consider K as a vector space

over F . We write [K : F ] := dimF K for the dimension of this vector
space, finite or infinite. It is called the degree of the extension.

1. Algebraic and transcendental elements. Given K ⊃ F , an
element α ∈ K is called algebraic over F , if it is a root of a polynomial
with coefficients in F , and transcendental over F otherwise.
The intersection of all subfields in K containing F and α is obviously

a field, which is denoted F (α). It is said to be obtained by “adjoining
α to F”.
When α is transcendental, the homomorphism F [x] → F (α) : x 7→ α

is injective (because all αk, k = 0, 1, 2, . . . are linearly independent over
F ), and hence F (α) is identified with the field of fractions of F [x], i.e.
with the field of rational functions F (x). We have [F (α) : F ] = ∞.
When α is algebraic, denote by f = xn + a1x

n−1 + · · · + an the
monic minimal degree polynomial with coefficients from F , such that
f(α) = 0. It is called the minimal polynomial of α. Clearly, f is
irreducible in F [x] (for if f = gh, then g(α) = 0 or h(α) = 0). Therefore
the ideal (f) is maximal, and is the kernel of the homomorphism F [x] →
F (α) : x 7→ α. Thus, F (α) = F [x]/(f). In this case the degree
[F (α) : F ] equals n, the degree of the minimal polynomial f , since
1, α, . . . , αn−1 form a basis of F [x]/(f) over F .

Key Lemma. Let f ∈ F [x] be irreducible, and let K ⊃ F be any
field containing F . Then the embeddings σ : F [x]/(f) →֒ K over F
(i.e. such that σ|F = idF ) are in one-to-one correspondence with roots
α ∈ K of f in K.

Proof. Indeed, given σ, it maps the class of x to α ∈ K which
satisfies f(α) = 0. Conversely, given α ∈ K satisfying f(α) = 0, the
ring homomorphism F [x] → K, defined to be identical on constants
F ⊂ F [x] and mapping x to α, factors through the projection F [x] →
F [x]/(f), and thus defines an embedding of the field F [x]/(f) into K.
Obviously the embeddings constructed from different roots of f in K
are different, e.g. because the images of the class of x are not the same.
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Examples. (a) C = R(i) = R[x]/(x2+1), and [C : R] = 2. Replacing
i with −i yields another identification of R[x](x2 + 1) with C.
(b) For a prime p, and any n > 0, xn − p is irreducible over Q

(by Eisenstein’s criterion), and hence [Q
(

n
√
p
)
: Q] = n. In fact the

polynomial has n roots in C: one real positive, and the others differing
from it by a factor e2πik/n, k = 1, . . . , n−1. Respectively, Q[x]/(xn−p)
has n embeddings into C. The ranges of different embeddings can
coincide or not. E.g., for even n, two of the embeddings are real, i.e.
land in R. They correspond to the real roots ± n

√
p, and have the same

range, i.e. define the same subfield in R isomorphic to Q[x]/(xn − p).
Replacing + n

√
p with − n

√
p results in an automorphism of the subfield.

Of course, it corresponds to the automorphism of Q[x]/(xn−p) induced
by x 7→ −x, which for even n is a symmetry of the polynomial xn − p.

2. Algebraic extensions. An extension K ⊃ F is called algebraic
if every element of K is algebraic over F . Clearly, a finite extension
(i.e. an extension of finite degree) is algebraic. Indeed, if [K : F ] = n,
then for any α ∈ K, 1, α, . . . , αn are linearly dependent over F , i.e. α
is a root of a polynomial of degree ≤ n with coefficients from F . The
converse is false, of course: there are algebraic extensions of infinite
degrees.
We will show that in any field extension L ⊃ F , the set

F̂ := {α ∈ L | α is algebraic over F}
is a subfield, and is the largest algebraic extension of F inside L.

Proposition. Let F ⊂ K ⊂ L be a tower of field extensions, {αi} a
basis of K over F , and {βj} is a basis of L over K (possibly infinite).
Then {αiβj} form a basis of L over F .

Proof. Every c ∈ L is a (finite) linear combination
∑

j bjβj where

bj ∈ K (and all but finitely many = 0). Each non-zero bj =
∑

α aijαi,
where aij ∈ F (again, all but finitely many = 0). Therefore c =∑

j

∑
i aij(αiβj), i.e. L is spanned by αiβj. To show they are linearly

independent, take c = 0. From
∑

j(
∑

i aijαi)βj = 0 and linear inde-

pendence of βj over K, we conclude that
∑

i aijαi = 0 for every j. Now
from linear independence of αi over F , we conclude that all aij = 0.

Corollary 1.[L : F ] = [L : K][K : F ], that is, [L : F ] < ∞ if and
only if both [L : K], [K : F ] < ∞, and when they are, the degree is
multiplicative.

Corollary 2. If α, β ∈ K are algebraic over F ⊂ K, then α +
β, αβ, α/β are algebraic over F .
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Proof. Indeed, if [F (α) : F ] < ∞, and [F (β) : F ] < ∞, then
[(F (α))(β) : F (α)] ≤ [F (β) : F ] <∞, and hence F (α, β) := (F (α))(β)
(which is the smallest extension of F containing both α and β) has
finite degree over F . Therefore all elements of it, including α+ β, αβ,
α/β are algebraic.

Corollary 3. If K ⊃ F is algebraic, and L ⊃ K is algebraic, then
L ⊃ F is algebraic.

Proof. Let α ∈ L be a root of a polynomial xn + a1x
n−1 + · · ·+ an

with coefficients from K. Since a1, . . . , an ∈ K are algebraic over F ,
the field F (a1, . . . , an, α), obtained by consecutively adjoining α1 to F ,
a2 to F (a1), etc., and finally α to F (a1, . . . , an), has finite dimension
as a vector space over F . Therefore α is algebraic over F .

Corollary 4. The field F̂ of all elements of K ⊃ F algebraic over

F is a subfield, and moreover, all α ∈ K − F̂ are transcendental not

only over F , but also over F̂ .

Proof. Corollary 2 shows that F̂ is closed with respect to the field
operations, and Corollary 3 implies that all elements of K algebraic

over F̂ lie in F̂ .

Example. Complex numbers algebraic over Q form the field Q ⊂ C

of algebraic numbers. Of course, it has infinite (though countable)
degree over Q, e.g. because for any n, Q contains Q

(
n
√
2
)
of degree n.

3. Straightedge and compass constructions. Here we will show
that the divisibility property from Corollary 1 is already a powerful tool
for resolving some ancient conundrums of elementary geometry.
A novice to straightedge-and-compass constructions should begin

with solving the following exercises:
• Given two segments, construct their sum and their difference.
• At a given point on a line, erect the perpendicular it.
• From a given point outside a line, drop a perpendicular to it.
• Through a given point outside a line, draw a line parallel to it.
• Bisect a given angle.

Practitioners of straightedge-and-compass constructions are familiar
with the following trick reducing geometry to algebra. Whenever the
length of the desired segment can be computed in terms of given lengths
using arithmetic operations and square roots, the desired segment can
be constructed by straightedge and compass. Namely, the first step is
to take one of the given lengths for the unit of measure (or pick any, if
none is given). Next, one invokes
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Thales’ theorem: Parallel lines cut out on the sides of an angle
proportional segments.

Using it, the products and ratios of given lengths can be constructed
(see Figures A,B). Finally, by finding three similar right triangles on
Figure C, one can figure out how to construct the square root of a given
segment.

a

ab
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a/b

bb 1

A B
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Figure 1. Straightedge-and-compass constructions

To translate the problem of possibility of geometric constructions
into the language of field extensions, we note that once a unit segment
is chosen, one can construct on a number line all points representing
rational numbers. In a problem, when some other lengths d1, . . . , dN
are given, one can therefore construct all points on the number line
representing elements of the field F := Q(d1, . . . , dN). The previous
constructions show that any numbers obtained by a succession of qua-
dratic extensions of the field F , (i.e. extensions F = F0 ⊂ F1 ⊂ · · · ⊂
FN ⊂ R, where each Fs = Fs−1(

√
a)), are also constructible. Equiv-

alently, all points on the plane whose coordinates belong to FN , can
be constructed from the given data by straightedge and compass. We
claim that the converse is also true.

Theorem. A point on the plain R2 ⊃ F 2 is constructible by straight-
edge and compass if and only if its coordinates belong to a field E ⊂ R

obtained from F by a finite succession of quadratic extensions.

Proof. The allowed geometric constructions are successions of the
following operations:
(i) Drawing a line through previously constructed points.
(ii) Drawing a circle of a previously constructed radius centered at a

previously constructed point.
(iii) Constructing a new point by intersecting two previously con-

structed lines.
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(iv) Constructing new points by intersecting a circle and a line, both
previously constructed.
(v) Constructing new points by intersecting two previously con-

structed circles.
In operation (i), the equation of the new line has coefficients in the

same field E where the coordinates of the given points (x1, y1), (x2, y2)
belong: (y2 − y1)(x− x1) = (x2 − x1)(y − y1).
In operation (ii), the equation of the new circle has coefficients in

the same field E where the coordinates of the circle’s center (x0, y0)
and the radius r lie: (x − x0)

2 + (y − y0)
2 = r2, or equivalently:

x2 + y2 − 2x0x− 2y0y = r2 − x20 − y20.
In operation (iii), the intersection point (x0, y0) of two lines is found

by solving linear equations a1x0+ b1y0 = c1, a2x0+ b2y0 = c2, and thus
x0, y0 lie in the same field E where the coefficients of the equations lie.
The operation (iv) leads to solving a quadratic equation with coeffi-

cients in the field E where the coefficients of the equations of the circle
and the line lie. Thus, the coordinates of the newly constructed point
lie in a quadratic extension E(

√
d), where d ∈ E is the discriminant of

the quadratic equation.
Finally, the operation (v) consists in solving the system of equations

x2+y2−2x1x−2y1y = r21−x21−y21, x2+y2−2x2x−2y2y = r22−x22−y22,
where xi, yi, ri ∈ E. Note however, that the difference of the two
equations is linear, because the purely quadratic terms x2 + y2 cancel
out! This reduces case (v) to case (iv), and thus also results in a

quadratic extension E(
√
d) for some d ∈ E.

Corollary 1. Duplicating the cube by straightedge and compass is
impossible.

This is the classical problem of constructing a cube of twice the
volume of a given one. To solve it, one needs to construct from the
edge 1 of the given cube the edge 3

√
2 of the “duplicate” cube. For

this, a tower of quadratic extensions Q ⊂ F1 ⊂ · · · ⊂ FN such that
Q ⊂ Q( 3

√
2) ⊂ FN , is needed. But the degree [FN : Q] = 2N , while

the degree of Q( 3
√
2) over Q equals 3. Since 3 does not divide 2N , the

required extension does not exist.

Another puzzle that resisted the efforts of best ancient geometers
was the problem of trisecting angles. If such a construction existed, it
would apply to the angle of 60◦ to yield a 20◦ angle. Since the angle
of 60◦ is easily constructible (together with an equilateral triangle),
this would make 2 cos 20◦ constructible. We have however cos 3θ =
cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ. Since cos 60◦ = 1/2, we find
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a cubic equation for x = 2 cos 20◦: x3 − 3x − 1 = 0. The polynomial
has no rational roots, and hence is irreducible over Q. This shows that
[Q(cos 20◦) : Q] = 3, and results in the following

Corollary 2. Trisecting (60◦ and hence) arbitrary angles by straight-
edge and compass is impossible.

4. Algebraically closed fields. A field K is called algebraically
closed if it has no non-trivial algebraic extensions. Equivalently: ev-
ery polynomial of degree > 1 with coefficients from K is reducible;
or equivalently has a root in K; or equivalently factors over K into
linear factors. By the Fundamental Theorem of Algebra, C is alge-
braically closed. Therefore the field Q of algebraic numbers is alge-
braically closed: by Corollary 4, complex roots of polynomials with
algebraic coefficients lie in Q.

Theorem. Every field F has an algebraic extension F ⊃ F which
is algebraically closed. Such an extension is unique in the sense that

another such extension F
′ ⊂ F can be identified with F by an isomor-

phism identical on F .

Lemma 1. Every field F has an algebraically closed extension.

Proof (E. Artin). For every polynomial f ∈ F [x] of degree > 0
introduce a variable xf , and consider the ring F [S] where S = {xf}.
The ideal I ⊂ F [S] generated by f(xf ) is non-trivial. Indeed, suppose

1 =
n∑

i=1

gi(x1, . . . , xN)fi(xi), xi := xfi , i ≤ n ≤ N , and gi ∈ F [S].

Let K ⊃ F be a finite extension where each fi has a root, αi. Then tak-
ing xi = αi for i ≤ n and xi = 0 for i > n, we arrive at a contradiction:
1 = 0.
Let M ⊃ I be a maximal ideal in F [S] (Zorn’s lemma!) Then L1 :=

F [S]/M is a field in which every polynomial f ∈ F [x] has a root (the
image of xf in the quotient).
Now, by induction we construct a tower of field extensions

F ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln ⊂ . . .

such that every polynomial from Ln[x] of degree > 0 has a root in Ln+1.
Let L := ∪∞

n=1Ln. It is a field, since any α, β ∈ L lie in some Ln

together with α+β, αβ, and α/β if β 6= 0. Every polynomial f ∈ L[x]
has coefficients in some Ln and hence a root in Ln+1, if deg f > 0.
Thus, L is algebraically closed: every polynomial f ∈ L[x] of degree

> 0 has a root α ∈ L, and hence f(x) = (x− α)g(x), where g(x) in its
turn has a root in L, etc., i.e. f factors into linear factors.
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Corollary. Every field F has an algebraically closed algebraic ex-
tension F .

Proof: Take F = F̂ = {α ∈ L | α is algebraic over F}.
Lemma 2. Given an algebraic extension E ⊃ F , any embedding σ :

F →֒ L of F into an algebraically closed field L can be extended to an
embedding σ̃ : E →֒ L (i.e. σ̃|F = σ).

Proof. We will find such an embedding by applying Zorn’s lemma.
Consider the set of pairs (F ′, σ′), where F ′ is an extension of F con-
tained in E, and σ′ : F ′ →֒ L is an embedding such that σ′|F =
σ. Introduce partial ordering on the set of such pairs: (F ′, σ′) ≤
(F ′′, σ′′) if F ′ ⊂ F ′′ and σ′′|F ′ = σ′. Given a linearly ordered col-
lection {(F (i), σ(i))} of such pairs, take F (∞) := ∪iF

(i) and define
σ(∞) : F (∞) →֒ L via σ(∞)(α) = σ(i)(α) where F (i) ∋ α. Then F (∞)

is an extension of F contained in E, σ(∞) is its embedding into L
such that σ(∞)|F = σ, and the pair (F (∞), σ(∞)) is an upper bound
for all (F (i), σ(i)). By Zorn’s lemma, there exists a maximal element
(F̃ , σ̃). We claim that F̃ = E. Indeed, if α ∈ E is not in F̃ , let
f = xn+a1x

n−1+ · · ·+an be the minimal polynomial of α in F̃ [x], and
g = xn+σ̃(a1)x

n−1+· · ·+σ̃(an). Let β be a root of g in L (this is where
we need L to be algebraically closed). Then the embedding σ̃ : F̃ ⊂ L
can be extended to F̃ (α) by mapping α to β. This contradicts the
maximality of (F̃ , σ̃), and shows that F̃ = E.

Remark. Note that when E ⊃ F is finite, the use of Zorn’s lemma is
unnecessary, since any tower of extensions of F in E stops after finitely
many steps.

Applying now Lemma 2 to L = F , σ : F ⊂ F the natural embedding,

and E = F
′
another algebraically closed algebraic extension of F , we

obtain an embedding F ⊂ σ̃(F
′
) ⊂ F . Since σ(F

′
) ∼= F

′
is algebraically

closed, and F is algebraic over it, we conclude that σ(F
′
) = F .

5. Finite fields. A finite field F must have finite characteristic p,
i.e. be a finite extension of Zp, of certain degree n = [F : Zp] <∞, and
hence algebraic, consisting of q := pn elements. By Lemma 2, F can
be embedded into the algebraic closure of Zp: Zp ⊃ F ⊃ Zp. Below we

describe all subfields in Zp.

To begin with, every α ∈ Zp is contained in a finite subfield F =
Zp(α) of certain degree n over Zp. Since the multiplicative group F×

has order pn − 1, all elements of F are roots of xp
n − x. Since this

polynomial cannot have more than pn roots, we conclude that F can
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be characterized in Zp as the set of all roots of this polynomial. To
prove the converse, i.e. that for every n = 1, 2, . . . the set of roots of
xp

n − x forms a subfield in Zp of order pn, consider the Frobenius map

Φ : Zp → Zp : α 7→ αp.

It follows from the properties of the binomial coefficients
(
p
k

)
≡ 0

mod p for k 6= 0, p, that Φ(α + β) = Φ(α) + Φ(β). It is also obvious
that Φ(αβ) = Φ(α)Φ(β). Since Φ(1) = 1, Φ is an injective field homo-
morphism. But Φ(Zp) ∼= Zp is algebraically closed, and so Φ(Zp) = Zp,

i.e. Φ is an automorphsm of Zp over Zp.
Note that the roots of xp

n − x are fixed points of Φn. Clearly, the
sums, products, and ratios of fixed points of a field automorphism are
also fixed points of it, and therefore form a subfield. It remains to show
that the number of fixed points of Φn equals pn, i.e. that xp

n−x (which
must factor over Zp into p

n linear factors) has only simple roots. We’ll
prove this in the next section. Taking this for granted, we obtain

Theorem. For each n = 1, 2, . . . , the field Zp contains a unique
subfield Fpn of order pn, namely the set of fixed points of the nth power

Φn of the Frobenius automorphism, and Zp = ∪n>0Fpn.

Corollary 1. For every prime p and every n > 0, a field of order
pn exists and is unique up to isomorphism.

Indeed, such a field is algebraic over Zp, and therefore is contained
in the algebraic closure of Zp, which is unique up to isomorphism.

Corollary 2. Fpn contains Fpm if and only if m|n.
The “only if” part follows from the fact that that a degree d extension

of Fq has qd elements. Conversely, when n = md, fixed points of Φm

are fixed by Φmd as well.

Corollary 3. The mth power Φm of the Frobenius automorphism
defines an automorphism of Fpmd over Fpm (i.e. identical on Fqm), and
generates the cyclic group of order d of such automorphism.

We will see later that these are all automorphisms of Fpmd over Fpm .

Thus, the set of finite subfields in Fp∞ , partially ordered by inclusion,
is in one-to-one correspondence with the set of positive integers N =
{1, 2, 3, . . . } partially ordered by divisibility m|n, and with the set of
subgroups nZ in Z ordered by the inverse inclusion. Namely, in the
infinite cyclic group generated by Φ, to a field Zpn there corresponds
the subgroup (generated by Φn) of those automorphisms which fix all
elements of Fpn .
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This picture may later serve us as an illustration to the Fundamental
Theorem of Galois Theory.

6. Multiple roots. How to determine whether a polynomial has
multiple roots?
Define the derivative d/dx : F [x] → F [x], f 7→ f ′ as an F -linear map

such that d(xn)/dx := nxn−1 for each n = 0, 1, 2, . . . :

d

dx

(
a0x

n + a1x
n−1 + · · ·+ an

)
:= a0nx

n−1+a1(n−1)xn−2+ · · ·+an−1.

It satisfies the product (or Leibniz’) rule: (fg)′ = f ′g + fg′. If a poly-
nomial f ∈ F [x], factored over F as f(x) = c

∏
i(x− αi), has a double

root α, then f ′(α) = 0, and hence f and f ′ are not coprime in F [x].
This can be detected by the Euclidean algorithm inside F [x] without
resorting to any extension of F .
For example, f(x) := xp

n − x from Zp[x] has f
′(x) = pnxp

n−1 − 1 =
−1, which is a unit in F [x], and hence is coprime to f . Therefore
xp

n − x has only simple roots, as assumed earlier.
Another question which can be resolved now is how the inverse to

the Frobenius automorphism Φ of Fp∞ is defined. For α ∈ Fp∞ , we
are looking for β such that βp = α, i.e. for a root of polynomial
g(x) := xp − α from Fp∞ [x]. What should be puzzling here is how can
such β be unique? (But it should be, since Φ is bijective!)
We encounter here a phenomenon impossible in characteristic 0:

g′(x) = pxp−1 = 0 identically, as well as g′′ = 0, g′′′ = 0, and so
on. Thus, if g(β) = 0, then β should be a multiple root, of multiplicity
equal to the degree n of g. And indeed: (x− β)p = xp − βp = xp − α.
Thus, Φ−1(α) = β, the only (though multiple) root of xp − α.

7. Separability. Let’s now explore the question whether an ir-
reducible polynomial f ∈ F [x] (which we will for convenience assume
monic) of degree > 1 can have multiple roots. First, it is impossible
when char(F ) = 0, since in this case f ′ is not constant and would have
a non-trivial common factor with f , making f reducible. However, if
char(F ) = p, it is possible that f ′ = 0 identically. This happens exactly
when f(x) = g(xp), where g ∈ F [y] is another polynomial — which in
its turn may have or not have the same property g′ = 0. In a few steps,
we arrive at f(x) = h(xp

e

) where h is irreducible over F and has only
simple roots. Factoring h =

∏
(x − αi) over F , and taking βi to be a

root of xp
e − αi in F , we find that f(x) =

∏
(x− βi)

pe .
This exotic phenomenon is called “non-separability”. More precisely,

an element α ∈ F whose minimal polynomial has only simple roots
is called a separable element. An irreducible polynomial from F [x]
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which has only simple roots in F is called a separable polynomial. An
extension K ⊃ F all of whose elements are separable over F is called
separable extension. Otherwise the extension, or the polynomial, or
the element are called non-separable (as for example each element βi
above).
Not that a field E separable over F ⊂ E remains separable over any

intermediate subfield K. Indeed, the minimal polynomial for α ∈ E
overK divides the minimal polynomial of α over F , and if the latter has
only simple roots, the former does too. (Of course, K is also separable
over F — because it consists of separable elements.)
In the sequel, we will deal with only separable extensions.

A field F is called perfect if every irreducible polynomial from F [x]
is separable. Thus, all fields of characteristic 0 are perfect. Any al-
gebraically closed field is perfect (just because all irreducibles over it
have degree 1). Any algebraic extension K ⊃ P of a perfect field P is
perfect (because any algebraic extension field L ⊃ K is algebraic over
P , hence separable over P , and hence separable over K).
Besides, any finite field is perfect. Indeed, if f is irreducible of degree

n in Fq[x], and α is a root of f , then α is a root of g = xq
n−x. Since f is

irreducible, and the greatest common divisor of it and g is non-trivial,
we conclude that f divides g. But g has only simple roots, hence so
does f .

8. Primitive elements.

Theorem. Let E ⊃ F be a finite separable extension. Then E = F (θ)
for some θ ∈ E, i.e. E is obtained by adjoining to F one element.

It is called a primitive element of the extension.

Proof. Since E can be obtained by adjoining consecutively several
elements to F , it suffices to prove the theorem for a field F (α, β) ob-
tained by adjoining two algebraic elements. We may assume that F
is infinite, since if its is not, then F (a, β) is finite too, and therefore
its multiplicative group is cyclic (as is the multiplicative group of any
finite filed), and so its generator can be taken on the role of a primitive
element.
Let f and g be minimal polynomials for α and β, and let α1 =

α, α2, . . . , αn be roots of f in F , and and β1 = β, β2, . . . , βm of g
(distinct due to the separability assumption). Each linear equation
αi+xβj = α+xβ with j > 1 has at most one root in F (since bj 6= β),
and so there exists c ∈ F such that αi + cβj 6= α + cβ for all i, j with
j 6= 1. We will show that θ := α + cβ is primitive. Indeed, β is a
common root of two polynomial equations with coefficients in F (θ):
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g(x) and f(θ − cx). Other roots of g are βj with j > 1, and do not
satisfy f(θ − cβj) = 0 since α+ cβ − cβj 6= αi for any i. Therefore the
greatest common divisor of these polynomials (which by the Euclidean
algorithm must have coefficients in F (θ)) is x − β. Thus, β ∈ F (θ),
and hence α = θ − cβ ∈ F (θ) too, and so F (α, β) = F (θ).

Corollary 1. A separable extension E ⊃ F of finite degree n has
exactly n embeddings into F .

Proof. Let h ∈ F [x] be the minimal polynomial of a primitive
element θ of E over F , and θ1 = θ, θ2, . . . , θn be its roots. Here n =
deg h due to separability. By the Key Lemma, E = F (θ) ∼= F [x]/(h)
has n embeddings into F over F : Every such an embedding E ⊂ F is
uniquely determined by a root θi to which θ is mapped.

Corollary 2. In the group of automorphisms of F over F , the
subgroup of automorphisms identical on an intermediate subfield E ⊂
F , separable and finite over F , has finite index [E : F ].

Proof. By Lemma 2 of Section 4, applied to the extension E ⊂
F , any re-embedding of E into F extends to an automorphism of F .
Therefore automorphisms of F over F act transitively on the set of
such re-embedding of E ⊂ F identical on F . By Corollary 1, there are
[E : F ] of them. The stabilizer consists of those automorphisms which
preserve the primitive element θ, and hence are identical on E = F (θ).

9. Normality. Elements α, β ∈ F are called conjugated over F is
they are transformed into each other by an automorphism of F . We
see from Lemma 2 of Section 4, that α is conjugated exactly to each of
the n roots of its minimal polynomial, where n is equal to the degree
of this polynomial, provided that it is separable, i.e. has no multiple
roots.
Given a polynomial f ∈ F [x], irreducible or not, (or any set of

polynomials), consider in F the smallest subfield containing all roots
α1, α2, . . . of f (respectively, all roots of the polynomials from the set).
This field can be obtained by consecutively adjoining the roots to F ,
resulting in the field F (α1, α2, . . . ), or alternatively, by intersecting all
subfields in F containing all αi. The field F (α1, α2, . . . ) is called the
splitting field of f (respectively, of the given set of polynomials).

Proposition. The following conditions for a subfield E ⊂ F con-
taining F are equivalent:
(i) E is a splitting field of a set (possibly infinite) of polynomials

from F [x].
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(ii) E is invariant under all automorphisms of F over F (i.e. auto-
morphisms identical on F ).
(iii) Every irreducible polynomial g ∈ F [x] which has a root in E has

all its roots in E.

Proof. (i) implies (ii): Any automorphism of F over F preserves
each polynomial from F [x], and hence merely permutes the roots of it
in F , and hence preserves the smallest subfield containing the roots of
the given set of polynomials.
(ii) implies (iii): Since all roots of g are conjugated by automorphisms

of F , if one of them lies in E, all others lie there too.
(iii) implies (i): For any collection of generators of E over F , take the

minimal polynomial over F of each generator. Then E is the splitting
field for this collection of polynomials.

An algebraic extension E ⊃ F satisfying any (and hence all) of the
three conditions is called normal.

Corollary. In the group of automorphisms of F over F , the auto-
morphisms identical on a subfield E, normal over F , form a normal
subgroup.

Proof. This subgroup is the kernel of the group homomorphism
which to an automorphism of F over F associates an automorphism of
E over F , defined by restricting the former to the subfield E (invariant
due to the normality assumption).

Note that if E is normal over F , it remains normal over every inter-
mediate subfield, E ⊃ K ⊃ F , since every automorphism of F = K
identical on K is also identical on F , and thus leaves E invariant.

10. Galois groups. Let E ⊃ F be a finite, separable, normal
extension. Automorphisms of E identical on F form a group, which is
called the Galois group of the extension, and is denoted G(E/F ). By
the previous results, it is a finite group of order [E : F ], and can be
identified with the quotient of the group of automorphisms of F over
F by the normal subgroup of those automorphisms which are identical
on E.

The Fundamental Theorem of Galois Theory. For a separable,
normal, finite field extension E ⊃ F , there is a bijection between the
set of subgroups H ⊂ G in the Galois group G = G(E/F ) and the set
of intermediate fields E ⊃ K ⊃ F , reverse with respect to the partial
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orderings of these sets by inclusion, and defined by

H 7→ K = EH := {α ∈ E | ∀h ∈ H, h(α) = α}
K 7→ H = GK := {h ∈ G | ∀α ∈ K, h(α) = α}.

Furthermore, GK = G(E/K), so |GK | = [E : K], |G/GK | = [K : F ].
Moreover, conjugated subgroups H correspond to conjugate subfields
EH , and in particular the subfield EH is normal if and only if H is nor-
mal in G. When this is the case, the quotient group G/H = G(EH/F ).

Proof. Obviously, all elements in E invariant under transformations
from H ⊂ G form a subfield, EH , and conversely, the transformations
of E over F identical on K form a subgroup, GK . It is also clear that
K ⊂ K ′ implies GK′ ⊃ GK , and H ⊂ H ′ implies EH ⊃ EH′

.
Suppose that all elements of GK fix some α ∈ E. Then α has only

one conjugate element in the normal separable extension E ⊃ K. Then
the degree of the minimal polynomial of α over K is equal to 1, i.e.
α ∈ K. Thus, EGK = K.
Consider now the subfield EH of fixed points of some subgroup H ⊂

G. The extension E ⊃ EH is generated by some primitive element θ,
which is a root of the polynomial

∏
h∈H(x − h(θ)). The polynomial

is H-invariant, and hence lies in EH [x]. The degree [E : EH ] cannot
exceed therefore the degree |H| of this polynomial. But the degree
equals the order of the Galois group G(E/EH) = GEH ⊃ H of this
extension. Thus, H = GEH is the Galois group, and consequently, the
two correspondences: H 7→ EH and K 7→ GK , are inverse to each
other.
Elements g ∈ G from the same leftH-coset transform EH to the same

subfield, g(EH), conjugate to EH , whose group Gg(EH) = gHg−1, i.e. is
conjugated to H. Thus, H is normal in G whenever EH is G-invariant,
i.e. normal over F . When it is, the homomorphism G → G(EH/F ),
defined by the restriction of g ∈ G to EH , has H as its kernel, and
is surjective, because |G(EH/F )| = [EH : F ] = [E : F ]/[E : EH ] =
|G|/|H|. Thus, G(EH/F ) = G/H.

Example. Each extensions Fpn ⊃ Zp is normal and separable, since
Fpn is the splitting field of xp

n−x, whose roots are simple, and of which
Fpn consists. Therefore Fpmd ⊃ Fpm is also normal and separable, and
has Galois group of order d. But this Galois group contains the cyclic
subgroup of order d generated by Φm. Thus this cyclic group is the
entire Galois group of this extension.

Remark. Let f ∈ F [x] be the minimal polynomial of a primitive
element θ in a normal separable extension E ⊃ F of degree n. Then
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the Galois group permutes the n roots of the minimal polynomial, and
is thereby realized as a subgroup of order n in Sn.

11. Cyclotomic fields. Let n be a positive integer. The nth
cyclotomic polynomial is defined by

ψn(x) :=
∏

k∈Z×

n

(
x− e2πik/n

)
,

i.e. as the monic polynomial of degree ϕ(n) := |Z×
n | whose roots are

all the primitive complex n-th roots of unity. Since each root of xn − 1
(i.e. each nth root of unity ζ) is primitive dth root of unity for some
divisor d|n (namely, d is the least power such that ζd = 1), we have

xn − 1 =
∏

ζ:ζn=1

(x− ζ) =
∏

d|n

ψd(x).

Since xn − 1 ∈ Z[x], it follows by induction that all ψn ∈ Z[x].
Indeed, ψ1 = x− 1 ∈ Z[x], and if ψd ∈ Z[x] for all d < n, then

ψn(x) = (xn − 1)/
∏

d|n,d<n

ψd(x) ∈ Z[x],

because the long division algorithm of an integer coeficient pollynomial
by a monic integer coefficient polynomial is performed within Z[x].

Examples.

x6 − 1 = ψ1ψ2ψ3ψ6 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1),

x8 − 1 = ψ1ψ2ψ4ψ8 = (x− 1)(x+ 1)(x2 + 1)(x4 + 1).

Theorem. Cyclotomic polynomials are irreducible over Q.

Proof. We want to show that the minimal polynomial for e2πi/n

must also have e2πik/n as a root provided that k is coprime to n. Since
such k can be written as a product of primes coprime to n, it suffices
to show that if ζ is an nth root of unity, and a prime p does not divide
n, then ζ and ζp are conjugate over Q.
Thus, let f be the minimal polynomial for ζ, and hence xn − 1 =

f(x)g(x) for some g ∈ Z[x]. If ζp is not a root of f , then it is a root of
g, and hence ζ is a root of g(xp). From irreducibility of f we conclude
that f divides g(xp) over Z.

Now denote by f̂ and ĝ the reductions of f and g modulo p. Since

ĝ(xp) = (ĝ(x))p in Zp[x], we conclude that f̂ and ĝ have a common root

in Zp. This implies that xn − 1 = f̂(x)ĝ(x) has a multiple root in Zp.
But since p does not divide n, the only root of the derivative nxn−1 is



15

x = 0, which is not a root of xn − 1. This contradiction show that ζp

must be a root of f , as required.

Corollary 1. The field Q
(
e2πi/n

)
is the splitting field of the nth

cyclotomic polynomial ψn, and is therefore a normal extension of Q of
degree ϕ(n) = |Z×|.
The field Q

(
e2πi/n

)
is called the nth cyclotomic field.

Corollary 2. The Galois group of the nth cyclotomic field over Q

is isomorphic to the multiplicative group Z×
n .

Proof. Every automorphism of this field maps e2πi/n into another
primitive nth root of unity, e2πik/n, where k is coprime to n, and is
uniquely determined by a choice of such a root. Let σk be the auto-
morphism, determined by the choice of such k (which is relevant only
modulo n). We have:

σkσl
(
e2πi/n

)
= σk

(
e2πil/n

)
= e2πilk/n = σkl

(
e2πi/n

)
,

i.e. σkσl = σkl.

Example 1. The 8th cyclotomic polynomial ψ8 = x4 + 1 has roots
ζ±1 = (1± i)/

√
2 and ζ∓3 = −(1± i)/

√
2. The cyclotomic field is

Q(ζ) = {a+ bζ + cζ2 + dζ3 | a, b, c, d ∈ Q, ζ4 = −1}.
Its Galois group, isomorphic to Z×

8 = {±1,±3 mod 8}, has 3 subgroup
of order 2, generated by σk, k = −1, 3,−3 mod 8 respectively. Thus,
the field has 3 non-trivial subfields, each a degree 2 extensions of Q
formed by the fixed points of σk.
For k = −1, we have:

σ−1 : a+ bζ + cζ2 + dζ3 7→ a− bζ3 − cζ2 − dζ,

i.e. the fixed points are characterized by b = −d, c = 0, and have
the form a + b(ζ − ζ3) = a + b

√
2. The subfield is therefore Q(

√
2) =

Q[x]/(x2 − 2).
For k = 3 we similarly have

σ3 : a+ bζ + cζ2 + dζ3 7→ a+ bζ3 − cζ2 + dζ.

So, the fixed points have the form a + b(ζ + ζ3) = a + b
√
2i, i.e. the

subfield is Q[
√
2i] = Q[x]/(x2 + 2).

Finally, for k = −3 we have

σ−3 : a+ bζ + cζ2 + dζ3 7→ a− bζ + cζ2 − dζ3.

So, the fixed points a + bζ2 = a + bi form the cyclotomic subfield
Q(i) = Q[x]/(x2 + 1).
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Example 2. Take n = p prime. All roots of ψp(x) = xp−1 + xp−2 +
· · ·+ x+ 1 can be obtained from ζ = e2πi/p by the action of the Galois
group ∼= Z×

p , which is cyclic of order p − 1 (since the multiplicative
groups of any finite field is cyclic). Let σ : Q(ζ) → Q(ζ) denote a
generator of this cyclic group. Then iterations of σ as a permutation
of the roots arranges all the p − 1 roots into a cycle of length p − 1,
staring from ζ:

σ : ζ 7→ σ(ζ) 7→ σ2(ζ) 7→ · · · 7→ σp−2(ζ)[ 7→ σp−1(ζ) = ζ].

The roots σr(ζ), r = 1, . . . , p− 1, form a basis of Q(ζ) over Q.
Indeed, these are just permuted ζj, j = 1, . . . , p− 1. Any non-trivial

linear relation
∑
ajζ

j = 0 between them with rational coefficients aj
would yield, after dividing by ζ, a polynomial

∑
ajx

j−1 of degree <
degψp with a root ζ. But this contradicts the minimality of ψp.
Now the subfield of Q(ζ) whose elements are fixed by the cyclic group

of σd, where d is any divisor of p − 1, can be described as the span of
the following Gauss sums:

(p−1)/d∑

m=1

σr+md(ζ), r = 1, . . . , d.

12. Regular polygons. The ancient problem about (the possibil-
ity of) constructing a regular n-gon by straightedge and compass was
solved by K. F. Gauss around 1800. The problem naturally leads to
studying cyclotomic fields. Namely, if the unit circle is divided into n
equal parts, then cos 2π/n and sin 2π/n can be obtained by a succes-
sion of quadratic extensions of Q, and hence ζ = e2πi/n (obtained by
adjoining

√
−1), together with the whole cyclotomic field Q(ζ) can be

obtained by such a succession. Conversely, if Q(ζ) is obtained by a
succession of quadratic extensions of Q, then cos 2π/n = (ζ + ζ−1)/2

and sin 2π/n =
√

1− cos2 2π/n are constructible.
Suppose therefore that Q

(
e2πi/n

)
⊂ K where the field K is obtained

by a succession of quadratic extensions of Q. Then the degree [K : Q]
must be a power of 2, and therefore the degree ϕ(n) of the cyclotomic
extension must be a divisor of it, i.e. a power of 2 as well.

Proposition.For n = pk11 · · · pkrr , where pi are distinct primes, and
ki > 0, we have the following explicit formula:

ϕ(n) = n

(
1− 1

p1

)
· · ·

(
1− 1

pr

)
=

r∏

i=1

(pi − 1)pki−1
i .
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Proof. Consider the ring homomorphism

Z/nZ →
(
Z/pk11 Z

)
× · · · ×

(
Z/pkrr Z

)
,

defined by assigning to a congruence class modulo n the string of its
congruence classes modulo pkii . Since the latter powers are pairwise
coprime, the kernel of the homomorphism is trivial. But the order of
both rings is the same, equal to n, and so the map must be a ring
isomorphism. In particular, it establishes an isomorphism between the
groups of units:

(Z/nZ)× ∼=
(
Z/pk11 Z

)× × · · · ×
(
Z/pkrr Z

)×
.

This implies ϕ(n) =
∏

i ϕ(p
ki
i ). It remains to notice that out of pk

remainders modulo pk, pk−1 are divisible by p, so ϕ(pk) = pk − pk−1 =
(p− 1)pk−1.

We see that ϕ(n) is a power of 2 only if n is a power of 2 or the
product of such a power with one or several distinct odd primes of the
form p = 2m+1. Furthermore, note that for an odd l, xl+1 is divisible
by x + 1. Therefore if the above m has an odd factor, then pm + 1 is
composite. Thus, p must be a prime of the form 22

k

+ 1.
The numbers Fk = 22

k

+ 1 (called Fermat’s numbers, because P.
Fermat conjectured that they all are primes) are known to be primes
for k = 0, 1, 2, 3, 4:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

F5 is actually composite (divisible by 641), and it is currently not known
whether any of the other Fermat numbers is prime.

On the other hand, when p = 22
k

+ 1 is prime, then the cyclotomic
field Q

(
e2πi/p

)
is obtained from Q by a succession of quadratic exten-

sions.
Indeed, the multiplicative group (Zp)

× is cyclic (as it is for any finite

field) of order 22
k

. Therefore the Galois group G has a chain of nested
cyclic subgroups G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ G2k = {id}, with Gs

of index 2 in Gs−1. Respectively, the cyclotomic field has a chain of
nested subfields Q = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ E2k = Q

(
e2πi/p

)
, where

each degree [Es : Es−1] = 2.

Clearly, if m and n are coprime, once a circle is divided into m equal
parts and n equal parts, it is also divided into mn equal parts (e.g.
because 1/mn = k/n + l/m for some k and l). Since bisecting any
angle is easily accomplished by straightedge and compass, we arrive at
the following
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Theorem (Gauss). A regular n-gon can be constructed by straightedge
and compass if and only if n is a power of 2 or the product of a power
of 2 with one or several distinct Fermat primes.

Example. Prior to establishing this theorem, Gauss invented a con-
struction of the regular 17-gon. Thus, take p = 17 = 22

2

+ 1. The
multiplicative group Z×

17 is cyclic of order 16, with 8 generators, one
of which is 3: 32 ≡ (−8) mod 17, 34 ≡ (−8)2 ≡ (−4) mod 17,
38 ≡ (−4)2 ≡ (−1) mod 17, and only 316 ≡ 1 mod 17. Therefore
the automorphism of Q(ζ), where ζ = e2πi/17, defined by σ(ζ) = ζ3

generates the Galois group G0. The subgroups G1, G2, and G3 are
generated respectively by σ2(ζ) = ζ−8, σ4(ζ) = ζ−4, and σ8(ζ) = ζ−1.
Iterating σ, we get all the 16 roots ζj , j ∈ (Z/17Z)× of ψ17 in this

order:

ζ1, ζ3, ζ−8, ζ−7, ζ−4, ζ5, ζ−2, ζ−6, ζ−1, ζ−3, ζ8, ζ7, ζ4, ζ−5, ζ2, ζ6 [, ζ1].

Therefore fixed points of σ2 form the subspace spanned by 2 Gauss
sums

η+ =
∑

j=1,2,4,8

(ζj + ζ−j), and η− =
∑

j=3,5,6,7

(ζj + ζ−j).

Note that both η+ + η− and η+η− are σ-invariant, and hence lie in Q,
making η± the roots of a quadratic equation. Explicitly, η++η− = −1,
and (as one can compute) η+η− = 4(η+ + η−) = −4. So the quadratic
equation is

x2 + x− 4 = 0, i.e. η± =
−1±

√
17

2
.

Next, fixed points of σ4 form the subspace spanned by 4 Gauss sums

λ1 = µ1 + µ4, λ2 = µ2 + µ8, λ3 = µ3 + µ5, λ4 = µ6 + µ7,

where µj := ζj + ζ−j = 2 cos 2πj/17.
Note that λ1+λ2 = η+, λ3+λ4 = η−, λ1λ2 = −1 = λ3λ4. Thus, λ1,2

and λ3,4 are respectively the roots of the quadratic equations

x2 − η+x− 1 = 0 and x2 − η−x− 1 = 0.

Finally, fixed points of σ8 form the subspace spanned by 8 Gauss
sums µj, j = 1, 3, 8, 7, 4, 5, 2, 6. It is not hard to see that this field
is Q(cos 2π/17), i.e. µ1 is its primitive element over Q. We have:
µ1 + µ4 = λ1 and µ1µ4 = λ3. Therefore µ1, µ4 can be found as the
roots of the quadratic equation

x2 − λ1x+ λ3 = 0.

This leads to an algorithm for constructing cos 2π/17 by straightedge
and compass.
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13. Cyclic extensions. Finding the roots of quadratic polynomials
x2 + ax + b is reduced to the operation of extracting square roots of
given numbers thanks to the quadratic formula:

x =
−a±

√
a2 − 4b

2
.

It is a classical problem of algebra to find out whether roots of a degree
n polynomial

P (x) := xn + a1x
n−1 + · · ·+ an

can be obtained by a succession of arithmetic operations and the op-
erations of extracting mth roots (with arbitrary m) of previously com-
puted numbers. The problem can be understood as the question about
existence of a general formula for the roots of all degree n polynomials,
but also makes sense for a particular polynomial whose coefficients are
given explicitly.
The version concerning the general formula (say, for complex coeffi-

cient polynomials) can be interpreted in terms of the theory of fields
by starting with the field F = C(a1, . . . , an) of all rational functions
in the variables a1, . . . , an, and examining towers of algebraic exten-
sions F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ FN such that each Fs is obtained
from Fs−1 by adjoining a root of certain order of one of its elements:
Fs−1( m

√
α), where α ∈ Fs−1. The version of the problem concerning

a specific root β of a specific polynomial P can also be phrased this
way. Namely, one assumes that F0 is a field containing all coefficients
of P as well as all roots of unity, and tries to find a tower of extensions
Fs = Fs−1( ms

√
as−1) such that FN contains β. In this case one says that

β is expressible in radicals.
In any case, the problem requires a good understanding of splitting

fields of polynomials xm − a.

Let F be a field containing mth roots of unity ζk, k = 1, . . . ,m− 1.
For the sake of simplicity, let’s assume that charF = 0. Let a be any
element of F , and α a root of xm − a in F (where a 6= 0). Then
α, ζα, . . . , ζm−1α form a complete set of roots of xm − a. This proves
that F (α) is the splitting field of xm − a and is therefore normal. Any
transformation from the Galois group of F (α) over F maps α to αζk

an is determined by k modulo m. The composition of transformations
α 7→ αζk and α 7→ αζ l maps α to αζk+l. This identifies the whole
Galois group with a subgroup of the cyclic group of all mth roots of
unity, and any such a subgroup is cyclic.
A normal separable extension with a cyclic Galois group is called

cyclic. Thus, the extension F ( m
√
a) ⊃ F is cyclic. In the case when



20

xm − a is irreducible in F [x], the Galois group has order m, and is
identified with the entire cyclic group of the mth roots of unity. Our
goal now is to prove that converse statement:

Proposition. A normal extension E ⊃ F with G(E/F ) ∼= Zm of
a characteristic 0 field F containing all mth roots of unity is obtained
from F by adjoining a root of xm − a for some a ∈ F .

Proof. Let σ be a generator of the Galois group ∼= Zm. It can be
considered as a linear transformation of the m-dimensional F -vector
space E, satisfying σm = I. In particular, the eigenvalues of σ must
be mth roots of unity. Since all of them lie in F , the space E can
be decomposed into the direct sum of eigenspaces. Explicitly, for any
β ∈ E, the Lagrange resolvent

βl =
m−1∑

k=0

ζ−klσk(β)

satisfies σ(βl) = ζ lβl, i.e. βl, if non-zero, is an eigenvector of σ with
the eigenvalue ζ l. On the other hand, β = (β0+ · · ·+βl−1)/m. Indeed,
for a fixed k

m−1∑

l=0

ζ−kl =
1− ζ−km

1− ζ−k
= 0 when k = 1, . . . ,m− 1,

and = m when k = 0.
This is true for any linear transformation σ of finite order m, and

the total dimension m can be split between those of the eigenspaces
arbitrarily. It turns out that when σ is a field automorphism, all the
eigenspaces have the same dimension 1. In particular, there exists
β ∈ E such that its Lagrange resolvent α := β1 6= 0. Taking this
for granted, we find that αl, l = 1, . . . ,m, are eigenvectors of σ with
the eigenvalues ζ l. In particular, a := αm lies in F (since it is fixed
by σ), and α generates the whole extension (since it is not fixed by
any non-trivial element of the Galois group). Thus E = F (α) where
αm = a ∈ F .

A proof of the statement we took for granted makes use of the fol-
lowing fruitful idea: A field automorphism E → E defines a group
homomorphism E× → E×. In general, a homomorphism of a group G
to the multiplicative groupK× of a fieldK is called aK-character of G.
The following lemma about linear independence of different characters
implies that

∑m−1
k=0 ζ

−kσk (considered as a linear combination of such
characters σk with the coefficients ζ−k) is non-zero, and hence there
exists β 6= 0 such that β1 6= 0.
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Lemma (E. Artin). Different characters χ1, . . . , χn : G → K× are
linearly independent.

Proof. Since χ(e) = 1, the case of n = 1 is clear. Let n > 1, and

G ∋ g 7→ c1χ1(g) + c2χ2(g) + · · ·+ cnχn(g) = 0

be the shortest identically zero linear combination with non-zero coef-
ficients ci of different characters χi. Pick g0 ∈ G such that χ1(g0) 6=
χ2(g0), and use he homomorphism property χi(g0g) = χi(g0)χi(g) to
rewrite the relation as

c1χ1(g0)χ1(g) + c2χ2(g0)χ2(g) + · · ·+ cnχn(g0)χ(g) = 0 for all g ∈ G.

Subtracting from it the original relation multiplied by χ1(g0), we ob-
tain a zero linear combination of χ2, . . . , χn where χ2 occurs with the
coefficient c2(χ2(g0) − χ1(g0)) 6= 0. It is shorter than the initial one,
which contradicts its choice, thus completing the proof.

14. Solvability by radicals. Let F be a field, which we still
consider having characteristic 0 and containing all roots of unity of all
relevant orders, and α ∈ F . We want to translate the property of α to
be expressible in radicals into the language of Galois groups. For this,
we need a notion from group theory: A finite group G is called solvable
if it has a filtration by a chain of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ GN ⊃ {e}
such that each Gs is normal in Gs−1, and each quotient Gs−1/Gs is
cyclic. Due to the properties of finite abelian groups, the last condition
can be replaced by the equivalent (yet seemingly weaker) requirement
that the quotients are abelian, or by the (seemingly stronger) one that
they are cyclic of prime orders.

Proposition. An element α ∈ F is expressible in radicals if and
only if it is contained in a normal extension E ⊃ F whose Galois group
G(E/F ) is solvable.

Proof. There is one technical difficulty that we need to handle first.
The same way as for nested G ⊃ G′ ⊃ G′′, G′ being normal in G, and
G′′ in G′ does not imply that G′′ is normal in G, in a tower F ⊂ F ′ ⊂ F ′′

of fields extensions, F ′′ can be not normal over F even if it is normal
over F ′, and F ′ is normal over F . For example, Q( 4

√
2) is not normal

(since it does not contain the non-real roots of the minimal polynomial
x4−2) while each “floor” in the tower Q ⊂ Q(

√
2) ⊂ Q( 4

√
2) is normal.

Consider however a tower of extensions F ⊂ E ⊂ E ( p
√
a) ⊂ K,

where E is normal over F , p
√
a is a root of prime order from some

a ∈ E, and K is the smallest extension of E ( p
√
a), normal over F . We
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claim that if elements of E are expressible in radicals (starting from
elements of F ), then elements of K are also expressible in radicals.
Indeed, if α = p

√
a is a root of xp − a, then its conjugates σ(α) ∈ K

by all elements σ ∈ G(K/F ) are roots of xp − σ(a), whose coefficient
σ(a) ∈ E (since E is normal), and by the assumption is expressible in
radicals over F . Adjoining all σ(α) to E, we obtain a field contained
in K and normal over F , since it is invariant under the entire Galois
group G(K/F ). Thus, this field coincides with K, whose elements are
therefore expressible in radicals. The moral is: we need to adjoin not
only the root p

√
a, but also such roots of all elements conjugate to a.

Now we can conclude that any α ∈ F expressible in radicals lies in
some normal over F extension field E obtained from F by a succession
of cyclic extensions, whose orders can be always assumed prime: F =
F0 ⊂ F1 ⊂ · · · ⊂ FN = E. Therefore the Galois group G(E/F ) is
filtered by the subgroups

Gs = {σ ∈ G(E/F ) | σ(a) = a for all a ∈ Fs},
each Gs normal in Gs−1, and such that Gs−1/Gs is cyclic (of prime
order). Thus, G(E/F ) is solvable.
Conversely, when G(E/F ) is filtered by subgroups Gs with such

properties, the fields Fs formed by fixed elements of Gs turn out to
be cyclic extensions of Fs−1 of prime orders, i.e. (by the results of the
previous section) are obtained by adjoining to Fs−1 a root p

√
a for some

a ∈ Fs−1. Thus, all elements of E are expressible in radicals.

Consider the relation

(x− x1) · · · (x− xn) = xn + a1x
n−1 + · · ·+ an−1x+ an.

From it, the coefficients ak of the polynomial on the right side are
expressed as elementary symmetric functions of the roots x1, . . . , xn on
the left:

a1 = −(x1 + · · ·+ xn)

a2 = x1x2 + x1x3 + · · ·+ xn−1xn

· · ·
ak = (−1)k

∑

1≤i1<···<ik≤n

xi1 · · · xik

· · ·
an = (−1)nx1 · · · xn.

We apply the previous result to the field E of rational functions
C(x1, . . . , xn) with coefficients in the field C of complex numbers (or in
any other field of characteristic 0 containing all roots of unity). Take
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F = C(a1, . . . , an) to be the subfield of it consisting of rational functions
of the elementary symmetric functions ak(x1, . . . , xn), k = 1, . . . , n.
Then E ⊃ F is a normal algebraic extension: the splitting field of the
polynomial xn + a1x

n−1 + · · · + an ∈ F [x]. The Galois group G(E/F )
is the total symmetric group Sn acting on E by the permutations of
x1, . . . , xn. We arrive at the following

Theorem (Abel). For n > 4, the roots xi of the general equation
xn + a1x

n−1 + · · · + an of degree n are not expressible by radicals in
terms of its coefficients ak.

Proof. For n > 4, the group Sn has only one non-trivial normal
subgroup, An, which is simple, and non-cyclic. Thus, Sn is not solvable.

15. Cubics and quartics. To simplify computations, reduce the
general cubic polynomial x3 + a1x

2 + a2x+ a3 by “completing cubes”,
i.e. by translating x 7→ x−a1/3, to the cubic polynomial with the zero
root sum: x3 + px+ q. It has 3 roots x1, x2, x3 satisfying

x1 + x2 + x3 = 0, x1x2 + x2x3 + x3x1 = p, x1x2x3 = −q.
The filtration S3 ⊃ A3 ⊃ {e} by the subgroup A3 of order 3 and index

2 corresponds to the tower of extensions F = C(p, q) ⊂ F (
√
D) ⊂

F (x1, x2, x3) = E of degree 2 and 3 respectively, where
√
D = (x1 − x2)(x1 − x3)(x2 − x3),

is the Vandermonde determinant, invariant under A3, but changing
sign under odd permutations. Its square D, called the discriminant, is
S3-invariant, and is easily expressible via a1 = 0, a2 = p and a3 = q:
D = −4p3−27q2. In order to describe F (x1, x2, x3) as a cyclic extension

of F (
√
D), the theory instructs us to introduce Lagrange resolvents

defined by the cyclic permutation σ of x1, x2, x3:

A := x1 + x2 + x3 = 0, B := x1 + ζ−1x2 + ζx3, C := x1 + ζx2 + ζ−1x3.

Here ζ±1 = −(1 ∓
√
−3)/2 are the cubic roots of unity. Once A,B,C

are found, the roots are easily expressed:

3x1 = A+B + C, 3x2 = A+ ζB + ζ−1C, 3x3 = A+ ζ−1B + ζC.

On the other hand, the cubes of A,B,C are σ-invariant, and thus
expressible in terms of p, q, and

√
D. After some computation, one

obtains:

B3 = −27

2
q − 27

2

√
−D
27

, C3 = −27

2
q +

27

2

√
−D
27

.

In fact B and C are eigenvectors of σ with the eigenvalues ζ and ζ−1,
and so their product BC lies in F (

√
D), and even in F , since the
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transposition of x2 and x3 interchanges B and C but preserves the
product. Explicitly,

BC = x21 + x22 + x23 + (ζ + ζ−1)(x1x2 + x2x3 + x3x1)

= (x1 + x2 + x3)
2 − 3(x1x2 + x2x3 + x3x1) = −3p.

From x1 = (B + C)/3, we obtain Cardano’s formula

x1 =
3

√

−q
2
−
√
p3

27
+
q2

4
+

3

√

−q
2
+

√
p3

27
+
q2

4
,

where the values of the cubic roots must be chosen so that their product
equals −p/3.
In addition to be complicated, this formula has the following peculiar

property. When the coefficients p, q are real, but the discriminant D =
(x1−x2)2(x1−x3)2(x2−x3)2 is negative, only one of the 3 roots is real,
while the others are complex-conjugate. In this case, the formula leads
to the real values of the interior square root, and when the cubic roots
are interpreted as real, the sum yields the real value of x1. However,
in the case (known as the “casus irreducibilis”) when all 3 roots are
real, so that the discriminant is positive, the interior square root spits
out an imaginary value, and so the formula represents real roots via
non-real numbers. Much worse than this, it requires computing a cubic
root α + βi of a given complex number a + bi. This task, interpreted
algebraically, leads to the equation (α+βi)3 = a+bi, i.e. α3−3αβ2 = a,
3α2β − β3 = b. We can rewrite the 1st one as 4α3 − 3α(α2 + β2) = a,
where α2+β2 = 3

√
a2 + b2. In our case, a = −q/2, and a2+b2 = −p3/27,

so α2 + β2 = −p/3. From these, we obtain the equation for α in the
form (2α)3+p(2α)+q = 0. Thus, attempting to extract the cubic root
of a complex expression in Cardano’s formula, we arrive at the same
cubic equation we started with!

We now turn to the quartic polynomial x4 + a1x
3 + a2x

2 + a3x+ a4
which by substitution x 7→ x−a1/4 can be simplified into a polynomial
with the zero root sum:

x4 + px2 + qx+ r.

Its Galois group S4 is solvable thanks to the filtration by subgroups

S4 ⊃ A4 ⊃ K4 ⊃ Z2 ⊃ {e},
where the Klein subgroup K4

∼= Z2
2 is normal, and Z2 stands for any of

the three subgroups in K4. The corresponding tower of field extension
has the form

F ⊂ F (
√
D) ⊂ K ⊂ K ′ ⊂ E,
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where D is the square of Vandermonde’s invariant of A4:
√
D = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

Note that K4 is the kernel of the epimorphism S4 → S3 induced by
the action of S4 on the three partitions of {x1, x2, x3, x4} into pairs.

Respectively, K is a normal extension not only over F (
√
D), but also

over F . It is generated therefore by the following three expressions of
{xi}, invariant under K4 but permuted arbitrarily by S3 = S4/K4:

y1 = (x1+x2)(x3+x4), y2 = (x1+x3)(x2+x4), y3 = (x1+x4)(x2+x3).

Consider the degree 3 polynomial with the roots y1, y2, y3:

(y − y1)(y − y2)(y − y3) = y3 + b1y
2 + b2y + b3.

Its coefficients bi are S3-symmetric functions of y1, y2, y3, hence S4-
symmetric function of x1, x2, x3, x4, and can be expressed therefore via
p, q, r. After some computations (taking into account that

∑
xi = 0),

one obtains:

b1 = −(y1 + y2 + y3) = −2
∑

i<j

xixj = −2p, b2 = p2 − 4r, b3 = q2.

Thus, y1, y2, y3 are expressible by Cardano’s formulas for the cubic
equation

y3 − 2py2 + (p2 − 4r)y + q2 = 0.

Now, choosing K ′ = K(z), where z = (x1 + x2) is invariant with
respect to one of the subgroups Z2 ⊂ K4, we find z2 + y1 = 0, since
x3 + x4 = −(x1 + x2) = −z. and therefore z =

√−y1.
The field K ′ is not normal over F . To pass from K ′ to E, we need

therefore, following the proof of Proposition in the previous section,
to adjoin the conjugate irrationalities

√−y2 and
√−y3. The values

of the square roots are not independent here. Since only two qua-
dratic extensions are needed to pass from K to E, there must be
one relation between the three square roots. And indeed, the product
(x1+x2)(x1+x3)(x1+x4) is invariant under permutations of x2, x3, x3,
while transposing x1 and x2 turns it into (x2 + x1)(x2 + x3)(x2 + x4)
equal to it due to x1 + x2 + x3 + x4 = 0. Therefore the triple product
is expressible in terms of p, q, r. And indeed,

(x1 + x2)(x1 + x3)(x1 + x4) =

= x31 + (x2 + x3 + x4)x
2
1 + (x2x3 + x3x4 + x4x2)x1 + x2x3x4

= x21(x1 + x2 + x3 + x4) +
∑

1≤i<j<k≤4

xixjxk = −q.
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Thus, we have

x1 + x2 =
√−y1, x1 + x3 =

√−y2, x1 + x4 =
√−y3

x3 + x4 = −√−y1, x2 + x4 = −√−y2, x2 + x3 = −√−y3,
where the values of the square roots must be chosen so that their prod-
uct

√−y1
√−y2

√−y3 = −q.
Finally, the roots are computed from these as

x1 =
1

2

(√−y1 +
√−y2 +

√−y3
)

x2 =
1

2

(√−y1 −
√−y2 −

√−y3
)

x3 =
1

2

(
−√−y1 +

√−y2 −
√−y3

)

x4 =
1

2

(
−√−y1 −

√−y2 +
√−y3

)
.

APPENDIX: AC, ZT, and ZL

A0. Formulations. A partial ordering “<” on a set P is a binary
relation which is transitive, and anti-symmetric (meaning that x < y
and y < x are impossible simultaneously). A linear (or total) ordering is
a partial ordering for which any two distinct elements are comparable,
i.e. x 6= y implies either x < y or y < x. A totally ordered set in which
every non-empty subset has the least element is called well-ordered. A
subset X ⊂ Y in a totally ordered (or well-ordered) set is called an
initial segment if for every x ∈ X all elements of Y such that y < x are
also in X. A totally ordered subset of a partially ordered set is often
called a chain. An element x0 ∈ P is maximal if P contains no x > x0.

Axiom of Choice (AC). The Cartesian product of non-empty sets
is non-empty. Equivalently: for any set X, there is a function ϕ asso-
ciating to every non-empty subset of X an element of this subset.

Zermelo’s Theorem (ZT). Every set can be well-ordered.

Zorn’s lemma (ZL). A non-empty partially ordered set, in which
every chain has an upper bound, contains at least one maximal element.

A1. ZL implies ZT. Given a set S, consider the set S of pairs
(X,<) where X is a non-empty subset of S, and < is a well-ordering
on X. Introduce partial ordering on S by (X,<) ≤ (Y,<) whenever
(X,<) is an initial segment of (Y,<). Note that here X ∪ Y = Y is
well-ordered, and the least element in X is the least in Y as well.
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Let {(Xα, <)} be a chain in S. Then X := ∪αXα is well-ordered
by <. Indeed, X is totally ordered (since any two x1, x2 ∈ X belong
to some Xα1

and Xα2
, whose union is well-ordered), and all Xα have

the same least element. Moreover, (Xα1
, <) is an initial segment in

(Xα1
∪ Xα2

, <). Therefore x < x1 ∈ Xα1
implies that x ∈ Xα1

, and
therefore (Xα1

, <) is an initial segment in (X,<).
Thus, Zorn’s lemma applies to (S,≤), meaning that there is a maxi-

mal totally ordered subset (S ′, <) in S. But then S ′ = S, for otherwise
x ∈ S−S ′ could be added to (S ′, <) as an upper bound, contradicting
its maximality.

A2. ZT implies AC. This is obvious: well-order X, and to each
nonempty subset of X, associate its least element.

A3. AC implies ZL. Suppose that in a non-empty partially ordered
set (P,<), which does not have any maximal element, every chain C
has an upper bound. Then the set of upper bounds not lying in C is
non-empty, and using the Axiom of Choice, we can pick one for each
C and denote it ϕ(C).
Let C denote the set of well-ordered chains C in P such that: ϕ(∅)

is the least element in C, and for every proper initial segment D ⊂ C,
the least element in C −D is ϕ(D). We have: {ϕ(∅)} ∈ C.
We claim that for C,C ′ ∈ C, one of them is an initial segment of the

other. Indeed, let D be the maximal common initial segment of C and
C ′ (i.e. the union of all common initial segments). If it is proper in
both C and C ′, then ϕ(D), being the least element in both C −D and
C ′ − D, can be added to D to form a larger common initial set of C
and C ′ in conflict with the maximality of D. Thus D coincides with
one of C or C ′ making it an initial segment of the other.
Consider now the union U of all chains from C. As in the above

derivation of Zermelo’s theorem from Zorn’s lemma, U is well-ordered,
contains each C ∈ C as an initial segment, and has ϕ(∅) as its least
element. We claim that U ∈ C, i.e. for any proper initial segment
D ⊂ U , ϕ(D) is the least element in U − D. Indeed, an element
u ∈ U − D lies in some C ∈ C, making D a proper initial segment of
C, and implying that ϕ(D) is the least element of C − D, and hence
of U −D as well.
By our assumption (on non-existence of maximal elements in P ), U

must have an upper bound not in U . But U cannot have an upper
bound not in U , since in this case U ∪ {ϕ(U)} will be an element of
C not contained in U , contradicting the choice of U . Thus, maximal
elements exist.


