
EXERCISES IN SYMPLECTIC GEOMETRY
1

1. Prove the Linear “Relative Darboux Theorem” (page 6).

2. Verify that the graph of a linear map A : X → X∗ is Lagrangian in

V = X∗ ⊕X if and only if A is symmetric: A∗ = A.

3. Write explicitly the Plücker relation φ ∧ φ = 0 for an exterior 2-form

φ =
∑

1≤i<j≤4
φijxi∧xj in R

4 and show that it is a non-degenerate quadratic

equation of signature (+++−−−). Derive that the grassmannian Gr2.4(R)

is diffeomorphic to the quotient of S2 × S2 by the simultaneous antipodal

map (x, y) 7→ (−x,−y), and give the analogous description of the Lagrange

grassmannian Λ2.

4. Verify the formula (on page 8) for the Poisson bracket of quadratic Hamil-

tonians in Darboux coordinates.

5. Show that the adjoint action of the symplectic group on its Lie algebra

coincides with the its action by the changes of variables in the quadratic

hamiltonians. Derive from this that the center of Sp(2n,R) consists of two

elements ±E2n.

6. Prove that the one-parametric subgroup in Sp(2n,R) generated by a

positive definite quadratic Hamiltonian is pre-compact.

7. For ω =
∑

λlpk ∧ qk with λ1 ≥ · · · ≥ λn > 0, show that the ω-area of

the unit disk on any oriented plane L (with respect to the Euclidean norm
∑

(p2k + q2k) in the ambient space) does not exceed πλ1. (Hint: First show

this this for λ1 = ... = λn = 1 using the Cauchy–Schwarz inequality for the

Hermitian form 〈z, w〉 = ∑

zkw̄k.)

8. Show that an infinitesimal symplectic transformation H ∈ sp(V ) is sim-

ilar to −H (and therefore its eigenvalue spectrum and the whole Jordan

block structure is invariant under the transformation λ 7→ −λ).

9. Show that the symmetric operator S in the polar factorization A = SU

of a linear symplectic transformation A, in a suitable decomposition ⊕n
k=1

R
2

of the symplectic space into the direct sum of n orthogonal (with respect

to both the symplectic and Euclidean structures) symplectic planes, is de-

scribed as the superposition of symplectic hyperbolic rotations in these

planes (or, equivalently, as the time-1 map in the flow of the Hamiltonain
∑n

k=1
λkpkqk with suitable real λk).

10. Linearize the pendulum equation near the upper (unstable) equilibrium,

sketch the phase portrait, and describe the phase flow in terms of hamilton-

ian hyperbolic rotations.

11. Describe (and sketch) the partition of the 3-dimensional space of qua-

dratic forms on the symplectic plane (R2, p∧q) into the orbits of the adjoint

1Math 242, Fall’21, A. Givental, references to “Symplectic geometry” by Arnold–
Givental in vol. 4 of Springer’s EMS series.
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action of SL(2,R) = Sp(2,R). Indicate in your sketch the region of sign-

definite quadratic hamiltonians.

12. Show that the H-valued positive-definite sesquilinear form in H
n (with

right multiplication by quaternionic scalars) which is given by the formula

〈x, y〉 := ∑n
m=1

x∗mym has the structure Z(x, y) + jW (x, y) where Z and W

are respectively Hermitian and complex symplectic forms on H
n = C

2n with

respect to the complex structure defined by i. Express Z via W (and j)

and vice versa W via Z (and j). Derive that GLn(H) ∩ U2n (where U2n =

AutC(Z)) coincides with GLn(H)∩Sp(2n,C) (where Sp(2n,C) = AutC(W )

and therefore coincides with the compact groups Spn of quaternionic-linear

automorphismsm of the H-valued sesquilinear form 〈·, ·〉. Show that this is

a maximal compact subgroup in Sp(2n,C), and find its dimension and rank

(i.e. the dimension of a maximal torus T ), its normalizer N(T ), and the

corresponding Weyl group W := N(T )/T .

13. Write down miniversal deformations of each of the two quadratic hamil-

tonians (p21+ q21)± (p22+ q22), and describe the subset in the parameter space

consisting of stable hamiltonians, (i.e. consisting of diagonalizable infinites-

imal symplectic transformations with purely imaginary spectrum).

14. Which of the following three groups are isomorphic, and which are not:

(a) Sp(2,R), (b) SU(1, 1) (the group of unimodular complex 2× 2-matrices

preserving the indefinite Hermitian form |z1|2 − |z2|2), (c) the group of real

Möbius transformations w = (az + b)/(cz + d) of the Riemann sphere?

15. Prove that the space of complex structures J : R2n → R
2n, J2 = −E2n

in symplectic R
2n such that the symplectic form ω is the imaginary part

of a (positive definite) Hermitian form (and hence such that ω(·, J ·) is its

real part) is contractible. (Hint: Identify the space with Siegel’s “upper

half-plane” Sp(2n,R)/Un.)

16. Show that the structure of a real symplectic vector bundle can be up-

graded to the structure of an Hermitian vector bundle (with the imaginary

part of the Hermitian form being the given symplectic one). Derive that

classification of real symplectic 2n-dimensional vector bundles over a given

base coincides with the classification of complex n-dimensional vector bun-

dles over that base.

17. Prove “The Extension Theorem II” from page 26: A smooth field Ω

of nondegenerate 2-forms on TNM whose restriction to TN define a closed

differential 2-form ω on N can be extended to a symplectic structure to

a neighborhood of N in M . (Hint: Use tubular neighborhood projection

π : M → N , and look for a differential 1-form α on M vanishing at the

points of N and such that dα|TNM = Ω− π∗ω|TNM , by applying a partition

of unity on N to the RHS, and constructing α locally.)

18. Prove Moser’s volume theorem: On a compact connected oriented man-

ifold (without boundary) two volume forms with the same total volume can
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be transformed into each other by a diffeomorphism (and obviously vice

versa.

19. The same — for two symplectic structures which can be connected by

a continuous family of symplectic structures within the same De Rham co-

homology class.

20. Use Moser’s homotopy method to prove the Morse lemma: A germ

of function f : (Rn, 0) → (R, 0) at a non-degenerate critical point can be

transformed by a germ of diffeomorphism g : (Rn, 0) → (Rn, 0) into the

quadratic form of its 2nd differential d20f .

21. Establish a one-to-one correspondence between equivalence classes of

complex vector bundles over a given manifold L and local symplectormor-

phism classes of isotropic embeddings of L into symplectic manifolds (more

precisely, understanding the equivalence of two isotropic embeddings as a

symplectomorphism between sufficiently small neighborhoods of L in the

ambient symplectic manifolds which is identical on L).

22. Show that the conormal bundle NX of a submanifold X ⊂ M (by defi-

nition NX is the subset in T ∗M consisting of all covectors applied at a point

of X and vanishing on tangent vectors to X at that point) is a Lagrangian

submanifold in T ∗M with respect to the canonical sumplectic structure.

Compute the conormal bundle for the semicubical parabola y2 = x3 on the

plane, first at non-nonsingular points, but then take the closure in T ∗
R
2.

Try to describe the resuting (singular) Lagrangian surface as an abstract

algebraic variety (e.g. by characterizing somehow the ring of polynomial

functions on it, or in any other way).

23. Compute adjoint and coadjoint orbits of the group of affine transforma-

tions on the line: x 7→ ax+ b.

24. Show that coadjoint orbits of the Lie algebra R
3 with respect to the

cross-product are concentric spheres F = const, where F = (x2+ y2+ z2)/2

in Euclidean coordinates, and identify the symplectic (area) form on the

orbits with the Leray form (dx∧dy∧dz)/dF (an expression defining correctly

a differential 2-form on the level sets of F at non-singular points).

25. When two vector fields u, v on a symplectic manifolds correspond to two

closed 1-forms, the (exact) 1-form corresponding to their Lie bracket [u, v] is

diuivω. Generalize this formula to the Lie bracket of two vector fields u and

v corresponding to arbitrary (non-necessarily closed) differential 1-forms α

and β.

26. Let v be a vector field on X. Its flow lifted naturally to T ∗X preserves

the canonical symplectic structure. Show that the Hamilton function of this

flow is given by the rule: Its value at a point p ∈ T ∗
q X is equal to p(v(q)).

27. Prove that functions on T ∗X, linear on the cotangent fibers, form a

Lie subalgebra with respect to the Poisson bracket, which is canonically

isomorphic to the Lie algebra of vector fields on the base.
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28. Prove that a submanifold in a symplectic manifold is coisotropic if and

only if the ideal of smooth functions vanishing on it is a Poisson subalgebra

(i.e. closed with respect to the Poisson bracket).

29. Let S ⊃ P be the germ of a symplectic leaf in a Poisson manifold P ,

and I the ideal of S in the algbera C∞(P ) of germs of smooth functions on

P . Show that I (as well as every power Ik) is a Lie ideal with respect to the

Poisson bracket, and that the induced Poisson bracket on I/I2 endows the

fibers of the (conormal to S) vector bundle (TSP/TS)
∗ with the structure

of a Lie algebra (more precisely, the space of sections becomes a Lie algebra

over the ring C∞(S)). Show that all Lie algebras in this family (over the

base S) are isomorphic to each other (and to the linear approximation of

the transverse Poisson structure of S).

30. Take ξ to be the Jordan normal form of subregular nilpotents in g∗ =

gl∗n+1 ≡ gln+1, and compute coadjoint orbits of the Lie algebra gξ (the an-

nihilator of ξ). Show (relying on the computations done in the lecture) that

the foliation of g∗ξ into coadjoint orbits is not isomorphic to the transverse

Poisson structure of ξ in g∗.

31. In the parameter plane (with coordinates c2, c3) of the family of surfaces

xy+ z3+ c2z+ c3 = 0 (foliating the transversal Poisson manifold of the sub-

regular nilpotent ξ ∈ sl∗3(C) into the closures of symplectic leaves), compute

and sketch the discriminant, i.e. the image of the leaves of dimension 0.

32. Check that the De Rham diferential d : Ω0(S1) → Ω1(S1) is anti-

symmetric with respect to the pairing (f, α) := 1

2π

∮

fα (between functions

f and 1-forms α), and hence defines a (translationally invariant) Poisson

structure on Ω1. Show that c := (1, α) is Casimir, and that c = consts are

the symplectic leaves. More specifically (assuming that the functions and

1-forms are complex-calued), show that the Poisson brackets between the

Fourier coordinates qk := (e−ikx, α), pk := (eikx, α), k = 1, 2, . . . , are all

zeros except {pk, qk} = ik = −{qk, pk}.
33. Prove that the fixed point locus of an anti-symplectic involution of a

symplectic manifold is a Lagrangian submanifold (if non-empty).

34. Let a smooth map π : (M2n, ω) → Xn of a 2n-dimensional compact

symplectic manifold to an n-dimensional manifold be such that π∗C∞(X) is

a commutative subalgebra in C∞(M) with respect to the Poisson bracket,

and let X0 ⊂ X be a (non-empty) connected component of the regular value

set of π. Prove that π−1(X0)
π→ X0 is a Lagrangian fibration, and describe

possible fibers of it.

35. For the natural mechanical system with the Lagrangian L = T−U , show

directly that T + U is constant along the solutions of the Euler-Lagrange

equation.
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36. Show that trajectories of a free particle on a Riemannian manifold are

geodesics parameterized to a constant speed relative to the arc length.

37. Let ω be an element of the Lie algebra of SOn (i.e. an anti-symmetric

matrix), and let ρ be the mass density of a rigid body in the Euclidean

space R
n. Express the kinetic energy T (ω) of the rotation t 7→ expωt as a

quadratic form on the Lie algebra. Show that for n = 3, every left-invariant

Riemannian metric on the group is thus obtained, but for n > 3 this is no

longer the case.

38. Let ~B be a (divergence-free) magnetic vector field in R
3, and ~B × q̇ be

the magnetic force acting on the unit charge moving with velocity q̇. Let

B := i ~Bdx∧dy∧dz be the closed differential 2-form corresponding to ~B, and

A-the (locally defined) differential 1-form such that dA = B (the “vector-

potential” of the magnetic field). Show that including the term
∫

A into

the Lagrangian results in adding to the Euler-Lagrange equation the above

magnetic force (in the form iq̇B).

39. Find trajectories of a mass-1 particle on the xy-plane in the “magnetic

field” dx ∧ dy.

40. Apply Noether’s theorem to a free particle on a Lie group G (i.e. taking

the Lagrangian to be the kinetic energy invariant under left translations on

G), and derive the corresponding conservation laws.

41. Write down the Euler-Poisson equation and the corresponding hamil-

tonian for the functional
∫

[m(dnx/dtn)2/2− U(x)] dt.

42. Show that the quadratic hamiltonianH =
∑n

i=1
ωi(p

2
i+q2i ) is completely

integrable, and describe explicitly the corresponding action-angle variables.

43. Show that the kinetic energy of a rigid body in R
n (which is a quadratic

form on son) in a suitable coordinate system in R
n can be described as

T (ω) = − tr(ωDω), whereD is a diagonal matrix with non-negative diagonal

entries d1, . . . , dn, and ω is the anti-symmetric matrix representing in this

coordinate system an infinitesimal rotation of the body.

44. Show how to “integrate in quadratures” a hamiltonian system on the

symplectic plane.

45. Suppose that (some connected components of) the level curvesH(p, q) =

h of a given Hamilton function on the symplectic plane form a family of ovals,

which therefore represent periodic solutions. Let T (h) be the period, and

S(h) be the symplectic area enclosed by the oval at the level h. Show that

T = dS/dh.

46. Show that the conformal mapping z 7→ w = (z + 1/z)/2 transforms

concentric circles and perpendicular to them radial rays on the z-plane into

ellipses and (branches) of hyperbolas on the w-plane with the common foci

±1.

47. Show that the λ-family x2/(a−λ)+y2/(b−λ)+z2/(c−λ) = 1 (a > b > c)

of “confocal” surfaces contains one ellipsoid, one one-sheeted hyperboloid,
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and one two-sheeted hyperboloid passing through every given typical point

in space.

48. Check that the Lax equation L̇ = [L,A], where L := −d2/dx2 + u

and A := d3/dx3 − 3 (u d/dx+ d/dx u), is equivalent to the KdV equation

u̇ = 6uux − uxxx.

49. Show that the KdV equation is bi-hamiltonian: with the Hamilton func-

tional H0[u] =
∫

u2

2
dx and Poisson operator W := 2

(

u d
dx

+ d
dx
u
)

− d3

dx3 , and

with the Hamilton functional H1[u] =
∫

(

u2
x

2
+ u3

)

dx and the Poisson op-

erator V := d
dx
. Check directly that H0 is a conservation law of the KdV

flow. For the W -hamiltonian flow with the Hamilton functional H1, find the

V -hamiltonian H2. (According to the Lenard-Magri scheme, it is another

conservation law of the KdV flow, Poisson-commuting with H0 and H1 with

respect to both Poisson brackets V and W .)

50. Identify the complexified Lie algebra V ect(S1) of (polynomial in trigono-

metric sense) vector fields on the circle with the Lie algebra described

by the relations [Lm, Ln] = (m − n)Lm+n in a certain basis Lm, m =

0,±1,±2, . . . . Show that ω(Lm, Ln) := m3δm+n,0 defines a 2-cocycle on

V ect(S1). Check that Span(L−1, L0, L1) is a Lie subalgebra, on which this

cocycle is a coboundary. Can you explain what group of diffeomorphisms of

S1 corresponds to this 3-dimensional Lie subalgebra?

51. Let (M,ω) be a compact connected symplectic manifold, and x0 a point

in M . Given two hamiltonian vector fields v, w on M , put C(v, w) :=

ω(v(x0), w(x0)). Show C is a 2-cocycle the Lie algebra of hamiltonian vector

fields onM . What central extension is defined by this cocycle. Is this cocycle

a coboundary?

52. Check the claim of Example 2 on p. 62: The moment map T ∗G → g∗

of the action of G on T ∗G defined by the left translations on G coincides

with the right translations of covectors to g∗ = T ∗
eG.

53. Let the Lie algebra g of a Lie groupG be equipped with a non-degenerate

symetric bilinear form tr : g⊗g → R. On the affine space of connections∇ =

d+A∧ : Ω0(Σ, g) → Ω1(Σ, g) on the trivialG-bundle over a compact oriented

2-dimensional manifold Σ, define a translation-invariant symplectic struc-

ture ω(α, β) :=
∫

Σ
tr(α ∧ β), where α, β ∈ Ω1(Σ, g) are g-valued differential

1-forms on Σ (so that α∧β ∈ Ω2(Σ, g⊗g) and tr : Ω2(Σ, g⊗g) → Ω2(Σ,R)).

Show that the moment map of the action ∇ 7→ g−1∇g of the gauge group

C∞(Σ, G) on the space of connections is Poisson, and that its moment map

associates to a connection its curvature: ∇ 7→ ∇2 = dA+A∧A ∈ Ω2(Σ, g).

54. Let H ⊂ G be a connected Lie subgroup in a connected Lie group. Show

that the moment map of the H-action on coadjoint G-orbits is given by the

projection g∗ → h∗ dual to the embedding h ⊂ g of the Lie algebras. Take
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H to be the subgroup of diagonal matrices in G = SU3, and compute (and

sketch!) the images of the coajoint orbits under the moment map.

55. The action of the group Tn+1 of unitary diagonal n+1-matrices on C
n+1

descends to CPn = proj(Cn+1). Show that the latter action is Poisson (with

respect to the Fubini-Study symplectic structure on CPn considered as a real

manifold) and find the image of its moment map.

56. Given a Poisson action of T k on a compact connected symplectic man-

ifold M , consider its moment map f = (f1, . . . , fk) : M → R
k = Lie∗(T k)

and the (finite) set of common critical values cα ∈ R
k of the hamiltonians

f1, . . . , fk. Prove that critical values of the map f lie in the union of finitely

many affine hyperplanes spanned by (some of) the points cα.
57. Consider the Poisson action of Tn+1 on CPn = proj(Cn+1) (as in Exer-
cise 55), and let Hi, i = 0, . . . , n be the hamiltonians generating the actions.
Prove that

∫

CPn

e
∑

uiHi
ωn

n!
=

1

2π
√
−1

∮

epdp
∏

i(p− ui)
,

where the residue integral is taken over a contour enclosing all the n + 1

poles p = ui.

58. Prove that a contact 3-dimensional manifold is orientable.

59. The front of a Legendrian submanifold L ⊂ PT ∗X is defined as the im-

age π(L) ⊂ X of its projection to the base. Prove that the front determines

the Legendrian submanifold — at least in the typical case when the front

is a hypersurface (but also when the front has higher codimension — in the

narrower sense that L is an open submanifold in the maximal Legendrian

submanifold with the front π(L)).

60. Prove that a neighborhood of a closed Legendrian submanifold L ⊂
(N,Π) is contactomorphic to a neighborhood of the zero section in the space

of 1-jets of sections of the line bundle over L whose fiber at x ∈ L equals

TxN/Π(x).

61. For a Lagrangian circle p2 + q2 = 1 on the symplectic (p, q)-plane,

find the corresponding Legendrian curve in the contactization du = pdq

and sketch the front in the (u, q)-plane (i.e. the image of the Legendrian

projection (u, p, q) 7→ (u, q).

62. Using symplectizations, prove that contact 1-forms in R
2n−1 are locally

diffeomorphic.

63. Prove the contact analogue of Moser’s stability theorem: On a closed

manifold, any two contact structures within the same connected component

in the space of all contact structures are contactomorphic.
64. By (polynomial) differential operators in R

n, we mean non-commutative
polynomialsD(∂q, q). Check that the associative algebra D of such operators
is filtered by operators’ order (i.e. if Dn denotes the space of such operators
of order ≤ n, then DmDn ⊂ Dm+n). Identify the associated graded algebra
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Gr(D) := ⊕∞
n=0Dn/Dn−1 with the (commutative!) algebra of polynomial

functions on T ∗
R
n. In particular, show that for Dm ∈ Dm and Dn ∈ Dn, the

commutator [Dm, Dn] lies in Dm+n−1. Prove that the commutator operation
induces on GrD the operation of Poisson bracket of polynomial functions
on T ∗

R
n.

Remark. The meaning of this exercise is that the algebra of quantum ob-

servables (strictly speaking, they should have the form D(−i~∂q, q, ~) where

~ = h/2π, and be filtered by degrees in ~) in the classical limit ~ = 0 turns

into the Poisson algebra of classical observables. The same is true for smooth

differential operators on a manifold X if by classical observables one means

functions on T ∗X polynomial along the fibers.

65. Starting from the prequantization of the symplectic plane R
2, dp ∧ dq

given by the contact 1-form θ = du + pdq, find the quantizations p̂ and

q̂ of the generators of the Heisenberg algebra (by definition, it consists of

Hamiltonians of degree ≤ 1) in the “impulse” representation, i.e. in the

space of sections of the Hermitian C-bundle over the symplectic plane which

are covariantly constant along the Lagrangian lines p = const.

66. Use the method of characteristics to find the solution to Burgers’ equa-

tion ut = uux satisfying the initial condition u(t, x)t=0 = v(x).


