
EXERCISES IN SYMPLECTIC GEOMETRY
1

1. Prove the Linear “Relative Darboux Theorem” (page 6).

2. Verify that the graph of a linear map A : X → X∗ is Lagrangian in

V = X∗ ⊕X if and only if A is symmetric: A∗ = A.

3. Write explicitly the Plücker relation φ ∧ φ = 0 for an exterior 2-form

φ =
∑

1≤i<j≤4
φijxi∧xj in R

4 and show that it is a non-degenerate quadratic

equation of signature (+++−−−). Derive that the grassmannian Gr2.4(R)

is diffeomorphic to the quotient of S2 × S2 by the simultaneous antipodal

map (x, y) 7→ (−x,−y), and give the analogous description of the Lagrange

grassmannian Λ2.

4. Verify the formula (on page 8) for the Poisson bracket of quadratic Hamil-

tonians in Darboux coordinates.

5. Show that the adjoint action of the symplectic group on its Lie algebra

coincides with the its action by the changes of variables in the quadratic

hamiltonians. Derive from this that the center of Sp(2n,R) consists of two

elements ±E2n.

6. Prove that the one-parametric subgroup in Sp(2n,R) generated by a

positive definite quadratic Hamiltonian is pre-compact.

7. For ω =
∑

λlpk ∧ qk with λ1 ≥ · · · ≥ λn > 0, show that the ω-area of

the unit disk on any oriented plane L (with respect to the Euclidean norm∑
(p2k + q2k) in the ambient space) does not exceed πλ1. (Hint: First show

this this for λ1 = ... = λn = 1 using the Cauchy–Schwarz inequality for the

Hermitian form 〈z, w〉 =
∑

zkw̄k.)

8. Show that an infinitesimal symplectic transformation H ∈ sp(V ) is sim-

ilar to −H (and therefore its eigenvalue spectrum and the whole Jordan

block structure is invariant under the transformation λ 7→ −λ).

9. Show that the symmetric operator S in the polar factorization A = SU

of a linear symplectic transformation A, in a suitable decomposition ⊕n
k=1

R
2

of the symplectic space into the direct sum of n orthogonal (with respect

to both the symplectic and Euclidean structures) symplectic planes, is de-

scribed as the superposition of symplectic hyperbolic rotations in these

planes (or, equivalently, as the time-1 map in the flow of the Hamiltonain∑n
k=1

λkpkqk with suitable real λk).

10. Linearize the pendulum equation near the upper (unstable) equilibrium,

sketch the phase portrait, and describe the phase flow in terms of hamilton-

ian hyperbolic rotations.

11. Describe (and sketch) the partition of the 3-dimensional space of qua-

dratic forms on the symplectic plane (R2, p∧q) into the orbits of the adjoint
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action of SL(2,R) = Sp(2,R). Indicate in your sketch the region of sign-

definite quadratic hamiltonians.

12. Show that the H-valued positive-definite sesquilinear form in H
n (with

right multiplication by quaternionic scalars) which is given by the formula

〈x, y〉 :=
∑n

m=1
x∗mym has the structure Z(x, y) + jW (x, y) where Z and W

are respectively Hermitian and complex symplectic forms on H
n = C

2n with

respect to the complex structure defined by i. Express Z via W (and j)

and vice versa W via Z (and j). Derive that GLn(H) ∩ U2n (where U2n =

AutC(Z)) coincides with GLn(H)∩Sp(2n,C) (where Sp(2n,C) = AutC(W )

and therefore coincides with the compact groups Spn of quaternionic-linear

automorphismsm of the H-valued sesquilinear form 〈·, ·〉. Show that this is

a maximal compact subgroup in Sp(2n,C), and find its dimension and rank

(i.e. the dimension of a maximal torus T ), its normalizer N(T ), and the

corresponding Weyl group W := N(T )/T .

13. Write down miniversal deformations of each of the two quadratic hamil-

tonians (p21+ q21)± (p22+ q22), and describe the subset in the parameter space

consisting of stable hamiltonians, (i.e. consisting of diagonalizable infinites-

imal symplectic transformations with purely imaginary spectrum).

14. Which of the following three groups are isomorphic, and which are not:

(a) Sp(2,R), (b) SU(1, 1) (the group of unimodular complex 2× 2-matrices

preserving the indefinite Hermitian form |z1|
2 − |z2|

2), (c) the group of real

Möbius transformations w = (az + b)/(cz + d) of the Riemann sphere?

15. Prove that the space of complex structures J : R2n → R
2n, J2 = −E2n

in symplectic R
2n such that the symplectic form ω is the imaginary part

of a (positive definite) Hermitian form (and hence such that ω(·, J ·) is its

real part) is contractible. (Hint: Identify the space with Siegel’s “upper

half-plane” Sp(2n,R)/Un.)

16. Show that the structure of a real symplectic vector bundle can be up-

graded to the structure of an Hermitian vector bundle (with the imaginary

part of the Hermitian form being the given symplectic one). Derive that

classification of real symplectic 2n-dimensional vector bundles over a given

base coincides with the classification of complex n-dimensional vector bun-

dles over that base.

17. Prove “The Extension Theorem II” from page 26: A smooth field Ω

of nondegenerate 2-forms on TNM whose restriction to TN define a closed

differential 2-form ω on N can be extended to a symplectic structure to

a neighborhood of N in M . (Hint: Use tubular neighborhood projection

π : M → N , and look for a differential 1-form α on M vanishing at the

points of N and such that dα|TNM = Ω− π∗ω|TNM , by applying a partition

of unity on N to the RHS, and constructing α locally.)

18. Prove Moser’s volume theorem: On a compact connected oriented man-

ifold (without boundary) two volume forms with the same total volume can
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be transformed into each other by a diffeomorphism (and obviously vice

versa.

19. The same — for two symplectic structures which can be connected by

a continuous family of symplectic structures within the same De Rham co-

homology class.

20. Use Moser’s homotopy method to prove the Morse lemma: A germ

of function f : (Rn, 0) → (R, 0) at a non-degenerate critical point can be

transformed by a germ of diffeomorphism g : (Rn, 0) → (Rn, 0) into the

quadratic form of its 2nd differential d20f .

21. Establish a one-to-one correspondence between equivalence classes of

complex vector bundles over a given manifold L and local symplectormor-

phism classes of isotropic embeddings of L into symplectic manifolds (more

precisely, understanding the equivalence of two isotropic embeddings as a

symplectomorphism between sufficiently small neighborhoods of L in the

ambient symplectic manifolds which is identical on L).

22. Show that the conormal bundle NX of a submanifold X ⊂ M (by defi-

nition NX is the subset in T ∗M consisting of all covectors applied at a point

of X and vanishing on tangent vectors to X at that point) is a Lagrangian

submanifold in T ∗M with respect to the canonical sumplectic structure.

Compute the conormal bundle for the semicubical parabola y2 = x3 on the

plane, first at non-nonsingular points, but then take the closure in T ∗
R
2.

Try to describe the resuting (singular) Lagrangian surface as an abstract

algebraic variety (e.g. by characterizing somehow the ring of polynomial

functions on it, or in any other way).

23. Compute adjoint and coadjoint orbits of the group of affine transforma-

tions on the line: x 7→ ax+ b.

24. Show that coadjoint orbits of the Lie algebra R
3 with respect to the

cross-product are concentric spheres F = const, where F = (x2+ y2+ z2)/2

in Euclidean coordinates, and identify the symplectic (area) form on the

orbits with the Leray form (dx∧dy∧dz)/dF (an expression defining correctly

a differential 2-form on the level sets of F at non-singular points).

25. When two vector fields u, v on a symplectic manifolds correspond to two

closed 1-forms, the (exact) 1-form corresponding to their Lie bracket [u, v] is

diuivω. Generalize this formula to the Lie bracket of two vector fields u and

v corresponding to arbitrary (non-necessarily closed) differential 1-forms α

and β.

26. Let v be a vector field on X. Its flow lifted naturally to T ∗X preserves

the canonical symplectic structure. Show that the Hamilton function of this

flow is given by the rule: Its value at a point p ∈ T ∗
q X is equal to p(v(q)).

27. Prove that functions on T ∗X, linear on the cotangent fibers, form a

Lie subalgebra with respect to the Poisson bracket, which is canonically

isomorphic to the Lie algebra of vector fields on the base.
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28. Prove that a submanifold in a symplectic manifold is coisotropic if and

only if the ideal of smooth functions vanishing on it is a Poisson subalgebra

(i.e. closed with respect to the Poisson bracket).

29. Let S ⊃ P be the germ of a symplectic leaf in a Poisson manifold P ,

and I the ideal of S in the algbera C∞(P ) of germs of smooth functions on

P . Show that I (as well as every power Ik) is a Lie ideal with respect to the

Poisson bracket, and that the induced Poisson bracket on I/I2 endows the

fibers of the (conormal to S) vector bundle (TSP/TS)
∗ with the structure

of a Lie algebra (more precisely, the space of sections becomes a Lie algebra

over the ring C∞(S)). Show that all Lie algebras in this family (over the

base S) are isomorphic to each other (and to the linear approximation of

the transverse Poisson structure of S).

30. Take ξ to be the Jordan normal form of subregular nilpotents in g
∗ =

gl∗n+1 ≡ gln+1, and compute coadjoint orbits of the Lie algebra gξ (the an-

nihilator of ξ). Show (relying on the computations done in the lecture) that

the foliation of g∗ξ into coadjoint orbits is not isomorphic to the transverse

Poisson structure of ξ in g
∗.

31. In the parameter plane (with coordinates c2, c3) of the family of surfaces

xy+ z3+ c2z+ c3 = 0 (foliating the transversal Poisson manifold of the sub-

regular nilpotent ξ ∈ sl∗3(C) into the closures of symplectic leaves), compute

and sketch the discriminant, i.e. the image of the leaves of dimension 0.

32. Check that the De Rham diferential d : Ω0(S1) → Ω1(S1) is anti-

symmetric with respect to the pairing (f, α) := 1

2π

∮
fα (between functions

f and 1-forms α), and hence defines a (translationally invariant) Poisson

structure on Ω1. Show that c := (1, α) is Casimir, and that c = consts are

the symplectic leaves. More specifically (assuming that the functions and

1-forms are complex-calued), show that the Poisson brackets between the

Fourier coordinates qk := (e−ikx, α), pk := (eikx, α), k = 1, 2, . . . , are all

zeros except {pk, qk} = ik = −{qk, pk}.

33. Prove that the fixed point locus of an anti-symplectic involution of a

symplectic manifold is a Lagrangian submanifold (if non-empty).

34. Let a smooth map π : (M2n, ω) → Xn of a 2n-dimensional compact

symplectic manifold to an n-dimensional manifold be such that pi∗C∞(X)

is a commutative subalgebra in C∞ with respect to the Poisson bracket, and

let X0 ⊂ X be a (non-empty) connected component the regular value set of

pi. Prove that π−1X0 π
→ X0 is a Lagrangian fibration, and describe possible

fibres of it.


