
EXPLICIT RECONSTRUCTION IN QUANTUM

COHOMOLOGY AND K-THEORY

ALEXANDER GIVENTAL

To Vadim Schechtman

Abstract. Cohomological genus-0 Gromov-Witten invariants of
a given target space can be encoded by the “descendant potential,”
a generating function defined on the space of power series in one
variable with coefficients in the cohomology space of the target.
Replacing the coefficient space with the subspace multiplicatively
generated by degree-2 classes, we explicitly reconstruct the graph of
the differential of the restricted generating function from one point
on it. Using the Quantum Hirzebruch–Riemann–Roch Theorem
from our joint work [10] with Valentin Tonita, we derive a similar
reconstruction formula in genus-0 quantum K-theory. The results
amplify the role of the divisor equations, and the structures of D-
modules and Dq-modules in quantum cohomology and quantum
K-theory with respect to Novikov’s variables.

1. Formulations

Let X be a compact Kähler (or, more generally, symplectic) mani-
fold. Its genus-0 descendant potential is defined by

F(t) :=
∑

d∈M

∞∑

n=0

Qd

n!
〈t(ψ), . . . , t(ψ)〉0,n,d,

where M ⊂ H2(X,Z) is the Mori cone of X, Qd stands for the element
corresponding to d in the semigroup ring of M, t :=

∑
k≥0 tkz

k is a
power series with coefficients tk which are cohomology classes of X, and
the correlator stands for the integral over the virtual fundamental class
[X0,n,d] of the moduli space of degree-d stable maps to X of rational
curves with n marked points:

〈φ1ψ
k1 , . . . , φnψ

kn〉0,n,d :=

∫

[X0,n,d]

ev∗1(φ1)ψ
k1
1 · · · ev∗n(φn)ψ

kn
n .

This material is based upon work supported by the National Science Foundation
under Grant DMS-1007164.
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2 A. GIVENTAL

Here ev∗i is the pull-back of cohomology classes from X to X0,n,d by
evaluation map at the i-th marked point, and ψi is the 1st Chern class
of the line bundle over X0,n,d formed by cotangent lines to the curves
at the i-th marked point.
Following [8], we embed the graph of the differential of F into the

symplectic loop space H. By definition, it consists of formal Q-series
whose coefficients are Laurent series in one indeterminate z with vector
coefficients from H∗(X,Q).
The “loop space” H (which is actually a Z2-graded module over the

Novikov ring Q[[Q]]) is equipped with the Q[[Q]]-valued even symplec-
tic form

Ω(f, g) := Resz=0(f(−z), g(z)) dz,

where (·, ·) is the Poincaré pairing (i.e. (a, b) =
∫
X
ab = 〈a, 1, b〉0,3,0).

Decomposing H into the sum H+ ⊕H− of complementary Lagrangian
subspaces (by the standard splitting of a Laurent series into the sum
of the power z-series, and the polar part), we identify H with T ∗H+.
Translating the origin in H+ from 0 to −1z (the operation, refereed to
as the dilatón shift), we embed the graph of dF into H as a Lagrangian
submanifold. Explicitly (see [8]):

H+ ∋ t 7→ J (t) := −z + t(z) +
∑

n,d,α

Qd

n!
φα〈

φα

−z − ψ
, t(ψ), . . . , t(ψ)〉0,n,d,

where {φα} and {φα} are Poincaré-dual bases in H∗(X,Q).
In fact, this construction leads to some (rather mild) divergence prob-

lem. To elucidate it, pick a graded basis {φα} in H∗(X,Q), and assume
that φ0 = 1 and φα with α = 1, . . . , r = rkH2(X) are integer degree-
2 classes p1, . . . , pr taking non-negative values di := pi(d) on degrees
d ∈ M ⊂ H2(X) of holomorphic curves in X. Writing

tk =
∑

α

tk,αφα = tk,01 + tk,1p1 + · · ·+ tk,rpr + the rest of the sum,

one can show (on the basis of string and divisor equations), that each
Qd-term in J contains the factor et0,0/z (which, unless expanded in
powers of t0,0, does not fit the space of formal Laurent series in z), and
besides comes with the factor e

∑

i dit0,i (which is not defined over Q).
Also, as it follows from dilaton equation, with respect to the variable
t1,0, the series has convergence radius 1. It follows from dimensional
considerations that the rest of each Qd-term is a polynomial in 1/z and
in (finitely many of) the coefficients of the power series t(z).
There are several ways to handle the problems. In this paper, we will

ignore the convergence properties by interpreting the J-function (and
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other geometric generating objects) in the sense of formal geometry.
That is, t 7→ J (t) is considered as the germ at −z of a formal series in
the components of the vector variables tk with coefficients which belong
to the symplectic loop space.
We will take Q[[Q1, . . . , Qr]] on the role of the Novikov ring, and

represent Qd by the monomial Qd1
1 . . . Qdr

r . By virtue of the Q-adic
convergence, one can specialize formal variables tk,α to their values in
the Novikov ring, taken from its maximal ideal (which is necessary
indeed in the case of t0,0, t0,i, and t1,0). One can also make formal
changes of the variables {tk,α} with coefficients in the Novikov ring.

Theorem 1. Let
∑

d IdQ
d, where Id(z, z

−1) are cohomology-valued
Laurent z-series, represent a point on the graph of dF in H, and let Φα

be polynomials in p1, . . . , pr (or, more generally, power z-series, with
coefficients polynomial in p1, ..., pr). Then the family

I(τ) :=
∑

d

IdQ
d exp

{
1

z

∑

α

ταΦα(p1 − zd1, . . . , pr − zdr)

}

lies on the graph of dF .
Furthermore, for arbitrary scalar power series cα(z) =

∑
k≥0 τα,kz

k,
the linear combination

∑
α cα(z)z∂ταI of the derivatives also lies on the

graph.
Moreover, in the case when p1, . . . , pr generate the entire cohomology

algebra H∗(X,Q), and Φα represent a linear basis, such linear combi-
nations comprise the whole graph.

Example 1. Take X = CP n−1, p to denote the hyperplane class (so
that pn = 0), and Φi = pi, i = 0, ..., n − 1, for a basis in Ȟ = H∗(X).
The “small J-function”

(−z)
∑

d≥0

Qd

(p− z)n(p− 2z)n · · · (p− dz)n

is known (see, for instance, [6]) to represent a point on the graph of
dF . It follows from the above that the whole graph is comprises by

(−z)
∑

d≥0

Qde(τ0+τ1(p−dz)+···+τn−1(p−dz)n−1)/z
∑n−1

i=0 ci(z)(p− dz)i

(p− z)n(p− 2z)n · · · (p− dz)n
,

when ci(z) run arbitrary power series. More explicitly, one equates the
power z-series part of this formula to −z + t(z):

n−1∑

i=0

(τi − zci(z))p
i + (Q-adically small terms) = −z +

n−1∑

i=0

pi
∞∑

k=0

tk,iz
k,
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and expresses τi and all coefficients of the series ci (here c0(0) needs to
lie in a formal neighborhood of 1) in terms of {tk,i}. Substituting these
expressions back into the formula, one obtains (according to Theorem
1) the standard form of the J-function for CP n−1.

In K-theoretic version of GW-theory of a compact Kähler manifold
X, the genus-0 descendant potential FK is defined by the same formula
as its cohomological counterpart:

FK(t) =
∑

d∈M

∞∑

n=0

Qd

n!
〈t(L,L−1), . . . , t(L,L−1)〉K0,n,d,

using the correlators

〈Φ1L
k1 , . . . ,ΦkL

kn〉K0,n,d := χ(X0,n,d;O
virt⊗ ev∗1(Φ1)L

k1
1 · · · ev∗n(Φn)L

kn
n ).

Here χ is the holomorphic Euler characteristic (on X0,n,d), O
virt the

virtual structure sheaf introduced by Yuan-Pin Lee [14], Φi ∈ K0(X) a
holomorphic vector bundle on X, Lki

i , ki ∈ Z, the kith tensor power of
the line bundle formed by the cotangent lines to the curves at the ith
marked point. The input t in FK is a Laurent polynomial of L with
coefficients in the K-ring of X.
Adapting the symplectic loop space formalism, we embed the graph

of dFK as a Lagrangian submanifold into the “space” K consisting of
power Q-series whose coefficients are rational functions in one inde-
terminate, q, which take vector values in K0(X) ⊗ Q. Each rational
function of q is uniquely written as the sum of a Laurent polynomial
and a rational function having no pole at q = 0 and vanishing at
q = ∞. The space K is thereby decomposed into the direct sum of two
subspaces, K+ and K− respectively. They are Lagrangian with respect
to the symplectic form

ΩK(f, g) = [Resq=0 +Resq=∞] (f(q), g(q−1)K
dq

q
,

where (·, ·)K stands for the K-theoretic Poincaré pairing:

(A,B)K = χ(X;A⊗B) =

∫

X

ch(A) ch(B) td(TX).

Using this Lagrangian polarization to identify K with T ∗K+, and ap-
plying the dilaton shift 1 − q, we identify the graph of dFK with a
submanifold in K, which is described explicitly as follows:

t 7→ 1−q+t(q, q−1)+
∑

n,d,α

Qd

n!
Φα〈

Φα

1− qL
, t(L,L−1), . . . , t(L,L−1)〉K0,n+1,d.
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Here Φα and Φα run Poincaré-dual bases of K0(X). Similar to the
cohomological case, we consider J K as a germ (at 1 − q) of a for-
mal section of T ∗H+. That is, it is a formal series of the coordinates
tk,α (on the space of vector Laurent polynomials

∑
k,α tk,αΦαq

k), whose
coefficients are Q-series with coefficients in rational functions of q.
Let P1, ..., Pr be line bundles over X such that c1(Pi) = −pi, i.e.

di = −
∫
d
c1(Pi).

Theorem 2. Let
∑

d IdQ
d be a point in K, lying on the graph of

dFK, and let Ψα be polynomials in P1, . . . , Pr (with coefficients which
could be Laurent polynomials in q). Then the family

IK(τ) =
∑

d

IdQ
d exp{

1

1− q

∑

α

ταΨα(P1q
d1 , . . . , Prq

dr)}

also lies on the graph.
Furthermore, for arbitrary scalar Laurent polynomials cα(q, q

−1), the
linear combinations

∑
α(1 − q)∂ταI

K of the derivatives also lie on the
graph.
Moreover, in the case when P1, . . . , Pr generate the algebra K0(X)⊗

Q, and Φα form a linear basis in it, such linear combinations comprise
the whole graph.

Example 2. Let X be CP n−1, P = O(−1) (so that (1 − P )n = 0),
and 1, 1−P, . . . , (1−P )n−1 be the basis in K0(X). It was shown in [9]
that the following series lies on the graph of dFK :

(1− q)
∞∑

d=0

Qd

(1− Pq)n(1− Pq2)n · · · (1− Pqd)n
.

It follows that the whole graph can be parameterized this way:

(1− q)
∞∑

d=0

Qd e
∑n−1

i=0 τi(1−Pqd)i)/(1−q)
∑n−1

i=0 ci(q, q
−1)(1− Pqd)i.

(1− Pq)n(1− Pq2)n · · · (1− Pqd)n
.

More explicitly, one equates the Laurent polynomial part of this for-
mula to (1− q) + t(q, q−1):

n−1∑

i=0

(1− P )i(τi + (1− q)ci(q, q
−1)) +O(Q) = 1− q +

∑

k,i

tk,iq
k(1− P )i

to express τi and all coefficients of the Laurent polynomials ci in terms
of the variables {tk,i}. Substituting these expressions back into the
formula, one obtains the K-theoretic J-function of CP n−1.
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Remark. For target spaces, whose 2nd cohomology multiplicatively
generate the entire cohomology algebra, their cohomological and K-
theoretic genus-0 GW-invariants are reconstructible from small degree
data, as it is established by the reconstruction results of Kontsevich–
Manin [13], Lee–Pandharipande [15], and Iritani–Milanov–Tonita [12].
Our results are closely related to them, and in a sense, explicize the
reconstruction procedure.
Added at revision. A preliminary version of this paper was posted

in May, 2014 to the author’s website. After that we learned that Theo-
rem 1 appears: (a) in a toric context, in the earlier preprint [1], Section
5.4, by I. Ciocan-Fontanine and B. Kim, and (b) in a general con-
text (though in a slightly less explicit form), in the even earlier paper
[11], Example 4.14, by H. Iritani. We are thankful to Ionut Ciocan-
Fontanine for this communication.

2. Proof of Theorem 1

Denote by L ⊂ H the graph of dF .

Step 1. We begin by noting that modulo Novikov’s variables, the
graph is known to have the form [8]

e−τ/zzH+,

where τ =
∑

α ταφα runs the cohomology space of X.

Step 2. The actual graph L is known (see Appendix 2 in [4]) to
have the form

S−1
τ (z)zH+,

where τ 7→ Sτ (z) is a certain family of matrices (whose entries also
depend on Novikov’s variables), which has the following properties.
Firstly, it is an 1/z-series: S = I + O(1/z). Secondly, it belongs
to the “twisted” loop group: S−1(z) = S∗(−z), where “∗” denotes
transposition with respect to the Poincaré pairing. Thirdly, it is a
fundamental solution to Dubrovin’s connection on the tangent bundle
of the cohomology space of X:

z∂αS = φα • S,

where ∂α := ∂/∂τα, and φα• is the matrix of quantum multiplication by
φα (it depends on the application point τ and on Novikov’s variables,
but not on z, and is self-adjoint). Finally S is constrained by the
string and divisor equations. Namely, assuming as before, that {φα} is
a graded basis in cohomology, with φ0 = 1 and φ1 = p1, . . . , φr = pr,
we have:

z∂0S = S, and z∂iS = zQi∂Qi
S + Spi, i = 1, . . . , r.
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(Here pi means the operator of multiplication by pi in the classical
cohomology algebra of X.)
Moreover, according to the “descendant–ancestor correspondence”

theorem, SτL is tangent to H+ along zH+. This shows that L is
an overruled Lagrangian cone. By definition, this means that tangent
spaces Tτ to L (which are S−1

τ H+) are tangent to L exactly along zTτ .
Step 3. Let D be the algebra of differential operators in Novikov’s

variables. It follows from the above divisor equations for S that tangent
spaces Tτ = S−1

τ H+ to L are D-modules with respect to the action of D
defined by the multiplication operators Qj and differentiation operators
zQi∂Qi

− pi, where pi stands for multiplication by pi in the classical
cohomology algebra of X. The same is true about the ruling spaces
zTτ .
Indeed, since S−1(−z) = S∗(z), and p∗i = pi, we have:

(pi + zQi∂Qi
)S−1(−z) = (Spi + zQi∂Qi

S)∗ = z∂iS
∗ = z∂iS

−1(−z).

Here S = Sτ depends on τ ∈ H∗(X) and Q independently. Now fix
a value of τ = τ(Q), and consider f ∈ zTτ ⊂ L, that is: f = S−1

τ h,
where h ∈ zH+. Then

(zQi∂Qi
− pi)f = z∂iS

−1
τ h+

∑

α

(Qi∂Qi
τα)z∂αS

−1
τ h+ zS−1

τ (Qi∂Qi
h),

where each summand on the right side lies in zTτ .
We arrive at the following conclusion.1

Lemma. Let Φ be a polynomial expression in zQi∂Qi
−pi. Then the

flow f 7→ eǫΦ/zf preserves L.

Proof. If T denotes the tangent space to L at f ∈ zT , then Φf/z ∈
T , i.e. the linear vector field on H: f 7→ Φf/z is tangent to L.

Remark. Since we are using differentiations in Q, it is counter-
intuitive to think of Novikov’s variables as constants. In fact one can
think of the symplectic loop space H geometrically as the space of
formal sections, over the spectrum of the Novikov ring, of the bundle
whose fiber consists of Laurent z-series with vector coefficients. Like-
wise, the cone L ⊂ H consists of sections of the fibration whose fibers
are overruled Lagrangian cones. The differential operators Φ/z and
their flows eǫΦ/z act by linear transformations on the space of sections
H. In particular, eǫΦ/zf is an ǫ-family of sections Q 7→ f(ǫ, Q) of the

1This is a variant of Lemma from the proof of Quantum Lefschetz Theorem in
Section 8 of [4]. As we’ve recently realized, the proof of it given in [4] was incorrect.
Apparently, the argument was first corrected in [3] within the proof of the orbifold
version of the Quantum Lefschetz Theorem.
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fibration of overruled Lagrangian cones. One can choose any function
Q 7→ ǫ(Q) to obtain the section Q 7→ f(ǫ(Q), Q) lying in L. We should
note that it differs from eǫ(Q)Φ/zf since multiplication by ǫ(Q) and Φ
do not commute.

Step 4. Write f =
∑

d fdQ
d. Then

eǫΦ(...,pi−zQi∂Qp ,... )/zf =
∑

d

fdQ
deǫΦ(...,pi−zdi,... )/z,

which according to Step 3 lies in L whenever f does. Here one can
consider ǫ as a parameter, or take its value from the Novikov ring (or
at least from its maximal ideal).
One obtains the first statement of Theorem 1 by replacing ǫΦ with

a linear combination
∑
ταΦα of commuting differential operators.

The derivatives ∂αI(τ) lie in the tangent space T to L at Iτ , and
hence all linear combination

∑
cα(z)z∂αI(τ), where cα are scalar power

z-series, lie in the same ruling space zT ⊂ L.
When p1, . . . , pr generate the entire cohomology algebra of X, it

follows from Step 1 that modulo Novikov’s variables, such linear com-
binations comprise the whole of L. Now the formal Implicit Function
Theorem implies the last statement of Theorem 1.

3. Proof of Theorem 2

Let LK ⊂ K denote the graph of dFK .
It is known (as explained in [10], Section 3) that LK is an overruled

Lagrangian cone too. More precisely, as in the case of quantum coho-
mology theory, there is a family τ 7→ Sτ (q,Q) of matrices depending on
τ ∈ K∗(X) which transform LK to SτL tangent to K+ along (1−q)K+.
As a consequence, LK is a cone whose tangent spaces Tτ = S−1

τ K+ are
Q[q, q−1] modules, and are tangent to LK exactly along (1−q)Tτ . The-
orem 2 is based on the property of the tangent and ruling spaces of LK

to be Dq-modules. Let us recall, following [10], how this is proved.
Another approach to this result is contained in [12].
The main result of [10] is the Quantum Hirzebruch-Riemann–Roch

Theorem which completely characterizes LK in terms of L in the fol-
lowing, “adelic” way. For each complex value ζ of q 6= 0, one introduces
the localization space Kζ which consists of series in Q whose coefficients
are vectors in K0(X)⊗Q(ζ) and formal Laurent series in 1− qζ. The
adelic map

K → K̂ :=
∏

ζ

Kζ
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assigns to a rational function f of q the collection (f (ζ)) of its Laurent
series expansions (one at each q = ζ−1).
Next, in each Kζ , a certain cone Lζ is described. For ζ which is

not a root of 1, Lζ = Kζ
+, the space of power series in 1 − qζ. For

ζ = 1, L1 ⊂ K1 is the graph of the differential of Ffake, the genus-0
descendant potential of fake quantum K-theory (studied in [8, 5, 2]).
For ζ 6= 1, which is a primitive mth root of 1, Lζ is a certain linear
subspace originating in a certain fake twisted quantum K-theory with
the orbifold target space X/Zm (see [10] for more detail).
The adelic characterization of LK says that f ∈ LK if and only if

f (ζ) ∈ Lζ for each ζ.
Furthermore, Lζ have the following description in terms of the cone

L ⊂ H of quantum cohomology theory.
First, the quantum Chern character defines an isomorphism qch :

K1 → Heven. By definition, qch acts by the usual Chern character on
the coefficients of Laurent q − 1-series, preserves Novikov’s variables,
and transforms q into ez. According to the “quantum HRR theorem”
in fake quantum K-theory [2, 5],

L1 = qch−1 △L, where △ ∼
∏

Chern roots x of TX

∞∏

r=1

x− rz

1− e−x+rz
.

Here ∼ means taking the “Euler-Maclaurin asymptotic” of the R.H.S.
We won’t remind the reader what it is (see, for instance, [4, 10]), but
note that (just as the expression on the R.H.S. suggests), it is multipli-
cation by a series in z±1 built of operators of multiplication in classical
cohomology algebra of X, but independent of Novikov’s variables. As a
consequence, all tangent and ruling spaces of the overruled Lagrangian
cone Lfake are D-modules (just like those of L are).
Then, when ζ 6= 1 is a primitive mth root of 1, one can give the

following (somewhat clumsy) description of Lζ . On the cone LK , there
is the point, denoted J (0) which corresponds to the input t = 0. It is
called the “small J-function,” and modulo K−, it is congruent to the
dilaton shift 1− q. Expanding J (0) into a Laurent series in q − 1, we
obtain the corresponding point J (0)(1) in Lfake. The tangent space to
Lfake at J (0)(1) has the form

△(z)S−1
τ(Q)(z,Q)H

even
+ , where z = log q,

and Sτ is the S-matrix of the cohomological theory computed at a
certain value τ = τ(Q) (characterized by the application point J (0)(1)).
In this notation, f ∈ Lζ iff

f(ζ−1q) ∈ ∇ζ qch
−1 Ψm△(m2z)S−1

τ(Qm)(m
2z,Qm)Ψ1/mHeven

+ ,
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where q = ez, ∇ζ = e
∑

k>0

(

Ψk(T∗

X
)

k(1−ζ−kqk)
−

Ψkm(T∗

X
)

k(1−qkm
2
)

)

, and Ψk are the Adams
operations K0(X) → K0(X) acting (by way of the Chern isomorphism)
on cohomology classes of degree 2r as multiplication by kr. It follows
that Lζ is a D-module as well. Indeed, we have mpiΨ

m = Ψmpi, and
mzQi∂Qi

= m2zQm
i ∂Qm

i
, and so mzQi∂Qi

−mpi commuted through Ψm

and △, yields

(m2zQm
i ∂Qm

i
− pi)S

−1
τ (m2z,Qm) = m2z∂iS

−1
τ (m2z,Qm).

The remaining part of the computation (such as differentiation in Q
hidden in τ = τ(Qm)) works out the same way as in the cohomological
case.

Let P1, . . . , Pr be line bundles on X such that c1(Pi) = −pi, and let
Dq be the algebra of finite-difference operators in Novikov’s variables.
By definition, it acts on K by the “translation” operators Piq

Qi∂Qi =
exp(−pi + (log q)Qi∂Qi

) and multiplications by Qj. It is shown in [10],
the adelic characterization of LK now implies that all tangent spaces
Tτ to LK (as well as the ruling subspaces (1− q)Tτ ⊂ LK of the cone)
are Dq-modules.
Indeed, the whole space K is Dq-invariant. If f ∈ K lies in a rul-

ing space (1 − q)Tf ⊂ LK , then the adelic components f (ζ) lie in Lζ .
The translation operators Piq

Qi∂Qi are exponentials of the differenti-
ation operators zQi∂Qi

− pi. Since ruling spaces of the cone Lfake

are D-modules, they are invariant with respect to the translation op-
erators as well. Furthermore, when ζ 6= 1 is a primitive m-root of
unity, the translation operator acts on the localization f (ζ)(ζ−1q) as
ezQi∂Qi

−piζ−Qi∂Qi . The latter factor acts by Qj 7→ Qjζ
−δij , and so it is

important that the matrix S−1
τ in the description of Lζ depends only

on the mth powers Qm of Novikov’s variables. As a result, if f (ζ) ∈ Lζ ,
then (Piq

Qi∂Qif)(ζ) ∈ Lζ . Hence all the localizations of Piq
Qi∂Qif pass

the adelic tests for elements of (1− q)Tf . Thus, Piq
Qi∂Qif ∈ (1− q)Tf ,

and so the ruling space is a Dq-module.

The proof of Theorem 2 proceeds now the same way as in Theorem
1. If Ψ(. . . , Piq

Qi∂Qi , . . . ) is a polynomial expression in the translation
operators, then the linear vector field on K given by f 7→ Ψf/(1− q) is
tangent to the cone LK , and therefore the flow f 7→ eǫΨ/(1−q)f preserves
LK .
Decomposing f into Q-series

∑
d fdQ

d, we find that

eǫΨ/(1−q)f =
∑

d

fdQ
deǫΨ(...,Piq

di ,... )/(1−q).
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Replacing ǫΨ with a linear combination
∑
ταΨα of finite difference op-

erators, one concludes that the family τ 7→ IK(τ) (introduced in Theo-
rem 2) lies in LK . The derivatives ∂αI(τ) lie in the tangent space T to
LK at IK(τ). Since T is a module over Q[q, q−1], and (1− q)T ⊂ LK ,
one finds that

∑
cα(q, q

−1)(1 − q)∂αI
K(τ) also lie in LK . Finally, as-

suming that P1, . . . , Pr generate K0(X), one derives that such linear
combinations comprise the whole of LK by checking this statement
modulo Novikov’s variables, and employing the formal Implicit Func-
tion Theorem.

4. Further implications and generalizations

A. Birkhoff factorizations and mirror maps. When H∗(X,Q)
is generated by the degree-2 classes p1, . . . , pr, Theorems 1 and 2 can be
reformulated as the following reconstruction results for the “S-matrix.”
Starting with polynomials Φα(p) representing a basis in H∗(X,Q), and
with a point

∑
IdQ

d on the cone L, one obtains a family of such points

I(τ) =
∑

Id(z, z
−1)Qde−

∑

ταΦα(p−dz)/z.

We may assume here that I0 = −z. The derivatives ∂αI form a Q[[z]]-
basis in the tangent spaces to L (depending on τ). The square matrix
U := [(∂αI, φ

β)], formed by the components of these derivatives, can
be factored into the product of U(z, z−1) = V (z)W (z−1) of two matrix
series (in the variables τ and Q), whose coefficients are power series
of z (on the left) and polynomial functions of z−1 (on the right). In
the procedure (known as Birkhoff factorization), one may assume that
W (0) = I. has the form Then W coincides with Sτ (−z

−1) up to a
change of variables τα 7→ τα + O(Q), which generalizes the “mirror
map” known in the mirror theory. To describe the change of variables,
assume that Φ0 = 1, and note that the “first row” of W has the form

1− z−1
∑

Φα(p)(τα +O(Q)) + o(z−1).

The mirror map is read off the z−1-term of the expansion.
In quantum K-theory, a similar result is obtained by Birkhoff factor-

ization U = VW , where the entries of U , V , and W are built respec-
tively of arbitrary rational functions, Laurent polynomials, and reduced
rational functions of q regular at q = 0.

B. Torus-equivariant theory. It is often useful [7] to consider
GW-invariants equivariant with respect to a torus action on X. The
above results apply to this case without any significant changes. One
only needs to extend the coefficient ring by the power series completion
Q[[λ]] of the coefficient ring of the equivariant theory. For example,
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when the torus T n of diagonal matrices acts onX = CP n−1 = proj(Cn),
the T n-equivariant cohomology algebra ofX is described by the relation
(p − λ1) · · · (p − λn) = 0. For the purpose of employing fixed-point
localization, it is convenient to assume that the hyperplane class p
localizes to each of the values λj. However, for the purpose of our
proof it suffices to assume that λj are generators of the formal series
ring Q[[λ1, . . . , λn]], and obtain the following parameterization of the
graph dF in the T n-equivariant GW-theory:

(−z)
∑

d≥0

Qde(τ0+τ1(p−dz)+···+τn−1(p−dz)n−1)/z
∑n−1

i=0 ci(z)(p− dz)i∏n
j=1(p− λj − z)(p− λj − 2z) · · · (p− λj − dz)

,

where the fractions 1/(p−λ−rz) are interpreted as Laurent polynomials
in z−1 modulo high powers of λ.

C. Twisted GW-invariants. Our results also extend to the case
of twisted GW-invariants in the sense of [4] (e.g. “local” ones, i.e. GW-
invariants of the non-compact total space of a vector bundle E → X,
or GW-invariants of the “super-bundle” ΠE → X, which in genus 0
are closely related to those of the zero locus of a section of E). In
such cases, to remove degenerations caused by non-compactness, one
needs to act equivariantly, equipping E with the fiberwise scalar circle
action. To adapt our arguments to this case, it suffices to work over the
coefficient ring H∗(BS1,Q) = Q[λ] localized to Q((λ)). For example,
the graph of dF of the local theory on the total space E of degree l
line bundle over CP n−1, for l > 0 obtains the following description:

(−z)
∑

d≥0

Qde(τ0+τ1(p−dz)+···+τn−1(p−dz)n−1)/z
∑n−1

i=0 ci(z)(p− dz)i
∏ld

r=0(lp+ λ− rz)
∏d

r=1(p− rz)n
.

Here pn = 0, while the fractions 1/(lp+λ− rz) should be expanded as
power z-series, whose coefficients, however, can be Laurent series of λ.
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