EXERCISES ON DETERMINANTS

1. Prove that the following determinant is equal to 0 :

$$
\left|\begin{array}{ccccc}
0 & 0 & 0 & a & b \\
0 & 0 & 0 & c & d \\
0 & 0 & 0 & e & f \\
p & q & r & s & t \\
v & w & x & y & z
\end{array}\right| .
$$

2. Compute determinants:

$$
\left|\begin{array}{rr}
\cos x & -\sin x \\
\sin x & \cos x
\end{array}\right|,\left|\begin{array}{rr}
\cosh x & \sinh x \\
\sinh x & \cosh x
\end{array}\right|,\left|\begin{array}{rr}
\cos x & \sin y \\
\sin x & \cos y
\end{array}\right| .
$$

3. Compute determinants:

$$
\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right|, \quad\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right|, \quad\left|\begin{array}{ccc}
1 & i & 1+i \\
-i & 1 & 0 \\
1-i & 0 & 1
\end{array}\right|
$$

4. For each of the 24 permutations of $\{1,2,3,4\}$, find the length and sign. 5. Find the length of the following permutation:

$$
\left(\begin{array}{cccccccc}
1 & 2 & \ldots & k & k+1 & k+2 & \ldots & 2 k \\
1 & 3 & \ldots & 2 k-1 & 2 & 4 & \ldots & 2 k
\end{array}\right) .
$$

6. Find the maximal possible length of permutations of $\{1, \ldots, n\}$.
7. Find the length of a permutation $\left(\begin{array}{ccc}1 & \ldots & n \\ i_{1} & \ldots & i_{n}\end{array}\right)$ given the length l of the permutation $\left(\begin{array}{ccc}1 & \ldots & n \\ i_{n} & \ldots & i_{1}\end{array}\right)$.
8. Prove that inverse permutations have the same length.
9. Compare parities of permutations of the letters $a, g, h, i, l, m, o, r, t$ in the words logarithm and algorithm.
10. Represent the permutation $\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2\end{array}\right)$ as composition of a minimal number of transpositions.
11. Do products $a_{13} a_{24} a_{53} a_{41} a_{35}$ and $a_{21} a_{13} a_{34} a_{55} a_{42}$ occur in the defining formula for determinants of size 5 ?
12. Find the signs of the elementary products $a_{23} a_{31} a_{42} a_{56} a_{14} a_{65}$ and $a_{32} a_{43} a_{14} a_{51} a_{66} a_{25}$ in the definition of determinants of size 6 by computing the numbers of inverted pairs of indices.
13. Compute the determinants

$$
\left|\begin{array}{ll}
13247 & 13347 \\
28469 & 28569
\end{array}\right|,\left|\begin{array}{rrr}
246 & 427 & 327 \\
1014 & 543 & 443 \\
-342 & 721 & 621
\end{array}\right|
$$

14. The numbers 195,247 , and 403 are divisible by 13 . Prove that the following determinant is also divisible by 13: $\left|\begin{array}{lll}1 & 9 & 5 \\ 2 & 4 & 7 \\ 4 & 0 & 3\end{array}\right|$.
15. Professor Dumbel writes his office and home phone numbers as a 7×1 matrix O and 1×7-matrix H respectively. Help him compute $\operatorname{det}(O H)$.
16. How does a determinant change if all its n columns are rewritten in the opposite order?
17.* Solve the equation $\left|\begin{array}{rrrrr}1 & x & x^{2} & \ldots & x^{n} \\ 1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n} \\ 1 & a_{2} & a_{2}^{2} & \ldots & a_{2}^{n} \\ & & & \ldots & \\ 1 & a_{n} & a_{n}^{2} & \ldots & a_{n}^{n}\end{array}\right|=0$, where all a_{1}, \ldots, a_{n} are given distinct numbers.
17. Prove that an anti-symmetric matrix of size n has zero determinant if n is odd.
18. How do similarity transformations of a given matrix affect the determinant of the matrix?

Definition. Given a square matrix A, the matrix $\left[C_{i j}\right]^{T}$ transposed to the matrix formed by cofactors of A is (often) called the matrix adjoint to C and denoted $\operatorname{adj}(A)$.
20. Prove that the adjoint matrix of an upper (lower) triangular matrix is upper (lower) triangular.
21. Which triangular matrices are invertible?
22. Compute the determinants: ($*$ is a wild card):

$$
\text { (a) }\left|\begin{array}{cccc}
* & * & * & a_{n} \\
* & * & \ldots & 0 \\
* & a_{2} & 0 & \ldots \\
a_{1} & 0 & \ldots & 0
\end{array}\right|, \quad(b)\left|\begin{array}{cccc}
* & * & a & b \\
* & * & c & d \\
e & f & 0 & 0 \\
g & h & 0 & 0
\end{array}\right| .
$$

23. Compute determinants using cofactor expansions:

$$
\text { (a) }\left|\begin{array}{llll}
1 & 2 & 2 & 1 \\
0 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 \\
0 & 2 & 0 & 1
\end{array}\right|, \quad(b) \quad\left|\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right| .
$$

24. Compute inverses of matrices using cofactor expansions:
(a) $\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1\end{array}\right]$,
(b) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$.
25. Compute

$$
\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}
$$

26. Express $\operatorname{det}(\operatorname{adj}(A))$ of the adjoint matrix via $\operatorname{det} A$.
27. Which integer matrices have integer inverses?
28. ${ }^{\star}$ In the block matrix $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$, assume that D^{-1} exists and prove that $\operatorname{det}\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]=\operatorname{det}\left(A-B D^{-1} C\right) \operatorname{det} D$.
29.* Compute determinants:

$$
\text { (a) }\left|\begin{array}{ccccc}
0 & x_{1} & x_{2} & \ldots & x_{n} \\
x_{1} & 1 & 0 & \ldots & 0 \\
x_{2} & 0 & 1 & \ldots & 0 \\
. & . & . & . & . \\
x_{n} & 0 & \ldots & 0 & 1
\end{array}\right|, \quad(b)\left|\begin{array}{cccccc}
a & 0 & 0 & 0 & 0 & b \\
0 & a & 0 & 0 & b & 0 \\
0 & 0 & a & b & 0 & 0 \\
0 & 0 & c & d & 0 & 0 \\
0 & c & 0 & 0 & d & 0 \\
c & 0 & 0 & 0 & 0 & d
\end{array}\right| .
$$

Definition. By a multi-index I of length $|I|=k$ we mean an increasing sequence $i_{1}<\cdots<i_{k}$ of k indices from the set $\{1, \ldots, n\}$. Given and $n \times n$ matrix A and two multi-indices I, J of the same length k, we define the $(I J)$ minor of A as the determinant of the $k \times k$-matrix formed by the entries $a_{\mathbf{i}_{\alpha} j_{\beta}}$ of A located at the intersections of the rows i_{1}, \ldots, i_{k} with columns j_{1}, \ldots, j_{k} (see Figure 24). Also, denote by \bar{I} the multi-index complementary to I, i.e. formed by those $n-k$ indices from $\{1, \ldots, n\}$ which are not contained in I. Lagrange's formula below generalizes cofactor expansions.
30.* Prove that for each multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, the following cofactor expansion with respect to rows i_{1}, \ldots, i_{k} holds true:

$$
\operatorname{det} A=\sum_{J:|J|=k}(-1)^{i_{1}+\cdots+i_{k}+j_{1}+\cdots+j_{k}} M_{I J} M_{\bar{I} \bar{J}}
$$

where the sum is taken over all multi-indices $J=\left(j_{1}, \ldots, j_{k}\right)$ of length k. Formulate and prove the analogous statement for columns.
31.* Let $P_{i j}, 1 \leq i<j \leq 4$, denote the 2×2-minor of a 2×4-matrix formed by the columns i and j. Prove the following Plücker identity

$$
P_{12} P_{34}-P_{13} P_{24}+P_{14} P_{23}=0
$$

32.* Let A and B be $k \times n$ and $n \times k$ matrices (think of $k<n$). For each multi-index $I=\left(i_{1}, \ldots, i_{k}\right)$, denote by A_{I} and B_{I} the $k \times k$-matrices formed by respectively: columns of A and rows of B with the indices i_{1}, \ldots, i_{k}. Prove that the determinant of the $k \times k$-matrix $A B$ is given by the following

4

Binet-Cauchy formula:

$$
\operatorname{det} A B=\sum_{I}\left(\operatorname{det} A_{I}\right)\left(\operatorname{det} B_{I}\right)
$$

33. The cross product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ is defined by

$$
\mathbf{x} \times \mathbf{y}:=\left(\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right|,\left|\begin{array}{ll}
x_{3} & x_{1} \\
y_{3} & y_{1}
\end{array}\right|,\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|\right)
$$

Prove that the length $|\mathbf{x} \times \mathbf{y}|=\sqrt{|\mathbf{x}|^{2}|\mathbf{y}|^{2}-\langle\mathbf{x}, \mathbf{y}\rangle^{2}}$.
34. Prove that $a_{n}+\frac{1}{a_{n-1}+\frac{1}{\cdots+\frac{1}{a_{1}+\frac{1}{a_{0}}}}}=\frac{\Delta_{n}}{\Delta_{n-1}}$,
where $\Delta_{n}=\left|\begin{array}{ccccc}a_{0} & 1 & 0 & \ldots & 0 \\ -1 & a_{1} & 1 & \ldots & 0 \\ . & . & . & . & . \\ 0 & \ldots & -1 & a_{n-1} & 1 \\ 0 & \ldots & 0 & -1 & a_{n}\end{array}\right|$.
35.* Compute: $\left|\begin{array}{ccccc}\lambda & -1 & 0 & \ldots & 0 \\ 0 & \lambda & -1 & \ldots & 0 \\ \cdot & \cdot & . & \cdot & \cdot \\ 0 & \ldots & 0 & \lambda & -1 \\ a_{n} & a_{n-1} & \ldots & a_{2} & \lambda+a_{1}\end{array}\right|$.
37.* Prove Vandermonde's identity

$$
\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right|=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) .
$$

38. ${ }^{\star}$ Compute: $\left|\begin{array}{ccccc}1 & 2 & 3 & \ldots & n \\ 1 & 2^{3} & 3^{3} & \ldots & n^{3} \\ \cdot & \cdot & \cdot & . & \dot{\cdot} \\ 1 & 2^{2 n-1} & 3^{2 n-1} & \ldots & n^{2 n-1}\end{array}\right|$.
