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1.4. Complex numbers

The quadratic equation x2 − 1 = 0 in one unknown has two solutions x = ±1.
The equation x2+1 = 0 has no solutions at all. For the sake of justice one introduces
a new number i, the imaginary unit, such that i2 = −1, and thus x = ±i become
two solutions to the equation.

1.4.1. Definitions and geometrical interpretations. Complex numbers
are defined as ordered pairs of real numbers written in the form z = a + bi. The
real numbers a and b are called the real part and imaginary part of the complex
number z and denoted a = Re z and b = Im z. The sum of two complex numbers z
and w = c + di is defined by z + w = (a + c) + (b + d)i while the definition of the
product is to comply with the relation i2 = −1:

zw = ac + bdi2 + adi + bci = (ac− bd) + (ad + bc)i.

Operations of addition and multiplication of complex numbers enjoy the same prop-
erties as those of real numbers. In particular, the product is commutative and
associative.

The complex number z̄ = a− bi is called complex conjugate to z = a + bi. The
formula z + w = z̄ + w̄ is obvious, and zw = z̄w̄ is due to the fact that ī = −i has
exactly the same property as i: (−i)2 = −1.

The product zz̄ = a2 + b2 (check this formula!) is real and positive unless
z = 0 + 0i = 0. This shows that

1

z
=

z̄

zz̄
=

a

a2 + b2
− b

a2 + b2
i,

and hence the division by z is well-defined for any non-zero complex number z.
The non-negative real number |z| = √

zz̄ =
√

a2 + b2 is called the absolute value
of z. The absolute value function has the same multiplicative property as in the case
of real numbers: |zw| =

√
zwzw =

√
zz̄ww̄ = |z| · |w|. It actually coincides with

the absolute value of real numbers when applied to complex numbers with zero
imaginary part: |a + 0i| = |a|.

To a complex number z = a+bi, we can associate the radius-vector z = ae1+be2

on the coordinate plane. The unit coordinate vectors e1 and e2 represent therefore
the complex numbers 1 and i. The coordinate axes are called respectively the real
and imaginary axes of the plane. Addition of complex numbers coincides with the
operation of vector sum.

The absolute value function has the geometrical meaning of the distance to
the origin: |z| = 〈z, z〉1/2, while zz̄ is the inner square. In particular, the triangle
inequality |z + w| ≤ |z|+ |w| holds true. Complex numbers of unit absolute value
|z| = 1 form the unit circle centered at the origin.

The operation of complex conjugation acts on the vectors z as the reflection
about the real axis.

In order to describe a geometrical meaning of complex multiplication, let us
write the vector representing a non-zero complex number z in the polar (or trigono-
metric) form z = ru where r = |z| is a positive real number, and u = z/|z| =
cos θ + i sin θ has the absolute value 1. Here θ = arg z, called the argument of the
complex number z, is the angle that the vector z makes with the positive direction
of the real axis.
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Consider the linear transformation on the plane defined as multiplication of
all complex numbers by a given complex number z. It is the composition of the
multiplication by r and by u. The geometrical meaning of multiplication by r is
clear: it makes all vectors r times longer. The multiplication by u is described by
the following formulas

Re [(cos θ + i sin θ)(x1 + ix2)] = (cos θ)x1 − (sin θ)x2

Im [(cos θ + i sin θ)(x1 + ix2)] = (sin θ)x1 + (cos θ)x2
.

This is a linear transformation with the matrix

[
cos θ − sin θ
sin θ cos θ

]
. The multiplica-

tion by u is therefore the rotation through the angle θ. Thus the multiplication by
z is the composition of the dilation by |z| and rotation through arg z.

In other words, the product operation of complex numbers sums their argu-
ments and multiplies absolute values:

|zw| = |z| · |w|, arg zw = arg z + arg w modulo 2π.

1.4.2. The exponential function. Consider the series

1 + z +
z2

2
+

z3

6
+ ... +

zn

n!
+ ...

Applying the ratio test for convergence of infinite series,

|z
n(n− 1)!

n!zn−1
| = |z|

n
→ 0 < 1 as n →∞,

we conclude that the series converges absolutely for any complex number z. The
sum of the series is a complex number denoted exp z, and the rule z �→ exp z defines
the exponential function of the complex variable z.

The exponential function transforms sums to products:

exp(z + w) = (exp z)(exp w) for any complex z and w.

Indeed, due to the binomial formula, we have

(z + w)n =

n∑
k=0

(
n

k

)
zkwn−k = n!

∑
k+l=n

zk

k!

wl

l!
.

Rearranging the sum over all n as a double sum over k and l we get
∞∑

n=0

(z + w)n

n!
=

∞∑
k=0

∞∑
l=0

zk

k!

wl

l!
= (

∞∑
k=0

zk

k!
)(

∞∑
l=0

wl

l!
).

The exponentials of complex conjugated numbers are conjugated:

exp z̄ =
∑ z̄n

n!
=

∑ zn

n!
= exp z.

In particular, on the real axis the exponential function is real and coincides with the
usual real exponential function expx = ex where e = 1+1/2+1/6+ ...+1/n!+ ... =
exp(1). Extending this notation to complex numbers we can rewrite the above
properties of ez = exp z as ez+w = ezew, ez̄ = ez .

On the imaginary axis, w = eiy satisfies ww̄ = e0 = 1 and hence |eiy| = 1. The
way the imaginary axis is mapped by the exponential function to the unit circle is
described by the following Euler’s formula:

eiθ = cos θ + i sin θ.
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Exercises 1.4.1.

(a) Compute (1 + i)/(3− 2i),
(cosπ/3 + i sin π/3)−1.

(b) Show that z−1 is a real proportional to
z̄ and find the proportionality coefficient.

(c) Find all z satisfying |z−1| = |z−2| = 1.
(d) Sketch the solution set to the follow-

ing system of inequalities: |z + 1| ≤ 1, |z| ≤
1, Re(iz) ≤ 0.

(e) Compute (
√

3+i
2

)100.

(f) Prove that the linear transformationde-

fined by the matrix

»
a −b
b a

–
is the composi-

tion of multiplication by
√
a2 + b2 and a rota-

tion.
(g) Let z1, ..., z5 form a regular pentagon

inscribed into the unit circle |z| = 1. Prove
that z1 + ...+ z5 = 0.

Exercises 1.4.2.
(a) Prove the “Fundamental Formula of

Mathematics”: eπi + 1 = 0.
(b) Represent 1−i and 1−√3i in the polar

form reiθ .
(c) Show that cos θ = (eiθ + e−iθ)/2 and

sin θ = (eiθ − e−iθ)/2i.
(d) Compute the real and imaginary part

of the product eiφeiψ using the Euler formula
and deduce the addition formulas for cos(φ+ψ)

and sin(φ+ ψ).
(e) Express Re e3iθ , Im e3iθ in terms of

Re eiθ and Im eiθ and deduce the triple argu-
ment formulas for cos 3θ and sin 3θ.

(f) Prove the binomial formula:

(z +w)n =
nX
k=0

“n
k

”
zkwn−k ,

where
`n
k

´
= n!/k!(n− k)!.
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It is proved by comparison of eiθ =
∑

(iθ)n/n! with Taylor series for cos θ and sin θ:

Re eiθ = 1− θ2

2
+ θ4

24
− ... =

∑
(−1)k θ2k

(2k)!
= cos θ

Im eiθ = θ− θ3

6 + θ5

120 − ... =
∑

(−1)k θ2k+1

(2k+1)! = sin θ
.

Thus θ �→ eiθ is the usual parameterization of the unit circle by the angular co-
ordinate θ. In particular, e2πi = 1 and therefore the exponential function is 2πi-
periodic: ez+2πi = eze2πi = ez . Using Euler’s formula we can rewrite the polar
form of a non-zero complex number w as

w = |w|ei arg w.

1.4.3. The Fundamental Theorem of Algebra. A quadratic polynomial
z2 + pz + q has two roots

z± =
−p ±

√
p2 − 4q

2
regardless of the sign of the discriminant p2−4q, if we allow the roots to be complex
and take in account multiplicity. Namely, if p2 − 4q = 0, z2 + pz + q = (z + p/2)2

and therefore the single root z = −p/2 has multiplicity two. If p2 − 4q < 0 the

roots are complex conjugated with Re z± = −p/2, Im z± = ±
√
|p2 − 4q|/2. The

Fundamental Theorem of Algebra shows that not only the justice has been restored,
but that any degree n polynomial has n complex roots, possibly — multiple.

Theorem. A degree n polynomial P (z) = zn + a1z
n−1 + ... + an−1z + an with

complex coefficients a1, ..., an factors as

P (z) = (z − z1)
m1 ...(z − zr)

mr .

Here z1, ..., zr are complex roots of P (z) of multiplicities m1, ..., mr, and m1 + ...+
mr = n.

This is one of a few theorems we intend to use in this course without proof.
We illustrate it with the following examples.

Examples. (a) The equation z2 = w, where w = reiθ is a complex number
written in the polar form, has two solutions±√w = ±√reiθ/2. Thus the formula for
roots of quadratic polynomials makes sense even if the coefficients p, q are complex.

(b) The complex numbers 1, i,−1,−i are the roots of the polynomial z4 − 1 =
(z2 − 1)(z2 + 1) = (z − 1)(z + 1)(z − i)(z + i).

(c) There are n complex n-th roots of unity. Namely, if z = reiθ satisfies zn = 1
then rneinθ = 1 and therefore r = 1 and nθ = 2πk, k = 0,±1,±2, .... Thus

z = e2πik/n = cos
2πk

n
+ i sin

2πk

n
, k = 0, 1, 2, ..., n− 1.

For instance, if n = 3, the roots are 1 and

e±2πi/3 = cos
2π

3
± i sin

2π

3
= −1

2
± i

√
3

2
.

As illustrated by the previous two examples, if the coefficients a1, ..., an of the
polynomial P (z) are real numbers, that is āi = ai, yet the roots can be non-real,
but then they come in complex conjugated pairs. This follows from equality of two

factorizations for P (z̄) = zn + ā1z
n−1 + ... + ān = P (z):

(z − z̄1)
m1 ...(z − z̄r)

mr = (z − z1)
m1 ...(z − zr)

mr .
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These equal products can differ only by the order of the factors, and thus for
each non-real root of P (z) the complex conjugate is also a root and of the same
multiplicity.

Expanding the product

(z − z1)...(z − zn) = zn − (z1 + ... + zn)zn−1 + ... + (−1)nz1...zn

we can express coefficients a1, ..., an of the polynomial via the roots z1, ..., zn (here
multiple roots should be repeated according to their multiplicities). In particular,
the sum and the product of roots are

z1 + ... + zn = −a1, z1...zn = (−1)nan.

These formulas generalize the Vieta theorem for roots of quadratic polynomials:
z+ + z− = −p, z+z− = q.

Exercises 1.4.3.
(a) Solve the quadratic equations:

z2 − 6z + 5 = 0, z2 − iz + 1 = 0, z2 − 2(1 + i)z + 2i = 0, z2 − 2z +
√

3i = 0.

(b) Solve the equations

z3 + 8 = 0, z3 + i = 0, z4 + 4z2 + 4 = 0, z4 − 2z2 + 4 = 0, z6 + 1 = 0.

(c) Prove that for any n > 1 the sum of all n-th roots of unity equals zero.

(d) Prove that any polynomial with real coefficients factors into a product of linear and
quadratic polynomials with real coefficients.

5-th roots of unity

e
e

e e

1

2π
4π

−4π −2π i/5

i/5
i/5

i/5


