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3 Complex Numbers

Law and Order

Life is unfair: The quadratic equation x2 − 1 = 0 has two solutions
x = ±1, but a similar equation x2 +1 = 0 has no solutions at all. To
restore justice one introduces new number i, the imaginary unit,
such that i2 = −1, and thus x = ±i become two solutions to the
equation. This is how complex numbers could have been invented.

More formally, complex numbers are introduced as ordered pairs
(a, b) of real numbers, written in the form z = a + bi. The real
numbers a and b are called respectively the real part and imagi-
nary part of the complex number z, and are denoted a = Re z and
b = Im z.

The sum of z = a+ bi and w = c+ di is defined as

z + w = (a+ c) + (b+ d)i.

The product is defined so as to comply with the relation i2 = −1:

zw = ac+ bdi2 + adi+ bci = (ac− bd) + (ad+ bc)i.

The operations of addition and multiplication of complex numbers
enjoy the same properties as those of real numbers do. In particular,
the product is commutative and associative.

The complex number z̄ = a − bi is called complex conjugate
to z = a + bi. The operation of complex conjugation respects sums
and products:

z + w = z̄ + w̄ and zw = z̄w̄.

This can be easily checked from definitions, but there is a more pro-
found explanation. The equation x2 +1 = 0 has two roots, i and −i,
and the choice of the one to be called i is totally ambiguous. The
complex conjugation consists in systematic renaming i by −i and
vice versa, and such renaming cannot affect properties of complex
numbers.

Complex numbers satisfying z̄ = z are exactly the real numbers
a+0i. We will see that this point of view on real numbers as complex
numbers invariant under complex conjugation is quite fruitful.

The product zz̄ = a2 + b2 (check this formula!) is real, and is
positive unless z = 0 + 0i = 0. This shows that
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z
=
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zz̄
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a

a2 + b2
− b

a2 + b2
i.
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Hence the division by z is well-defined for any non-zero complex
number z. In terminology of Abstract Algebra, complex numbers
form therefore a field6 (just as real or rational numbers do).

The field of complex numbers is denoted by C (while R stands
for reals, and Q for rationals).

The non-negative real number |z| =
√
zz̄ =

√
a2 + b2 is called the

absolute value of z. The absolute value function is multiplicative:

|zw| =
√
zwzw =

√
zz̄ww̄ = |z| · |w|.

It actually coincides with the absolute value of real numbers when
applied to complex numbers with zero imaginary part: |a+0i| = |a|.
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Geometry

We can identify complex numbers z = a + bi with points (a, b) on
the real coordinate plane (Figure 17). This way, the number 0 is
identified with the origin, and 1 and i become the unit basis vectors
(1, 0) and (0, 1). The coordinate axes are called respectively the real
and imaginary axes. Addition of complex numbers coincides with
the operation of vector sum (Figure 18).

The absolute value function has the geometrical meaning of the
distance from the origin: |z| = 〈z, z〉1/2. In particular, the triangle
inequality |z + w| ≤ |z| + |w| holds true. Complex numbers of unit
absolute value |z| = 1 form the unit circle centered at the origin.

The operation of complex conjugation acts on the radius-vectors
z as the reflection about the real axis.

6This requires that a set be equipped with commutative and associative op-
erations (called addition and multiplication) satisfying the distributive law
z(v + w) = zv + zw, possessing the zero and unit elements 0 and 1, additive
opposites −z for every z, and multiplicative inverses 1/z for every z 6= 0.
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In order to describe a geometric meaning of complex multiplica-
tion, let us study the way multiplication by a given complex number
z acts on all complex numbers w, i.e. consider the function w 7→ zw.
For this, write the vector representing a non-zero complex number
z in the polar (or trigonometric) form z = ru where r = |z| is a
positive real number, and u = z/|z| = cos θ + i sin θ has absolute
value 1 (see Figure 19). Here θ = arg z, called the argument of the
complex number z, is the angle that z as a vector makes with the
positive direction of the real axis.

Clearly, multiplication by r acts on all vectors w by stretching
them r times. Multiplication by u applied to w = x+yi yields a new
complex number uw = X + Y i according to the rule:

X = Re [(cos θ + i sin θ)(x+ yi)] = x cos θ − y sin θ

Y = Im [(cos θ + i sin θ)(x+ yi)] = x sin θ + y cos θ.

Comparing with the formula (∗) in Section 2, we conclude that the
transformation w 7→ uw is the counter-clockwise rotation through
the angle θ.

Figure 19
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Notice a difference though: In Section 2, we rotated the coor-
dinate system, and the formulas (∗) expressed old coordinates of a
vector via new coordinates of the same vector. This time, we trans-
form vectors, while the coordinate system remains unchanged. The
same formulas now express coordinates (X,Y ) of a new vector in
terms of the coordinates (x, y) of a the old one.

Anyway, the conclusion is that multiplication by z is the compo-
sition of two operations: stretching |z| times, and rotating through
the angle arg z.

In other words, the product operation of two complex numbers
sums their arguments and multiplies absolute values:

|zw| = |z| · |w|, arg zw = arg z + argw modulo 2π.

For example, if z = r(cos θ+i sin θ), then zn = rn(cos nθ+i sinnθ).
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The Fundamental Theorem of Algebra

A degree 2 polynomial z2 + pz + q has two roots

z± =
−p±

√

p2 − 4q

2
.

This quadratic formula works regardless of the sign of the dis-
criminant p2 − 4q, provided that we allow the roots to be com-
plex, and take in account multiplicity. Namely, if p2 − 4q = 0,
z2 + pz + q = (z + p/2)2 and therefore the single root z = −p/2 has
multiplicity two. If p2−4q < 0 the roots are complex conjugate with
Re z± = −p/2, Im z± = ±

√

|p2 − 4q|/2. The Fundamental Theorem
of Algebra shows that not only justice has been restored, but that
any degree n polynomial has n complex roots, possibly — multiple.

Theorem. A degree n polynomial

P (z) = zn + a1z
n−1 + ...+ an−1z + an

with complex coefficients a1, ..., an factors as

P (z) = (z − z1)
m1 ...(z − zr)

mr .

Here z1, ..., zr are complex roots of P , and m1, ...,mr their
multiplicities, m1 + · · · +mr = n.

A proof of this theorem deserves a separate chapter (if not a
book). Many proofs are known, based on various ideas of Algebra,
Analysis or Topology. We refer to [6] for an exposition of the classical
proof due to Euler, Lagrange and de Foncenex, which is almost en-
tirely algebraic. Here we merely illustrate the theorem with several
examples.

Examples. (a) To solve the quadratic equation z2 = w, equate
the absolute value r and argument θ of the given complex number w
with those of z2:

|z|2 = ρ, 2arg z = φ+ 2πk, k = 0,±1,±2, . . . .

We find: |z| =
√
ρ, and arg z = φ/2 + πk. Increasing arg z by even

multiples π does not change z, and by odd changes z to −z. Thus
the equation has two solutions:

z = ±√
ρ

(

cos
φ

2
+ i sin

φ

2

)

.
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(b) The equation z2 + pz + q = 0 with coefficients p, q ∈ C has
two complex solutions given by the quadratic formula (see above),
because according to Example (a), the square root of a complex
number takes on two opposite values (distinct, unless both are equal
to 0).

(c) The complex numbers 1, i,−1,−i are the roots of the polyno-
mial z4 − 1 = (z2 − 1)(z2 + 1) = (z − 1)(z + 1)(z − i)(z + i).

(d) There are n complex nth roots of unity (see Figure 20,
where n = 5). Namely, if z = r(cos θ + i sin θ) satisfies zn = 1,
then rn = 1 (and hence r = 1), and nθ = 2πk, k = 0,±1,±2, ....
Therefore θ = 2πk/n, where only the remainder of k modulo n is
relevant. Thus the n roots are:

z = cos
2πk

n
+ i sin

2πk

n
, k = 0, 1, 2, ..., n − 1.

For instance, if n = 3, the roots are 1 and

cos
2π

3
± i sin

2π

3
= −1

2
± i

√
3

2
.

Figure 20
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As illustrated by the previous two examples, even if all coefficients
a1, . . . , an of a polynomial P are real, its roots don’t have to be
real. But then the non-real roots come in pairs of complex conjugate
ones. To verify this, we can use the fact that being real means
stay invariant (i.e. unchanged) under complex conjugation. Namely,
āi = ai for all i means that

P (z̄) = zn + ā1z
n−1 + ...+ ān = P (z).

Therefore we have two factorizations of the same polynomial:

P̄ (z̄) = (z − z̄1)
m1 ...(z − z̄r)

mr = (z − z1)
m1 ...(z − zr)

mr = P (z).

They can differ only by orders of the factors. Thus, for each non-real
root zi of P , the complex conjugate z̄i must be also a root, and of
the same multiplicity.
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Expanding the product

(z − z1)...(z − zn) = zn − (z1 + ...+ zn)zn−1 + ...+ (−1)nz1...zn

we can express coefficients a1, ..., an of the polynomial in terms of the
roots z1, ..., zn (here multiple roots are repeated according to their
multiplicities). In particular, the sum and product of the roots are

z1 + ...+ zn = −a1, z1...zn = (−1)nan.

These relations generalize Vieta’s theorem z++z− = −p, z+z− = q
about roots z± of quadratic equations z2 + pz + q = 0.

EXERCISES

44. Can complex numbers be: real? real and imaginary? neither? �

45. Compute: (a) (1 + i)/(3 − 2i); (b) (cos π/3 + i sinπ/3)−1. �

46. Verify the commutative and distributive laws for multiplication of com-
plex numbers.

47. Show that z−1 is real proportional to z̄ and find the proportionality
coefficient. �

48. Find all z satisfying the equations: |z − 1| = |z + 1| = 2. �

49. Sketch the solution set to the following system of inequalities:
|z − 1| ≤ 1, |z| ≤ 1, Re(iz) ≤ 0.

50. Compute absolute values and arguments of (a) 1 − i, (b) 1 − i
√

3. �

51. Compute
(√

3+i
2

)100

. �

52. Express cos 3θ and sin 3θ in terms of cos θ and sin θ. �

53. Express cos(θ1 + θ2) and sin(θ1 + θ2) in terms of cos θi and sin θi.

54. Prove Bézout’s theorem7: A number z0 is a root of a polynomial P
in one variable z if and only if P is divisible by z − z0. �

55. Find roots of degree 2 polynomials:
z2 − 4z + 5, z2 − iz + 1, z2 − 2(1 + i)z + 2i, z2 − 2z + i

√
3. �

56. Find all roots of polynomials:
z3 + 8, z3 + i, z4 + 4z2 + 4, z4 − 2z2 + 4, z6 + 1. �

57. Prove that every polynomial with real coefficients factors into the prod-
uct of polynomials of degree 1 and 2 with real coefficients. �

58. Prove that the sum of all 5th roots of unity is equal to 0. �

59.⋆ Find general Vieta’s formulas 8 expressing all coefficients of a poly-
nomial in terms of its roots. �

7Named after Étienne Bézout (1730–1783).
8Named after François Viéte (1540–1603) also known as Franciscus Vieta.


