
THREE POINTS ON THE PLANE

ALEXANDER GIVENTAL
UC BERKELEY

In this lecture, we examine some properties of a geometric figure
formed by three points on the plane.

Any three points not lying on the same line determine a triangle.
Namely, the points are the vertices of the triangle, and the segments
connecting them are the sides of it.

We expect the reader to be familiar with a few basic notions and
facts of geometry of triangles. References like “[K], §140” will point to
specific sections in:

Kiselev’s Geometry. Book I: Planimetry, Sumizdat, 2006, 248 pages.

Everything we assume known, as well as the initial part of the present
exposition, is contained in the first half of this textbook.

Circumcenter. One says a circle is circumscribed about a triangle (or
shorter, is the circumcircle of it), if the circle passes through all vertices
of the triangle.

Theorem 1. About every triangle, a circle can be circum-

scribed, and such a circle is unique.

Let △ABC be a triangle with vertices A, B, C (Figure 1). A point
O equidistant from1 all the three vertices is the center of a circumcircle
of radius OA = OB = OC. Thus we need to show that a point
equidistant from the vertices exists and is unique.

Indeed, the geometric locus 2 of points equidistant from A and B is
the perpendicular bisector to the segment AB, i.e. it is the line (denoted
by MN in Figure 1) perpendicular to the segment AB at its midpoint
(see [K], §56). Likewise, the geometric locus of points equidistant from
B and C is the perpendicular bisector PQ to the segment BC. Let O
denote the point of intersection of the lines MN and PQ. Such a point
exists, since if MN and PQ were parallel, the segments AB and BC
perpendicular to them would lie in the same line (see [K], §80), which
case is assumed to be excluded. Of course, the intersection point O of
MN and PQ unique. Then O is equidistant from A and B, and to B

1“Equidistant from” is a shorthand for “is the same distance away from”.
2It is formed by all those points which possess a property in question.
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and C, i.e. it is equidistant from all the vertices of △ABC. Thus the
circle of radius OA centered at O is the unique circumcircle of △ABC.

Figure 1
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Notice that the center O of the circumcircle, being equidistant from
C and A, lies on the perpendicular bisector RS to the segment CA.
We conclude that all the three perpendicular bisectors intersect at O.

Three or more lines intersecting at a point are said to be concurrent.
We have obtained the following corollary.

Corollary. Perpendicular bisectors to the sides of a trian-

gle are concurrent.

Moreover, the intersection point of the three perpendicular bisectors
to sides of a triangle is the center of its circumcircle, also called the
circumcenter of the triangle.

Orthocenter. The perpendicular, dropped from a vertex of a triangle,
to the side (or an extension of it) opposite to the vertex is called an
altitude 3 of the triangle.

Theorem 2. In every triange, the three altitudes are con-

current.

3or a height of the triangle
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Indeed, through each vertex of △ABC (Figure 2), draw the line
parallel to the opposite side of the triangle. These lines form an aux-
iliary triangle A′B′C ′ such that the midpoints of its sides are vertices
of △ABC. Indeed, C ′A = BC and AB′ = BC as opposite sides
of the parallelograms C ′BCA and ABCB′ respectively (see [K], §85).
Therefore C ′A = AB′, i.e. A is the midpoint of B′C ′, and similarly B
and C are midpoints of the other two sides of △A′B′C ′. The altitudes
AD, BE, and CF of △ABC turn out to be perpendicular bisectors
to the sides of △A′B′C ′ and are therefore concurrent by Corollary of
Theorem 1.

Figure 2
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The intersection point of the altitudes of a triangle is called its or-

thocenter.

Exercises. (a) Prove that the circumcenter lies inside the triangle
if and only if the triangle is acute (i.e. has three acute angles), and
outside the triangle if and only if the triangle is obtuse (i.e. has one
obtuse angle).

(b) Find out which triangles have their orthocenter lie inside (respec-
tively outside) the triangle.

(c) Can the circumcenter (respectively orthocenter) lie on one of the
sides of the triangle?

Barycenter. The segment connecting a vertex of a triangle with the
midpoint of the opposite side is called a median of the triangle.

Theorem 3. In every triangle, the three medians are con-

current.

Indeed, in a triangle ABC (Figure 3), denote M the intersection
point of the medians AD and BE. Let F and G be the midpoints
of AM and BM respectively. Then DE is a midline of △ABC, and
FG is a midline of △ABM . By the property of the midline (see [K],
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§95), each of the segments DE and FG are parallel to the segment
AB and congruent to a half of it. Therefore DE and FG are parallel
and congruent to each other, and hence DEFG is a parallelogram (see
[K], §86). Thus M , being the intersection point of the diagonals of
the parallelogram DEFG, is its center of symmetry (see [K], §89). In
particular, M is the midpoint of the diagonal FD, i.e. DM = MF =
FA. We conclude that the point M at which the median BE meets
the median AB divides AB in the proportion 2 : 1 counting from the
vertex A. Since the same will be true for the point at which the median
CH meets the median AB, we find that the median CH passes through
the same point M .
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The intersection point of the three medians of a triangle is sometimes
called the barycenter of the triangle. From the proof of the theorem we
obtain the following corollary.

Corollary. The barycenter of the triangle divides each me-

dian in the proporion 2 : 1 counting from the vertex.

Exercises. (d) Show that the median CH (Figure 3) of △ABC is
parallel to the sides EF and GD of the parallelogram DEFG.

(e) Prove that barycenter of the triangle formed by midlines of a
given triangle coincides with the barycenter of the given one.

(f) Prove that midpoints of the sides of a given triangle and the
midpoints of the segments connecting the vertices of the given triangle
with its barycenter form two triangles centrally symmetric (see [K],
§88) about the barycenter.

The homothety with the coefficient −1/2 about a center O is a geo-
metric transformation that can be described as follows (see [K], §180).
A point A′ is obtained by this transformation from a point A if the seg-
ment AA′ contains the point O and is divided by it in the proportion
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2 : 1, i.e. if OA′ = OA/2. Two figures, F and F ′, are said to be homo-
thetic with the coefficient −1/2 about the center O, if each point of F ′

is obtained by this transformation from a point of F and moreover, F ′

contains all points obtained from points of F by this transformation.
Similarly to central symmetry, the homothety transforms a line into a
parallel (or the same) line, and every angle into an angle congruent to
it. However, unlike central symmetry (which also transforms each seg-
ment to a segment congruent to it) the homothety with the coefficient
−1/2 transforms each segment into a parallel segment which is twice
as shorter than the original one. Using the concept of homothety, we
can formulate the previous corollary this way.

Corollary’. The midlines of a given triangle form the tri-

angle homothetic with the coefficient −1/2 to the original one

about its barycenter.

Exercises. (g) Show that △ABC in Figure 2 is obtained from the
△A′B′C ′ by a homothety with the coefficient −1/2, and find the center
of this homothety.

(h) Describe the geometric transformation inverse 4 to the homoth-
ety with the coefficient −1/2 about a given center. (It is called the
homothety with the coefficient −2 about the same center.)

(i) Generalize the concept of homothety with coiefficients −1/2 and
−2 to the case of arbitrary coefficent k, and show that central symmetry
is the homothety with the coefficient −1.

Euler’s line. Three or more points lying on the same line are said
to be collinear.

Theorem 4. The circumcenter, orthocenter, and barycenter

of every triangle are collinear.

Indeed, to a given triangle ABC (Figure 4), apply the transforma-
tion of homothety with the coefficient −1/2 about its barycenter M
to obtain the triangle A′B′C ′ formed by the midpoints of the sides.
The altitudes of △ABC will transform into the altitudes of △A′B′C ′

which are perpendicular bisectors to the sides of △ABC. Therefore
the orthocenter H of △ABC will transform into its circumcenter O.
Thus the circumcenter is homothetic with the coefficient −1/2 to the
orthocenter about the barycenter. In particular, the three points are
collinear.

4I.e. undoing whatever the direct transformation is doing.
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Corollary. The barycenter M of the triangle divides the

segment HO connecting the orthocenter with the circumcen-

ter in the proportion 2 : 1.

A

O
M

H

B

CB’

C’ A’

Figure 4

Exercise. (j) Show that if two of the three centers O, H, M of
△ABC coincide, than all three coincide, and derive that in this case
the triangle is equilateral.

Unless the triangle is equilateral, the orthocenter, circumcenter and
baricenter are distinct, and hence the line containing them is uniquely
defined. This line is called Euler’s line of the triangle.

Euler’s circle. By definition, Euler’s circle of a given triangle is
the circumcircle of the triangle formed by its midlines (see Figure 5).

Exercise. (k) Show that the radius of Euler’s circle is a half the
readius of the circumcircle.

Theorem 5. The center of Euler’s circle lies on Euler’s line

and bisects the segment between the orthocenter and circum-

center. Euler’s circle passes through the following 9 remark-

able points of the triangle: the midpoints of the sides, the

feet of the altitudes, and the midpoints of the segments con-

necting the orthocenter with the vertices of the triangle.

Indeed, according to Corollary’ of Theorem 3, the triangle formed
by the midlines is homothetic with the coefficent −1/2 to the given
triangle about the barycenter. Consequently, Euler’s circle is obtained
by the same transformation from the circumcircle of the given triangle
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. In particular, the center E of Euler’s circle is homothetic with the
coefficient −1/2 about the barycenter M to the circumcenter O of
the given triangle. It follows that E lies on Euler’s line. Moreover,
since M divides HO and OE in the proportion 2 : 1, we find that
EO = MO + ME = HO/3 + HO/6 = HO/2, i.e. that E bisects HO.
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Furthermore, the perpendicular bisector B′O to the side AC, and
the altitude BF perpendicular to this side, are parallel to each other.
Hence the perpendicular bisector to the segment B′F (it is shown as
the dotted line in Figure 5), being the midline the trapezoid B′OHF
(see [K], §97), contains the midpoint E of HO. Thus E is equidistant
from B′ and F .

Let us now extend the segment B′E past the point E and denote by G
the intersection point with the altitude BF . In the triangles OEB′ and
HEG, the angles OEB′ and HEG are congruent (as vertical, see [K],
§26), the angles B′OE and GHE are congruent (as interior alternate
angles formed by parallel lines and a transversal, [K], §77), and the
sides OE and HE, to which those angles are adjacent, are congruent
too. Thus △OEB′ and △HEG are congruent by the ASA-test (see
[K], §40). Therefore EB′ = EG and OB′ = HG as respective sides in
congruent triangles. Since OB′ is homotheic with the coefficent −1/2
to HB, we find that HG = OB′ = HB/2, i.e. that G is the midpoint
of the segment HB.

Finally, since EG = EB′ = EF , where E is the center of Euler’s
circle, and EB′ is a radius of it, we see that B′, F and G lie on Euler’s
circle. Thus we have proved that the midpoint B′ of the side AC, the
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foot F of the altitude dropped to this side, and the midpoint G of the
segment connecting the orthocenter H with the vertex opposite to this
side, lie on Euler’s circle.

The same conclusion holds true for the corresponding 3 points asso-
ciated with each of the other two sides of the triangle.

Euler’s circle is often called the nine-point circle of the triangle.

Incenter. A circle is said to be inscribed into a given triangle if it
is tangent to each of its sides.

Theorem 6. Into every triangle, a circle can be inscribed,

and such a circle is unique.

Let △ABC be a triangle into which a circle with the center K is
inscribed (Figure 6). Then K is equidistant from all the three sides
of the triangle, i.e. the perpendiculars KP , KQ, and KR dropped
from the center to the sides are congruent to each other. Thus we need
to show that the point K such that KP = KQ = KR exists and is
unique.
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Indeed, the geometric locus of points equidistant from the sides AB
and AC is the bisector AM of the angle A (see [K], §56). Likewise,
the geometric locus of points equidistant from the sides BA and BC is
the bisector BN of the angle B. Let K denote the intersection point
of AM and BN . Such a point exists since the angle bisectors AM and
BN are not parallel. For if they were, the angles BAM and ABN
would have add up to 180 degrees as interior same-side angles formed
by parallel lines and a transversal (see [K], §77), which isn’t the case.
Of course, the intersection point K is unique. It is equidistant from
AB and AC, and from BA and BC, i.e. from all the sides of △ABC.
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Note that the center K of the incircle, being equidistant from CA 
and CB, lies also on the bisector of the angle C. We arrive at the 
following corollary.

Corollary. Angle bisectors of a triangle are concurrent.

Moreover, the intersection point of the angle bisectors of a triangle 
is the center of its incircle, also called the incenter of the triangle.

Escribed circles. A circle tangent to one side of a triangle and to 
extensions of the other two sides are called escribed circles of the 
triangle. For every triangle, there are 3 such circles, and they lie outside 
the triangle (Figure 7). To construct them, draw the bisectors of the 
exterior angles of a triangle ABC, and find their pairwise intersection 
points KA, KB, and KC . Each of these point is equidistant from one 
side of the triangle and extensions of the other two sides (e.g. KA is 
equidistant from BC and extensions of AC and AB). Thus each of 
these points is the center of an escribed circle. The radius of it is the 
perpendicular dropped from the point to any of the lines AB, BC, and 
AC.

Figure 7
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Exercises. (l) Show that the bisector of any interior angle of a
triangle is concurrent with the bisectors of the exterior angles adjacent
to the other two vertices.

(m) Prove that the incenter of a △ABC (Figure 7) is the orthocenter
of △KAKBKC formed by the bisectors of its exterior angles.



10 ALEXANDER GIVENTAL UC BERKELEY

(n) Prove that the orthocenter of a given triangle is the incenter of 
another triangle whose vertices are the feet of the altitudes of the given 
triangle.

Feuerbach’s theorem. We conclude the lecture with the formula-
tion of the following amazing fact.

Theorem. For every triangle, the nine-point circle is tan-
gent to the inscribed circle and to each of the three escribed 
circles.

We don’t know any proof of this theorem that would fit the elemen-
tary style of our exposition. It would not be too hard (although quite 
messy) to verify Feuerbach’s theorem using coordinates, by computing 
the distance between the center E of Euler’s circle and KA, KB, KC or 
K, and discovering that it is equal to the sum (respectively difference) 
of the radii of the circles claimed to be tangent to each other. A more 
intelligent proof, based on the method of inversion, can be found, for 
instance, at

http://www.cut-the-knot.org/Curriculum/Geometry/FeuerbachProof.shtml

It would be interesting to find a more elementary proof, and even more 
intersecting to figure out how the fact could have been discovered.




