
LINEAR ALGEBRA. Part I

Definitions. A quadratic form on the vector space R
n (or C

n) is a ho-
mogeneous degree-2 polynomial Q(x) =

∑
i,j qijxixj , where we may assume

that qij = qji for all i, j,) and where (x1, . . . , xn) are coordinates of the vec-
tor x. A bilinear form on the vector space is a function (x,y) 7→ B(x,y)
(where x,y is an arbitrary pair of vectors, and B(x,y) is a scalar) which in
each of the inputs x,y satisfies the linearity property: for all vectors x,x′,y
and scalars λ, λ′:

B(λx + λ′x′,y) = λB(x,y) + λ′B(x′,y),
B(y, λx + λ′x′) = λB(y,x) + λ′B(y,x′).

A bilinear form is called symmetric if B(y,x) = B(x,y) for all x,y.
1. Prove that the dot-product x·y =

∑
xiyi is a symmetric bilinear form.

2. Prove that if Q is a quadratic form then
BQ(x,y) := 1

2
[Q(x + y) − Q(x) − Q(y)]

is a symmetric bilinear form.
3. Vice versa, show that if B is a bilinear form, then QB(x) := B(x,x) is

a quadratic form with coefficients qij = [B(ei, ej) + B(ej , ei)] /2 (here ei =
(. . . , 0, 1, 0, . . . ) is the ith coordinate vector), and that Q 7→ BQ and B 7→

QB are inverse correspondences between quadratic forms and symmetric
bilinear forms.

Remark. The correspondence between quadratic and symmetric bilinear
forms remains true not only over R or C, but over any field of scalars, F,
where division by 2 is well-defined (i.e. where 1 + 1 6= 0). The next result
also remains valid in this generality.

4. Prove that for every symmetric bilinear form there exists a basis
f1, . . . , fn in which the coefficient matrix [B(fi, fj)] is diagonal.
Hint: Construct inductively a basis such that fi is B-orthogonal to all
previous fj : B(fi, fj) = 0 for all j < i.

Definition. Two quadratic forms, Q and Q′, on the same space are
called equivalent if there exists a linear change of coordinates that transforms
one into the other.

5. Prove that every quadratic form in C
n is equivalent to one of the

normal forms: z2
1 + · · · + z2

r , r = 0, 1, . . . , n.
6. Prove that every quadratic form in R

n is equivalent to one of the
normal forms: x2

1 + · · · + x2
p − x2

p+1 − · · · − x2
p+q, 0 ≤ p + q ≤ n.

7. List all the six normal forms of quadratic forms in R
2 and sketch their

graphs. (Recall that the graph of a function f : R
2 → R is the surface in R

3

given by the equation z = f(x, y).)
Definition. A quadratic form in R

n is called positive definite (negative

definite) if its values are positive (resp. negative) everywhere outside the
origin. The maximal dimension of subspaces on which a given quadratic
form is positive (negative) definite is called the positive (resp. negative)
inertia index of this quadratic form.
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8. Prove that inertia indices of the quadratic form x2
1 + · · ·+ x2

p −x2
p+1 −

· · · − x2
p+q are p and q respectively.

Hint: Prove that every subspace W ⊂ R
n of dimension p + 1 contains a

non-zero vector satisfying the equations: x1 = · · · = xp = 0.
9. Prove that two quadratic forms in R

n are equivalent if and only if they
have the same inertia indices.

10. Find a necessary and sufficient condition for two quadratic forms in
C

n to be equivalent. Answer: The rank r of the coefficient matrix [qij] is
the only invariant.

11. ∗ Let a1, . . . ,ap and b1, . . . ,bq be linear forms in R
n, and let Q(x) =

a2
1(x)+· · ·+a2

p(x)−b2
1(x)−· · ·−b2

q(x). Prove that the positive and negative
inertia indices of Q do not exceed p and q respectively.
Hint: Consider the map R

n → R
p+q defined by the linear forms.

12. Let B denote the matrix of coefficients B(ei, ej) of a bilinear form,
and let x = Cx′ be a change of coordinates. Show that in new coordinates,
the transformed bilinear form (i.e. B(Cx′, Cy′)) has coefficient matrix B′ =
CtBC. (Here Ct denotes the matrix transposed to C.)

13. Classify real (complex) symmetric matrices B up to transformations
B 7→ CtBC, where C is an invertible real (resp. complex) matrix.

14. Find orthogonal bases and inertia indices of quadratic forms:
x1x2 + x2

2, x2
1 + 4x1x2 + 6x2

2 − 12x2x3 + 18x2
3, x1x2 + x2x3 + x3x1.

15. Classify all quadratic curves ax2 + 2bxy + cy2 + dx + ey + f =
0,abc 6= 0, on the real (complex) plane up to linear inhomogeneous changes
of coordinates x = αx′ + βy′ + λ, y = γx′ + δy′ + µ.
Answer over C: There are five equivalence classes: circle, hyperbola, pairs
of crossing lines, parallel lines, coinciding lines.

Definition. The determinant of the coefficient matrix of a quadratic
form is often called the discriminant of the quadratic form. When the dis-
criminant is non-zero, the quadratic form is called non-degenerate. In a
n×n-matrix, the k×k-determinants in the left upper corner, k = 1, 2, . . . , n,
are called leading principal minors.

16. Show that a quadratic form is non-degenerate if and only if the
corresponding symmetric bilinear form B is non-degenerate, i.e. if for every
non-zero vector x there exists a vector y such that B(x,y) 6= 0.

17. How does the discriminant of a quadratic form Q change under a
linear change of coordinates x = Cx′?

18. Let Q be a quadratic form in R
n such that all its leading principal

minors ∆k 6= 0. Prove Sylvester’s Rule: The negative inertia index of Q
is equal to the number of sign changes in the sequence of numbers ∆0 =
1,∆1, . . . ,∆n. Hint: Improve Problem 3 by finding fk ∈ Span(e1, . . . , ek).

19. Use Sylvester’s Rule to find inertia indices of quadratic forms:
x2

1 + 2x1x2 + 2x2x3 + 2x1x4, x1x2 − x2
2 + x2

3 + 2x2x4 + x2
4.

20. ∗ Classify quadratic forms in F
n, where F = Z/pZ is the finite field of

p elements. Consider separately the case of the prime p > 2 and p = 2.


