1. Prove that $G.C.D(m, n)$, the greatest common divisor of two integers, is the minimal positive integer representable as their linear combination $am + bn$.

Definition. Call two integers congruent modulo n (write: $a \equiv b \mod n$), if $a - b$ is divisible by n. Denote \mathbb{Z} the set of all integers (positive, zero, and negative), $n\mathbb{Z}$ integers divisible by n, and $\mathbb{Z}/n\mathbb{Z}$ the set of classes of congruence of integers modulo n.

2. Show that $\mathbb{Z}/n\mathbb{Z}$ inherits from \mathbb{Z} operations of addition and multiplication, and moreover, that the natural map $\mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$ that associates to an integer a its congruence class \bar{a}, respects both operations: $a + b = \bar{a} + \bar{b}$ and $a \cdot b = \bar{a} \cdot \bar{b}$ for all $a, b \in \mathbb{Z}$.

Remark. In algebraic terminology, \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ are rings (more precisely, commutative rings with unity), and the map $a \mapsto \bar{a}$ is a homomorphism of rings.

Definition. Given a ring R with unity 1, one denotes by R^* the set of all those elements which have multiplicative inverses, $R^* := \{x \in R | \exists y : xy = 1 = yx\}$. Then R^* is a group with respect to multiplication, called the group of units of the ring R.

3. Show that $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$ is invertible if and only if $G.C.D.(a, n) = 1$. (Hint: Use Problem 1.)

4. Let p be prime. Prove that $|\mathbb{Z}/p^k\mathbb{Z}| = (p^k - p^{k-1})$.

5. Given two integers m and n, define map $\pi : \mathbb{Z}/mn\mathbb{Z} \rightarrow (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$ that to a congruence class of $a \mod mn$ assigns the ordered pair of congruence classes $(a \mod m, a \mod n)$. Show that π is a homomorphism of rings, and that it is a isomorphism (= 1-1-and-onto) if and only if $G.C.D.(m, n) = 1$.

Hint: Show that $\pi(\bar{a}) = \pi(\bar{b})$ if and only if $a - b$ is divisible by $L.C.M.(m, n)$ (the least common multiple of m and n).

Remark. The last statement is called the Chinese Remainder Theorem; it implies that for any given a, b, the system of equations $x \equiv a \mod m, x \equiv b \mod n$ has a solution x (unique mod mn) provided that m and n are relatively prime — a fact known in ancient China.

6. Prove that when m and n are relatively prime, π defines an isomorphism of groups: $(\mathbb{Z}/mn\mathbb{Z})^* \rightarrow (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$.

7. Let n have prime factorization $\phi(p_1^{k_1} \cdots p_r^{k_r})$. Show that $|(\mathbb{Z}/n\mathbb{Z})^*| = (p_1 - 1) \cdots (p_r - 1)p_1^{k_1 - 1} \cdots p_r^{k_r - 1}$.

Remark. This number, denoted $\phi(n)$, is called Euler’s function (of n), defined as the number of remainders modulo n relatively prime to
The following two problems express Euler’s Theorem, and its special case Fermat’s Little Theorem.

8. Prove that $G.C.D.(a, n) = 1$ implies $a^{\phi(n)} \equiv 1 \mod n$.

Hint: In the group $(\mathbb{Z}/n\mathbb{Z})^*$ consider the cyclic subgroup formed by all powers (positive, zero, and negative) of \bar{a}, and then apply a general fact about finite groups (Lagrange’s Theorem), according to which the number of elements in a finite group is divisible by the number of elements of any subgroup.

9. Prove that if a is not divisible by a prime p then $a^{p-1} \equiv 1 \mod p$.

Hint: For an elementary proof, show that $\binom{p}{k}$ is divisible by p when $0 < k < p$, and apply induction on $a = 1, 2, ..., p - 1$.

10. Prove Lagrange’s Theorem: For any subgroup H of a finite group G, the order $|G|$ of G is divisible by $|H|$. **Hint:** Partition G into classes of congruence modulo H defined by: $x \equiv y \mod H$ if $xy^{-1} \in H$.

11. Use Problem 10 to show that for every $x \in G$ the minimal positive n such that $x^n = 1$ is a divisor of $|G|$.

12. Show that the commutative ring with unity $\mathbb{Z}/n\mathbb{Z}$ is a field (i.e. has all non-zero elements invertible) if and only if n is prime.

13. Let F be a field, and $F[x]$ denote the ring of polynomials in one indeterminate x with coefficients in F. Prove Bezout’s Theorem: $a \in F$ is a root of a polynomial $f \in F[x]$ if and only if f is divisible by $x - a$. **Hint:** The Long Division algorithm for polynomials still works in $F[x]$.

14. Prove that when p is prime, the group $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic (i.e. consists of powers of a single element). **Hint:** The polynomial $x^m - 1$ cannot have more than m roots in the field $\mathbb{Z}/p\mathbb{Z}$.

Remark. The argument works for any finite field F to show that the group F^* is cyclic.

15. For $n \leq 16$, find out which of the groups $(\mathbb{Z}/n\mathbb{Z})^*$ are cyclic.

16. Prove that for prime $p > 2$ and any $k > 0$, the group $(\mathbb{Z}/p^k\mathbb{Z})^*$ is cyclic. **Hint:** Study powers of $(1 + p)$ modulo p^k.

17. For $p = 2$, which of the groups $(\mathbb{Z}/p^k\mathbb{Z})^*$ are cyclic?

18. Find all n for which the group $(\mathbb{Z}/n\mathbb{Z})^*$ is cyclic.

19. Study the structure of the group $(\mathbb{Z}/100\mathbb{Z})^*$ and find the order of the cyclic subgroup generated by 3.

20. How many different 2-digit numbers occur as pairs of rightmost digits of powers of 3?