ELEMENTARY NUMBER THEORY

1. Prove that G.C.D(m, n), the greatest common divisor of two integers, is the minimal positive integer representable as their linear combination am + bn.

Definition. Call two integers congruent modulo n (write: $a \equiv b \mod n$), if a - b is divisible by n. Denote \mathbb{Z} the set of all integers (positive, zero, and negative), $n\mathbb{Z}$ integers divisible by n, and $\mathbb{Z}/n\mathbb{Z}$ the set of classes of congruence of integers modulo n.

2. Show that $\mathbb{Z}/n\mathbb{Z}$ inherits from \mathbb{Z} operations of addition and multiplication, and moreover, that the natural map $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ that associates to an integer a its congruence class \bar{a} , respects both operations: $\overline{a+b} = \bar{a} + \bar{b}$ and $\overline{a \cdot b} = \bar{a} \cdot \bar{b}$ for all $a, b \in \mathbb{Z}$.

Remark. In algebraic terminology, \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ are *rings* (more precisely, commutative rings with unity), and the map $a \mapsto \bar{a}$ is a homomorphism of rings.

Definition. Given a ring R with unity 1, one denotes by R^* the set of all those elements which have multiplicative inverses, $R^* := \{x \in R | \exists y : xy = 1 = yx\}$. Then R^* is a group with respect to multiplication, called the group of units of the ring R.

3. Show that $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$ is invertible if an only if G.C.D.(a, n) = 1. (Hint: Use Problem 1.)

4. Let p be prime. Prove that $|(\mathbb{Z}/p^k\mathbb{Z})^*| = (p^k - p^{k-1})$.

5. Given two integers m and n, define map $\pi : \mathbb{Z}/mn\mathbb{Z} \to (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$ that to a congruence class of $a \mod mn$ assigns the ordered pair of congruence classes $(a \mod m, a \mod n)$. Show that π is a homomorphism of rings, and that it is a isomorphism (= 1-1-and-onto) if and only if G.C.D.(m, n) = 1.

Hint: Show that $\pi(\bar{a}) = \pi(\bar{b})$ if and only if a - b is divisible by L.C.M.(m,n) (the least common multiple of m and n).

Remark. The last statement is called the *Chinese Remainder Theo*rem; it implies that for any given a, b, the system of equations $x \equiv a \mod m$, $x \equiv b \mod n$ has a solution x (unique $\mod mn$) provided that m and n are relatively prime — a fact known in ancient China.

6. Prove that when m and n are relatively prime, π defines an isomorphism of groups: $(\mathbb{Z}/m\mathbb{Z})^* \to (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$.

7. Let n have prime factorization $\phi(p_1^{k_1}\cdots p_r^{k_r})$. Show that

$$(\mathbb{Z}/n\mathbb{Z})^*| = (p_1 - 1) \cdots (p_r - 1) p_1^{k_1 - 1} \cdots p_r^{k_r - 1}.$$

Remark. This number, denoted $\phi(n)$, is called *Euler's function* (of n), defined as the number of remainders modulo n relatively prime to

n. The following two problems express *Euler's Theorem*, and its special case *Fermat's Little Theorem*.

8. Prove that G.C.D.(a, n) = 1 implies $a^{\phi(n)} = 1 \mod n$. Hint: In the group $(\mathbb{Z}/n\mathbb{Z})^*$ consider the *cyclic* subgroup formed by all powers (positive, zero, and negative) of \bar{a} , and then apply a general fact about finite groups (*Lagrange's Theorem*), according to which the number of elements in a finite group is divisible by the number of elements of any subgroup.

9. Prove that if a is not divisible by a prime p then $a^{p-1} \equiv 1 \mod p$. Hint: For an elementary proof, show that $\binom{p}{k}$ is divisible by p when 0 < k < p, and apply induction on a = 1, 2, ..., p - 1.

10. Prove Lagrange's Theorem: For any subgroup H of a finite group G, the order |G| of G is divisible by |H|. Hint: Partition G into classes of congruence modulo H defined by: $x \equiv y \mod H$ if $xy^{-1} \in H$.

11. Use Problem 10 to show that for every $x \in G$ the minimal positive *n* such that $x^n = 1$ is a divisor of |G|.

12. Show that the commutative ring with unity $\mathbb{Z}/n\mathbb{Z}$ is a *field* (i.e. has all non-zero elements invertible) if and only if n is prime.

13. Let \mathbb{F} be a field, and $\mathbb{F}[x]$ denote the ring of polynomials in one indeterminate x with coefficients in \mathbb{F} . Prove *Bezout's Theorem*: $a \in \mathbb{F}$ is a root of a polynomial $f \in \mathbb{F}[x]$ if and only if f is divisible by x - a. (Hint: The Long Division algorithm for polynomials still works in $\mathbb{F}[x]$.)

14. Prove that when p is prime, the group $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic (i.e. consists of powers of a single element). Hint: The polynomial $x^m - 1$ cannot have more than m roots in the field $\mathbb{Z}/p\mathbb{Z}$.

Remark. The argument works for any finite field \mathbb{F} to show that the group \mathbb{F}^* is cyclic.

15. For $n \leq 16$, find out which of the groups $(\mathbb{Z}/n\mathbb{Z})^*$ are cyclic.

16. Prove that for prime p > 2 and any k > 0, the group $(\mathbb{Z}/p^k\mathbb{Z})^*$ is cyclic. Hint: Study powers of (1+p) modulo p^k .

17. For p = 2, which of the groups $(\mathbb{Z}/p^k\mathbb{Z})^*$ are cyclic?

18. Find all *n* for which the group $(\mathbb{Z}/n\mathbb{Z})^*$ is cyclic.

19. Study the structure of the group $(\mathbb{Z}/100\mathbb{Z})^*$ and find the order of the cyclic subgroup generated by $\bar{3}$.

20. How many different 2-digit numbers occur as pairs of rightmost digits of powers of 3?