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A1. The inequality x4 + 36 ≤ 13x2 factors as (x+ 3)(x+ 2)(x− 2)(x− 3) ≤ 0, i.e. −3 ≤ x ≤ −2 or 2 ≤ x ≤ 3.
We compute f ′(x) = 3(x+ 1)(x−1), so f is increasing on both these intervals. Since f(−2) = −2 and f(3) = 18,
18 is the maximum.

A2.

X =
1020000

10100 + 3
=

1019900

1 + 3
10100

=
∞∑

i=0

(−3)i1019900−100i ≈
199∑
i=0

(−3)i1019900−100i = Y.

The finite sum Y is a positive integer, and all of its terms but the last are divisible by 10: Y ≡ (−3)199 ≡ 3
(mod 10). Since X is an alternating series, the difference X − Y has the same sign and smaller magnitude than
the first omitted term (−3)20010−100 = (9/10)100, which is positive and less than 1. Consequently bXc = Y , and
the rightmost digit of bXc is 3.

A3. The identity Arccot(n2 + n + 1) = Arccot(n)− Arccot(n + 1) is provable from the addition formula for
tangent when n > 0 and becomes the identity π/4 = π/2 − π/4 when n = 0. Thus

∑N
n=0 Arccot(n2 + n+ 1) =

Arccot(0)−Arccot(N + 1), which as N →∞ tends to π/2− 0 = π/2.
A4. It is not hard to see, by completing the pairs (α1,1, αi,j) and (αi,1, α1,j) to a transversal in the same way

when i, j 6= 1, that all transversals of a matrix A = [αi,j ] have the same sum if and only if αi,j = αi,1+α1,j−α1,1 for
all i and j. For any matrix A of the given type, let X = max1≤i,j≤n(α1,i−α1,j) and Y = max1≤k,m≤n(αk,1−αm,1).
Note that X + Y ≤ 2, since (α1,i −α1,j) + (αk,1 −αm,1) = αk,i −αm,j ≤ 1− (−1) = 2. Using inclusion-exclusion
to compute the number of matrices having each of the six possible pairs (X,Y ), we get:

(X,Y ) Matrices
(0, 0) 1
(0, 1) 2 · 2n − 4
(1, 0) 2 · 2n − 4
(0, 2) 3n − 2 · 2n + 1
(2, 0) 3n − 2 · 2n + 1
(1, 1) 4n − 4 · 2n + 4
Total 4n + 2 · 3n − 4 · 2n − 1.
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A5. Let hi(x) =
∑

j<i cijxj − fi(x). Plugging into the given condition easily yields ∂hi/∂xj = ∂hj/∂xi for
all i and j, so the hi are the partial derivatives of some function g. Note that fi + ∂g/∂xi = fi +hi =

∑
j<i cijxj

is linear.
A6. We differentiate the given equality k times, k = 0, 1, . . . , n, divide through by k!, and then plug in x = 1

to get ∑
i

ai = −1∑
i

aibi = 0

∑
i

ai

(
bi
2

)
= 0

· · ·∑
i

ai

(
bi

n− 1

)
= 0

∑
i

ai

(
bi
n

)
= (−1)nf(1).

Let P (x) = (x − b1) · · · (x − bn). We can uniquely express P (x) =
∑n

k=0 ck
(
x
k

)
; plugging in x = 0 yields

c0 = (−1)n
∏
bi, while considering the leading term gives cn = n!. Linearly combining the above equations with

coefficients c0, . . . , cn gives 0 =
∑
aiP (bi) = (−1)n+1

∏
bi + (−1)nn!f(1), so f(1) =

∏
bi/n!.

B1. Since they have the same area and the same base, the triangle is twice as high as the rectangle. The
diameter of the circle through the apex of the triangle is thus cut by the sides of the rectangle in the ratio 2 : 1 : 2,
and so h = 2/5.

B2. Answer: (0, 0, 0), (1, 0,−1), (0,−1, 1), (−1, 1, 0). Let x − y = u, y − z = v, and z − x = w. Moving all
terms of the first equation to the left side and factoring gives (x− y)(x+ y+ 1− 2z) = 0, i.e. u = 0 or w− v = 1.
Similarly, the second equation reads v = 0 or u − w = 1. Finally, the triples (u, v, w) corresponding to triples
(x, y, z) are exactly those satisfying u+ v + w = 0. Solving the systems of three linear equations corresponding
to each of the four cases yields the four solutions above.

B3. We induct on n with the base case n = 1 already given. Let Fn and Gn be the polynomials in the
induction hypothesis and let u = h − FnGn ≡ 0 (mod pn). Let Fn+1 = Fn + us and Gn+1 = Gn + ur, noting
that Fn+1 ≡ Fn ≡ f (mod p) and similarly for Gn+1. We get

Fn+1Gn+1 = FnGn + u(rFn + sGn) + u2 = FnGn + u+ u(rFn + sGn − 1) + u2.

The last term clearly drops out (mod pn+1) since it is divisible by p2n. Also, the next-to-last term is the product
of a multiple of pn and a multiple of p, so it is also 0 (mod pn+1). We are left with FnGn + u = h, as desired.

B4. The assertion is true. Let M be a fixed positive integer and M ≤ r < M+1; we prove 0 ≤ G(r) ≤ 3/
√
M ,

which clearly goes to 0 as M →∞. Specifically, we prove that
√
M2 + 2(n+ 1)2−

√
M2 + 2n2 < 3/

√
M whenever

n is an integer with M ≤
√
M2 + 2n2 < M + 1, so that every r is within 3/

√
M of some

√
M2 + 2n2. To do this,

we first solve the condition
√
M2 + 2n2 < M + 1 for n, yielding 0 ≤ n <

√
M + 1/2, i.e. 0 ≤ n ≤

√
M . Then

rationalizing the numerator yields√
M2 + 2(n+ 1)2 −

√
M2 + 2n2 =

4n+ 2√
M2 + 2(n+ 1)2 +

√
M2 + 2n2

<
2n+ 1
M

≤ 2√
M

+
1
M
≤ 3√

M
.

B5. The assertion is false, as the example p(x, y, z) = x, q(x, y, z) = y, r(x, y, z) = xy − z shows.

B6. Let W =
[
A B
C D

]
. The conditions of the problem reduce to WSWTS = −I, where S =

[
O I
−I O

]
. This

says that WS and −WTS are inverses, which is equivalent to WTSWS = −I. Expanding this in A, B, C, D
and examining the upper left n× n submatrix yields ATD −BTC = I.
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