Putnam-1986. Hints

A1. It is a standard calculus problem where, however, the maximum lies on the boundary of the domain.

A2. Do the long division for $x^{20}/(x+3)$.

A3. According to Evan O'Dorney, if $\tan \alpha = n + 1$ and $\tan \beta = n$, then $\tan(\alpha - \beta) = 1/(1 + n + n^2)$.

A4. Note that every 2×2 -submatrix of A must satisfy the same conditions.

A5. $h_i(x) := f_i(x) - \sum_j c_{ij} x_j/2$ pass Clairaut's test $\partial h_i/\partial x_j =$ $\partial h_i / \partial x_i$ for all i, j.

A6. Differentiating in x at x = 1 one obtains a system of linear equations, which determines a's in terms of b's, and with the aid of magic finds the answer $f(1) = b_1 \cdots b_n / n!$

B1. It seems straightforward.

B2. I think there is a typo: the simultaneous equations were meant to be

$$x(x-1) + 2yz = y(y-1) + 2zx = z(z-1) + 2xy.$$

B3. For k > 0, if $\delta := h - fq \equiv 0 \mod p^k$, then $(f + s\delta)(q + r\delta) \equiv$ $h \mod p^{2k}$.

B4. Reformulate the problem in terms of lattice points with coordinates $(m, \sqrt{2n})$ enclosed between concentric circles of large radii M and M + 1.

B5. $f = x^2 + y^2 + (z + xy/2)^2 - x^2y^2/4$ **B6.** Find $\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1}$. Warning: Typo in the formulation; what is required to prove is $\vec{A^T}D - C^TB = I$.