
Putnam-1985. Solutions

A1. A triple (A1, A2, A3) is uniquely determined by partitioning
{1, . . . , 10} into 6 disjoint subsets A1 ∩ A2, A2 ∩ A3, A3 ∩ A1,
A1 − A2 − A3, A2 − A1 − A3, A3 − A1 − A2. There are 610 = 210310

ways of coloring 10 items into 6 colors.
A2. Take base of T for the unit 1, and let y and x, 0 < y <

x < 1, be bases of rectangles S and R, parallel to the base of T .
Then A(S)/A(T ) = 2y(x − y) and A(R)/A(T ) = 2x(1 − x). For a
fixed x, 2y(x − y) achieves maximum value x2/2 at y = x/2. The
sum x2/2 + 2x(1 − x) = (4x − 3x2)/2 achieves maximum value 2/3 at
x = 2/3. Thus the maximum value of (A(S) + A(R))/A(T ) = 2/3.

A3. am(j + 1) + 1 = (am(j) + 1)2, and hence an(n) + 1 = (an(0) +
1)2n

= (1 + d/2n)2n → ed as n → ∞. Thus limn→∞ an(n) = ed − 1.
A4. 320 ≡ 1 mod 100 since φ(100) = φ(4)φ(25) = 2× 20. Since 34 ≡

1 mod 20, we have 333 ≡ 33 mod 20, and hence 333
3

≡ 333 ≡ 87 mod 100.
Thus, for i ≥ 3, ai ≡ 87 mod100.

A5.
∫ 2π

0
eimxdx = 0 for m 6= 0. Thus we need to find for which

m = 1, ..., 10, (t+t−1) · · · (tm+t−m) has a non-zero (and hence positive)
coefficient at t0, or equivalently, for which m {1, . . . , m} can be split
into two groups of the same sum. For m = 1, 2, 5, 6, 9, 10, 1 + · · · + m
is odd, but m = 3, 4, 7, 8 will do: 1 + 2 = 3, 1 + 4 = 2 + 3, 7 + 6 + 1 =
2 + 3 + 4 + 5, 1 + 8 + 2 + 7 = 3 + 6 + 4 + 5.

A6. For p = a0+· · ·+amxm with a0, am 6= 0, put p∗ = am+· · ·+a0x
m.

Then Γ(p) = Resx=0 p(x)p∗(x)x−m−1dx. We have f(x)f ∗(x) = (3x +
1)(x + 2)(3 + x)(1 + 2x) = g(x)g∗(x) where g = (3x + 1)(1 + 2x) has
g(0) = 1. Since (pn)∗ = (p∗)n, we will have Γ(gn) = Γ(fn) for all n.

B1. (x − 0)(x − 1)(x + 1)(x − 2)(x + 2) = x(x2 − 1)(x2 − 4) =
x5 − 5x3 + 4x has k = 3 non-zero coefficients. A degree 5 polynomial
p with 2 non-zero coefficients and no multiple roots will have the form
x5−ax or x5−a, and hence inevitably have nonreal roots (since xm = a
has no more than 2 real solutions).

B2. Put gn(x) := x(x+n)n−1 and prove by induction on n ≥ 1 that
fn = gn. For n = 1, we obviously have f1 = x = g1. Assuming fn = gn,
we find: g′(x) = (x+n+1)n+nx(x+n+1)n−1 = (n+1)(x+1)(x+n+
1)n−1 = (n + 1)fn(x + 1). Since gn+1(0) = 0, we conclude fn+1 = gn+1.
Thus, f100(1) = 10199, where 101 is prime.

B3. Suppose that am,n ≤ mn for all m, n ≥ 1. Denore N(C) the

number of pairs (m, n) with mn < C. Since C−1
∫ C

1
Cx−1dx → ∞

as C → ∞, N(C)/C → ∞ too, and hence N(C) > 8C for C large
enough. Then among N(C) terms am,n with mn < C some of the
values 1, . . . , [C] must occur more than 8 times.
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B4. For a required rectangle to lie inside the circle, q must lie in the
rectangle with vertices (±x,±y) where (x, y) = (cos α, sinα) = p. The
probability of this is

1

2π

∫ 2π

0

1

π
|2 cosα| |2 sinα|dα =

8

π2

∫ π/2

0

sin αd sin α =
4

π2
.

B5.
∫ ∞
0

1√
t
e−a(t+t−1)dt = 2

∫ ∞
0

e−a(t+t−1)d
√

t = 2
∫ 0

∞ e−a(t+t−1)d 1√
t

=∫ ∞
0

e−a(t+1/t)d(t1/2 − t−1/2) = e2
∫ ∞
0

e−a(t1/2−t−1/2)2d(t1/2 − t−1/2) =

e2
√

a
∫ ∞
−∞ e−u2

du = e2
√

πa where a = 1985.

B6. Since for A = [aij ], trA∗A =
∑

ij a2
ij , tr A∗A = 0 implies A.

Taking the average of an inner product in R
n over transformations

from G, we obtain a G-invariant inner product, and hence may assume
WLOG that matrices Mi are orthogonal: M∗

i = M−1
i . Then for each

i, M∗
i M1, . . . , M

∗
i Mr form a permutation of M1, . . . , Mr. Therefore

(
∑

Mi)
∗(

∑
Mj) =

∑
i M

∗
i

∑
j Mj) = r

∑
Mj and hence has zero trace.


