
Answers to HW1

2. For a transitive and reflexive but not symmetric binary relation,
one can take ≤; for transitive and symmetric but not reflexive, take
the empty relation on any non-empty set; for reflexive and symmetric
but not transitive, take the relation on the set of words of the English
language, to have a letter in common.
3. G.C.D.(1763, 991) = 1 = 181 × 1763 − 322 × 991, and hence

991−1 ≡ −322 ≡ 1441 mod 1763.
4. On Z[

√
−5] = {a+ b

√
−5 | a, b ∈ Z}, the norm N(a+ b

√
−5) :=

(a + b
√
−5)(a − b

√
−5) = a2 + 5b2 takes values 0, 1, 4, 5, 6, . . . , but

cannot be equal 2 or 3. Therefore 2 and 3, which divide (1+
√
−5)(1−√

−5) = 6 but don’t divide 1 ±
√
−5, are not prime. However, they

are irreducible, since N(2) = 4 and N(3) = 9 cannot be factored into
the product of norms N(α)N(β) in any nontrivial way, i.e. with both
N(α), N(β) > 1.
11. A permutation of A,B,C,D inducing a trivial permutation of

V,H, S must keep vertical edges vertical, horizontal horizontal, and di-
agonals diagonal, i.e. must come from a geometric symmetry of the
rectangle: reflection about horizontal axis (Rh), vertical axis (Rv),
their composition (which is the central symmetry, Cs or equivalently
the rotation through 180◦), or the identity Id. Composing these four
with any particular permutation σ of A,B,C,D will permute H, V, S
the same way. Thus, all 4! = 24 permutations of A,B,C,D are par-
titioned into groups of four, where σ and σ′ are in the same group
whenever σ−1σ′ ∈ {Rh,Rv, Cs, Id}. The last condition is equivalent
to saying that σ and σ′ induce the same permutation of V,H, S. Since
24/4 = 3!, each permutation of V,H, S is so induced four times.
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HW2.

14. A and D are cyclic (3 and i can be taken for generators of order
4), while all the others are not (i.e. all non-identity elements there have
order 2), and therefore are all isomorphic to the Klein group K4.
15. All the four groups are isomorphic to S3.
The rotation group of the triangular prism coincides with the sym-

metry group of a regular triangle and is identified with S3 by numbering
the triangle’s vertices by 1,2,3.
GL2(Z2) consists of 6 matrices

[

1 0
0 1

]

,

[

0 1
1 0

]

,

[

1 1
0 1

]

,

[

1 0
1 1

]

,

[

1 1
1 0

]

,

[

0 1
1 1

]

.

They act naturally by automorphisms of the group C from problem 1
(the 2-dimensional vector space over Z2), and thus permute the 3 non-
zero vectors. Since the only matrix which leaves each 2-vector fixed is
the identity one, our homomorphism GL2(Z2) → S3 is bijective.
In S3, the transpositions α = (1 2) and β = (2 3) satisfy α2 =

β2 = id = (αβ)3 (since (1 2)(2 3) is the cyclic permutation of 1, 2, 3).
This defines an onto homomorphism K → S3 : a 7→ α, b 7→ β. So,
it suffices to check that the group K has at most 6 elements. To this
end, note that any word in K containing fragments aa or bb can be
made shorter, and since aba = bab, any word of > 3 letters also can
be made shorter by reducing the fragments: abab = babb = ba or
baba = bbab = ab. Therefore all words reduce in the group to one of
the six: ∅, a, b, ab, ba, aba = bab.
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HW3

19. As it follows from the division with remainder algorithm, every
subgroup in Z consists of all multiples, nZ, of some n ≥ 0. Conse-
quently, a subgroup in Z/NZ is generated by one element, the image
of the generator n of the inverse image of this subgroup in Z.
21. In the subgroup group Zn ⊂ Dn of rotations, every subgroup

Zk (and there is unique such subgroup for every k|n) is normal, since
conjugations by reflections (which merely reverse the orientation of the
plane) transform every rotation into the inverse rotation. The quotient
Dn/Zk for n/k = 1 is isomorphic to Z2, for n/k = 2 to the Klein group,
and for n/k > 2 to the dihedral group Dn/k.
A normal subgroup H in Dn containing a reflection, for odd n, con-

tains all reflections (which form a single conjugacy class in Dn) and
hence coincides with Dn (so that Dn/H is the trivial group. For even
n, reflections in Dn form 2 conjugacy classes, and H can contain one
of them or both. In the latter case, H = Dn as for n odd, but in
the former case H must contain the half of all rotations, and hence
Dn/H ∼= Z2.
40. We’ve found out with you in class that the rotation group G of

the cube contains: 8 rotations through 120◦ (in either direction about
each of the 4 diagonals), which fit into 4 cyclic subgroups of order 3;
6 rotations through 90◦ (in either direction about each of the three
axes) fitting 3 cyclic subgroups of order 4; 3 cyclic subgroup of order
2 generated by rotations through 180◦ about these exes, and 6 more
cyclic subgroups of order 2 generated by 180◦ rotations about the lines
passing through midpoints of opposite edges (so, totally 9 subgroups
isomorphic to Z2). Together with the cyclic subgroup of the identity,
this covers all the 8 + 6 + 3 + 6 + 1 = 24 elements of G. None of these
subgroups is normal because conjugations, don’t preserve, but permute
the subgroups of each kind (e.g. rotations about one diagonal become
rotations about another diagonal, and so on).
47. Since composite divisors of 24 are 24, 12, 8, 6, 4, these are the

possible orders of non-cyclic subgroups H ⊂ G. When |H| = 12, H
has only 2 cosets, H and Hc, both therefore left and right, so that H
is normal: it is the alternating group A4 ⊂ S4

∼= G. Now, think of the
cube as a thick square: the dihedral group D4 of symmetries of this
square can be realized by rotations of the square in space. This yields
3 subgroups of order 8, depending on which of the 3 dimensions of the
cube is viewed as its “thickness”. The symmetry group D4 of a square
has 2 non-cyclic subgroups of order 4: one generated by reflections
about the diagonals of the square, the other about the “axes” of the
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square. In fact the three subgroups of the former kind thus obtained
are different, while the three subgroups of the latter kind coincide with
the normal Klein subgroup in G (it contains the 180◦ rotations about
the cube’s exes). Four subgroups of order 6 are easy to describe via the
identification G ∼= S4, since obviously S4 has 4 subgroups isomorphic
to S3, each fixing one of the 4 objects (i.e. one of the 4 diagonals of
the cube, in the geometric realization).
For |H| = 4, the normal Klein subgroup is isomorphic of course to

the other 3 non-cyclic subgroups of order 4, but not conjugated to
them. In the other cases, the non-cyclic subgroups of the same order
are conjugated to each other (as should be clear from their uniform,
and therefore conjugation-invariant description).
In fact we are lacking some bits of general theory to guarantee that

the found examples of non-cyclic subgroups of given orders are all such
subgroups. So, the difficulties in completing this problem should serve
as a motivation for further development of that general theory.
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HW4.

38. (a) K is invariant under conjugations by elements of H because
it is invariant under conjugaions by all elements of G ⊃ H. (b) The
homomorphism π : G → G/K restricted to (any subgroup) H ⊂ G is
still a group homomorphism, and so its range is a subgroup. (c) The
homomorphism π|H : H → G/K, as any group homomorphism, factors
as the composition of the the canonical projection H → H/ ker(π|H),
an isomorphism between ker(π|H) ∼= π(H) and the inclusion π(H) ⊂ G.
But ker(π|H) = H ∩ ker(π) = K since H ⊃ K.
50. If the sequence σ(1), . . . , σ(n) is increasing, then σ = id. Other-

wise there is a pair of nearby indices i, i+ 1 such that σ(i) > σ(i+ 1).
Then the length l(στi,i+1) = l(σ)− 1, where τi,i+1 = (i i+ 1). (Indeed,
all other than i, i + 1 pairs of indices are in inversion for σ whenever
they are in inversion for τi,i+1σ.) Thus, after precomposing σ with some
sequence of l(σ) transpostions of suitable nearby indices, we obtain a
permulation of length l = 0, i.e. id. Therefore, σ is the product of the
inverse sequence of l(σ) transpositions of nearby indices.
56. In case (i) the order |H| = 1 + (p − 1)!/2 divides p!/2, i.e.

(1 + (p − 1)!/2)m = p , (p − 1)!/2 for some m. Note that (p − 1)!/2
is coprime with 1 + (p − 1)!/2, and hence m = l(p − 1)!/2 for some l.
Since p is prime, we find that l = 1, and therefore p = 1 + (p − 1)!/2.
Starting from p = 5 the R.H.S. is greater than p, and for p = 3, the
R.H.S. equals 2 6= p.
Similarly, in case (ii) the order |H| = 1 + (p + 1) (p − 1)!/2 divides

(p+1)!/2, i.e. (1+(p+1) (p−1)!/2)m = p (p+1) (p−1)!/2 for some m,
Since (p+1) (p−1)!/2 is coprime with 1+(p+1) (p−1)!/2, we find that
m = l (p+1) (p−1)!/2 where actually l = 1, i.e. p = 1+(p+1) (p−1)!/2.
Here the R.H.S. is greather than p staring from p = 3.
Thus, both situations (i) and (ii) lead to contradictions.
57. Commutator subgroup [G,G] of a group G is normal since

it is defined (as the smallest subgroup containing all commultators
xyx−1y−1 of the group’s elements) in a way invariant under all auto-
morphisms of the group (including therefore interior automorphisms).
It is also smallest normal subgroupquotient by which is abelian (since
a homomorphism from G to an abelian group contains all commutators
in its kernel). For n > 4, An is simple (i.e. has no proper normal sub-
groups except {e}, and is non-abelian (hence [An, An] 6= {e}), leaving
the only option [An, An] = An. Since commutators of any permutations
are even, [Sn, Sn] ⊂ An, and actually = An for all n > 1, since even for
n = 4, S4/K4

∼= S3 is non-abelian (and the cases n = 3 and n = 2 are
obvious).
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64. In a group G of order p2, a non-central element commutes with
(at least p yet fewer than p2 and hence) p elements, and therefore its
conjugacy class must contain p2/p = p elements. Therefore the order of
the center Z(G) must be also divisible p, and if it is p2, then the groups
is abelian. But assuming that it is not leads to a contradiction, since
any non-central element must commute with Z(G) and with itself, i.e.
with more than p elements.
66. The identity rotation fixes all the 36 = 729 3-colorings of the

cube. Each of the 8 rotations through 120◦ fixes 32 colorings. Each
of the 6 rotations through 180◦ around the midlines of opposite edges
fixes 33 colorings. Each of the 3 rotations through 180◦ around the
“coordinate” axes of the cube fixes 34 colorings. Each of the 6 rotations
through 90◦ about those 3 axes fixes 33 colorings. So, the total number
of orbits equals

1

24
(36 + 8 · 32 + 6 · 33 + 3 · 34 + 6 · 33) = 57.

A: Prove that any finite group is isomorfic to a subgroup of An for

some n. By Cayley’s theorem, any group G (finite or not) can be
realized by permutations σg on itself (e.g. by means of the action by
left translations). When |G| < ∞, realize G by permutations (σg, σg)
on G×G: even when σg is odd, (σg, σg) = (σg, id)(id, σg) will be even.
B: Prove that a group of order 45 is abelian. A group G of order

45 contains two Sylow’s subgroups: G1 of order 9, abelian by problem
64, and G2 of order 5, isomorphic to Z5. The number of Sylow’s p-
subgroups (as they all are conjugated by the 2nd Sylow theorem) is a
divisor of |G|, which (by the 3rd Sylow theorem) is ∼= 1 mod p. The
only divisor of 45 which is 1 mod 5 or 1 mod 3 is 1, implying that G1

and G2 are unique, and hence normal. Obviously G1∩G2 = {e}, which
implies that the subgroups commute. Indeed, for x ∈ G1 and y ∈ G2,
we have G2 ∋ (xyx−1)y−1 = x(yx−1y−1) ∈ G1, i.e. the commutator
equals e. Thus G = G1×G2, the direct product of abelian groups, and
thus G is abelian.
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78. Call a vector in the lattice Z2 divisible if it is an integer multiple
of some shorter vector. Let H ⊂ Z2 = {(x, y)|x, y ∈ Z} be a non-
zero subgroup, v ∈ H a vector indivisible in H, and if it is divisible
in Z2, then let v0 will be a vector indivisible in Z2 proportional to v.
The quotient of Z2 by Zv0 is free (because the opposite would mean
that v0 is divisible), and hence isomorphic to Z. The projection of
H to Z2/Zv0 is a subgroup in Z, and therefore, by the division-with-
remainder algorithm, has the form dZ for some d, i.e. is isomorphic
to either Z or {0}. The kernel of the projection of H onto dZ is Zv.
When d = 0, H = Zv ∼= Z. When d 6= 0, the projection possesses a
right inverse (because dZ is free), thereby representing H as the direct
sum dZ⊕ Zv ∼= Z2.
Remark: Likewise, using induction on n, one can prove that any

subgroup in Zn is finitely generated and is therefore isomorphic to one
of Zk with k = 0, 1, . . . , n.

86. Let A be a finite abelian p-group ∼= Zpa1 ⊕ Zpa2 ⊕ · · · . The
columns of the Young diagram whose rows have lengths a1 ≥ a2 ≥ · · ·
have heights m1 ≥ m2 ≥ · · · which can be described as follows: pmk is
the number of elements x in the subgroup pk−1A which satisfy px = 0.
(Note that the Young diagram for pk−1A is obtained from that for A
by erasing the k − 1 leftmost columns.) When B is a subgroup in A,
pk−1B ⊂ pk−1A, and hence the number of solutions to px = 0 in B does
not exceed the number of such solutions in A. Therefore the heights
n1 ≥ n2 ≥ · · · of the columns of the Young diagram whose rows have
lengths b1 ≥ b2 ≥ . . . satisfy nl ≤ ml for all l. This implies that the
whole Young diagram for B fits inside the Young diagram for A. In
particular, the lengths of the rows of these two diagrams also satisfy
bk ≤ ak for all k.

87. In Z×
17, if x ≡ ±1,±2,±3,±4,±5,±6,±7,±8,

then x2 ≡ 1, 4,−8,−1, 8, 2,−2,−4 respectively. Thus, x2 = 1 has only
two solutions x ≡ ±1, guaranteeing that the group is cyclic.
In Z×

32, if x ≡ ±1,±3,±5,±7,±9,±11,±13,±15,
then x2 ≡ 1, 9,−7,−15,−15,−7, 9, 1 respectively. Therefore x2 = 1
has 4 solutions (±1,±15), x4 = 1 has 23 solutions (the 4 more are ±7
and ±9), and consequently x8 = 1 is satisfied by all 24 elements of the
group. Thus, the columns of the Young diagram have heights 2+1+1,
and hence the rows have lengths 3 + 1: Z×

32
∼= Z8 ⊕ Z2.
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91. The center Z ⊂ G of the group (which consists of the one-
element conjugacy classes) must have mod2 as many elements as the
group, i.e. 8, 4, 2 but not 1. The first possibility means that the group
is abelian, and hence is isomorphic to one of Z8, Z4⊕Z2, Z

3
2 (according

to partitions of 3 = 3 = 2 + 1 = 1 + 1 + 1, per our classification of
finite abelian p-groups.) The second possibility (|Z| = 4), leads to a
contradiction, because g ∈ G − Z must commute with itself and all
elements of the center, and hence must commute with all elements of
G, i.e. g ∈ Z. For the same reason, when Z ∼= Z2, the quotient G/Z
cannot have elements g of order 4, and thus must be isomorphic to the
Klein Z2

2. Now the question is how many different (non-abelian) groups
G one can assemble from Z2 as the center and Z2

2 as the quotient by it.
The answer is two, up to isomorphism: D4, the symmetry groups

of the square, and the group Q of unit quaternions: {±1,±i,±j,±k}.
They are not isomorphic: Q has only one element of order 2 (the central
one), and D4 has 4 more (the reflections).
To prove this, represent the center as {±1}, and let a and b denote

two non-central element from different Z-cosets. Then all elements of
the group have the form ±1,±a,±b,±ab, and moreover, ba = −ab,
since when ba = ab, the whole group turns out to be abelian. In the
case that none of ±a,±b,±ab has order 2, their squares must be −1,
which yields the multiplication table of the group Q: a2 = b2 = (ab)2 =
ab(ab) = −1. Now let a2 = 1. Then b2 = baab = −(ab)2, i.e. either
b2 = 1, (ab)2 = −1, or the other way around. In the first case we get
the multiplication table of D4, with reflections ±a,±b, and rotations
±ab,±1. The other case b2 = −1, (ab)2 = 1 leads to an isomorphic
group: put c = ab, and conclude that ac = a2b = b, i.e. a2 = c2 = 1
and (ac)2 = −1.
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99. In R[S2] = {a id+bτ | a, b ∈ R}, where τ is the transposition,
take the basis e± = (id±τ)/2. We have: e+e− = e−e+ = (id2 −τ 2)/4 =
0, and

e2± =
id2 ±2 id τ + τ 2

4
=

id±τ

2
= e±.

Therefore the multiplication in this basis is the same as in the standard
basis of R2: (1, 0)(0, 1) = (0, 0), (1, 0)2 = (1, 0), (0, 1)2 = (0, 1).

119. Let Z = F ∪ G be the union of two algebraic sets given re-
spectively by equations {fα = 0} and {gβ = 0}. Then the equations
fαgβ = 0 define Z. Indeed, if (x0, y0) /∈ Z, thenfα0(x0, y0) 6= 0 for some
α0 and gβ0(x0, y0) 6= 0 for some β0, and hence fα0gβ0 6= 0 at (x0, y0).
Conversely, if (x0, y0) ∈ Z, then either (x0, y0) ∈ F , in which case
fα(x0, y0) = 0 for all α, or (x0, y0) ∈ G, in which case gβ(x0, y0) = 0 for
all β. In either case all fαgβ vanish at (x0, y0). Since any one-point set
{(x0, y0)}is algebraic (given by the equations x − x0 = 0, y − y0 = 0),
any finite set is also algebraic.

120. If a degree-2 polynomial F (x, y) factors into the product
A(x, y)B(x, y) of degree-1 polynomials, the zero locus F (x, y) = 0 is
the union of two lines, A = 0 and B = 0, not necessarily distinct.
Since x2 + y2 = 1 is not a union of lines, the polynomial is irreducible,
hence prime (assuming the uniqueness of factorization) implying that
C[x, y]/(x2 + y2 − 1) is an integral domain.
In R2, the locus x2 + y2 = 0 is a point, not the union of lines, and

hence R[x, y]/(x2 + y2) is an integral domain too. However, over C we
have x2 + y2 = (x + iy)(x − iy), and so C[x, y]/(x2 + y2) is not an
integral domain.
Likewise, over Z5 we have x

2+y2 = (x+2y)(x−2y), i.e. Z5/(x
2+y2)

is not an integral domain. However, in Z11 there is no square root of
−1, implying that x2 + y2 is irreducible, hence prime (again, relying
on uniqueness of factorization in Z5[x, y], and so Z11/(x

2 + y2) is an
integral domain.

121. Answer: (c) ∼= (e), (b) ∼= (d).
In Z[x], 2x2 − 6 = (2x + 4)(x − 2) + 2, i.e. I := (x2 − 3, 2x + 4) =

(x2 − 3, 2) = ((x + 1)2, 2). Therefore Z[x]/I ∼= Z2[x]/((x + 1)2) ∼=
Z2[y]/(y

2). This ring has 4 elements: 0, 1, 1 + x, x mod (x2), of which
only x is not invertible. In Z2 × Z2, also consisting of 4 elements,
(0, 0), (1, 1), (1, 0), (0, 1), the last two are not invertible, and hence (a)
is not isomorphic to (b) and (d).
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In Z[i], the ideal (i − 2) contains (i − 2)(i + 2) = −5, i.e. (5) ⊂
(i − 2) ⊂ Z[i]. The quotient Z[i]/(5) ∼= Z5[i] is additively isomorphic
to Z5 ⊕ Z5 = {a + bi|a, b ∈ Z5}. In this quotient, i − 2 is neither
zero, nor invertible (since it is a zero divisor). Thus, the quotient
Z[i]/(i − 2) is additively isomorphic to Z5. The ring homomorphism
Z 7→ Z[i]/(i − 2), defined by mapping 1 to 1 + (i − 2) has kernel
5Z. Indeed, if an ordinary integer n is divisible in Z[i] by i − 2, i.e.
n = (i − 2)(a + bi), then n2 = 5(a2 + b2), hence 5|n2 in Z, hence
5|n. Thus the ring homomorphism Z/5Z → Z[i]/(i−2) is well-defined,
injective and therefore bijective.
On the other hand, identify Z5[x]/(2x + 4) with Z5[y]/(y) by the

change of variable y = 2x + 4, invertible since 2 is invertible in Z5:
x = (y − 4)/2 = 3y − 2.
Clearly, Z5[y]/(y) ∼= Z5 (and not isomorphic to (d) since it has 5

elements, not 4).
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126. If m = kn + r where 0 < r < n, then am = (an)kar = bm =
(bn)kbr and since an = bn, by cancellation rule in an integral domain,
we have ar = br. Then, by the Euclidean algortithm for integers,
aG.C.D(m,n) = bG.C.D.(m,n), i.e. a = b when G.C.D.(m,n) = 1.

127. When m ≥ n, we have xm − 1 = xm−n(xn − 1) + xm−n − 1.
Consequently, if m = kn + r where 0 ≤ r < n, we find that the
remeinder of the division of xm−1 by xn−1 is equal to xr−1. Therefore,
by the Euclidean algorithm for polynomials, G.C.D(xm − 1, xn − 1) =
xG.C.D.(m,n) − 1.

128. The ring Z[ζ] can be visualized as a parallelogram lattice Z+
Zζ, i.e. as the tiling of C by integer translated of the parallelogram
(actually rhombus) with the vertices 0, 1, 1+ ζ, ζ. In fact this rhombus
consists of two equilateral triangles: one with vertices 0, 1, 1 + ζ and
0, 1+ζ, ζ. A principal ideal (a0+b0ζ) generated by a0+b0ζ is obtained
therefore by myltiplying this lattice by a0+b0ζ, and can be visualized as
a similar tiling of C by equilateral triangles obtained from the previous
one by rotating through arg(a0+ b0ζ) and stretching by l := |a0+ b0ζ|.
Note that each point in an equilateral triangle with the side length l lies
within the distance l/

√
3 of one of the triangle’s vertices. Consequantly

every complex number z lies within the distance l/
√
3 < l of one of the

points in the ideal (a0+b0ζ). This implies that Z[ζ] is a Euclidean ring
with the “distance” finction d given by the squared absolute value of
complex numbers: d(a+ bζ) = (a+ bζ)(a+ bz) = a2 − ab+ b2.

129. The ring Z[
√
−3] can be visialized as the rectangular lattice

is the complex plane C with a basis 1 and
√
3i. The diagonal in a

rectangle with the side lenghth l and
√
3l has length 2l. Therefore the

center of the reclangle lies at the distance from all of its vertices exactly
equal to l (and not smaller than l, which would be needed to show that
the “distance” function d(z) = |z|2 turns the ring into a Euclidean
one).
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130. If f ∈ Z2[x] is an irreducible polynomial of defree n then
Z2[x]/(f) is a field (since in a PID the ideal (f) maximal among prin-
cipal ideals is maximal) and has 2n elements (since 1, x, . . . , xn−1 form
its basis as a vector space over Z2). In degrees 2 and 3, irreducible poly-
nomials are those which have no roots in Z2, i.e. x

2+x+1, x3+x2+1
and x3 + x + 1. In degree 4, a reducible polynomial ether has a root
in Z2, or is (x

2 + x+ 1)2 = x4 + x2 + 1. Therefore Z2[x]/(x
2 + x+ 1),

Z2[x]/(x
3 + x+ 1) and Z2[x]/(x

4 + x+ 1) are fieds consistingg of 4, 8,
and 16 elements respectively.

136.(b) For S = {xk | k > 0}, C[x]S consists of rational functions
whose denominators do not vanish anywhere except x. They have the
form anx

n+an−1x
n−1+ · · ·+a0+a−1x

−1+ · · ·+a−mx
−m and are called

Laurent polynomials. In the latter case this is the ring “polynomial”
(the official term is “regular”) functions on C− {0}.
(a) For S = C[x] − (x), C[x]S consists of rational functions with

denominators not divisible by x (i.e. non-vanishing at x = 0). The
only point where the values of all those rational functions are well-
defined is x = 0, and the whole ring can be interpreted as the ring of
“regular” functions in an infinitesimal neighborhood of x = 0.

139. Since Z (being a Euclidean ring) is a UFD, Z[x] is a UFD
by the main theorem. The ideal in Z[x] generated by 2 and x (which
consists of all polynomials f with even free term f(0), and is a maximal
ideal since Z[x]/(2, x) = Z2 is a field) is not principal, since the only
common factors of 2 and x are the units ±1.

144. The polynomial f = x8+x2+2 has no real roots. Therefore all
its complex roots come as pairs of complex conjugate ones. Moreover,
all of its complex roots are simple, since f is coprime to its derivative
f ′ = 8x7 + 2x (as can be cheched by the Euclidean algorithm):

x8 + x2 + 2 = (x6 + 1/4)x2 + 3x2/4 + 2

x6 + 1/4 = (x2 + 8/3)(x4 − 8x2/3 + 64/9)− 512/27 + 1/4

Therefore f factors in R[x] into 4 distinct irredicible quadratic polyno-
mials. Consequently (f) is contained in 4 maximal ideals of R[x].
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146. None of ±1,±1/2,±1/4,±1/8 is a root of f := 8x3 − 6x − 1.
Therefore f is irreducible over Q, and Q[x]/(f) is a field. Dividing f
by x−1, we find that f = (8x2+8x+2)(x−1)+1. Thus, −8x2−8x−2
is inverse to x− 1 modulo (f).

149. 1105 = 5 · 13 · 17 can be factored in Z[i] as (A + Bi)(A− Bi)
in 4 essentially different ways with A + Bi being one of the following
products:

(2 + i)(3 + 2i)(4 + i) = (4 + 7i)(4 + i) = 9 + 32i

(2 + i)(3 + 2i)(4− i) = (4 + 7i)(4− i) = 23 + 24i

(2 + i)(3− 2i)(4 + i) = (3− 2i)(7 + 6i) = 33 + 4i

(2− i)(3 + 2i)(4 + i) = (2− i)(10 + 11i) = 31 + 12i

Thus, 1105 = 332 + 42 = 322 + 92 = 312 + 122 = 242 + 232.

154. In a direct product of finite cyclic groups, each element g be-
longs to the exponent d (i.e. satisfies gd = e) where d is the least
common multiple of the orders of these cyclic groups. This d is equal
to the order of the group only when the orders of the factors are pair-
wise coprime, in which case the whole direct product is cyclic. If the
multiplicative group F× of a field F of q elements were not cyclic, then
all q − 1 elements x ∈ F× of the group would belong to an exponent d
which is smaller than q − 1 i.e. all x would be roots of the polynomial
xd − 1 of degree d < q − 1. This would contradict the fact that the
degree of a polynomial cannot be smaller than the number of its roots
in a given field.

160. The Taylor series of log 1/(1−u) is u+u2/2+ · · ·+uk/k+ · · · .
Therefore e−(u+u2/2+···+uk/k+··· ) = 1−u. Taking u = xit and multiplying
over i = 1, . . . , n, we obtain Newton’s identity

(1− x1t)× (1− xnt) = e−
∑

k>0 N
ktk/k, where Nk + xk

1 + · · ·+ xk
n.

Interprting the exponential function as the series ez = 1 + z + · · · +
zk/k! + · · · , we find that the coefficient at tk with k > 0 on the right
is −Nk/k + (lower order terms), where the “lower order terms” are
polynomial expression of N1, . . . , Nk−1 with rational coefficeints. On
the left, the coefficient at tk is (−1)kσk(x1, . . . , xn) when k = 1, . . . , n
and 0 when k > n. For k ≤ n, this leads to the expressions σk =
(−1)kNk/k + (lower order terms), and for k > n allows one to consec-
utively express Nk as a rational coefficient polynomial of N1, . . . , Nk−1.
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For k = 1, 2, 3 we have:

e−N1t−N2t
2/2−N3t

3/3 + · · · =

1−N1t−
N2t

2

2
− N3t

3

3
+

1

2

(

N1t+
N2t

2

2

)2

− (N1t)
3

6
+ · · ·

1− tN1 + t2
(

−N2

2
+

N2
1

2

)

+ t3
(

−N3

3
+

N1N2

2
− N3

1

6

)

+ · · · ,

i.e. σ1 = N1, σ2 = (N2
1 − N2)/2, σ3 = N3/3 − N1N2/2 + N3

1/6. Note
that these expressions don’t depend on n as long as n ≥ 3.
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HW11

162. For 0 ≤ k1 < k2, we have
∣

∣

∣

∣

xk1
1 xk1

2

xk2
1 xk2

2

∣

∣

∣

∣

/

∣

∣

∣

∣

1 1
x1 x2

∣

∣

∣

∣

= (x1x2)
k1
xk2−k1
2 − xk2−k1

1

x2 − x1

= xk2−1
1 xk1

2 + xk2−2
1 xk1+1

2 + · · ·+ xk1+1
1 xk2−2

2 + xk1
1 xk2−1

2 .

This is a homogeneous symmetric polynomial of degree d = k1+k2− 1
with the leading monomial xk2−1

1 xk1
2 in the lexicographical ordering.

Since any exponents with k2 − 1 ≥ k1 ≥ 0 can occur, these Schur
polynomials form a linear basis in the space of symmetric polinomials
in x1, x2 (and even in the free Z-module of such polynomials over Z,
because the leading monomial occurs with the coefficient 1 invertible
over Z).

169.The powers α0, α1, α2, α3, and α4 are equal respectively to

1,
√
−2 +

√
3, 1 + 2

√
−6, 7

√
−2− 3

√
3, 4

√
−6− 23.

Therefore α4 − 2α2 + 25 = 0. Also, together with α and α3, the field
Q(α) contains

√
−2 and

√
3, and therefore coincides with

Q(
√
3,
√
−2) = {a+ b

√
3 + c

√
−2 + d

√
−6 | a, b, c, d ∈ Q}.

Let us prove accurately that 1,
√
3,
√
−2,

√
−6 form a basis, i.e. are

linearly independent over Q, i.e. that [Q(α) : Q] = 4, or equivalently
that f = x4−2x2+25 is irreducible in Q[x]. For this, note that Q(

√
3)

does not yet contain
√
−2. One reason is that Q(

√
3) is real but

√
−2

is not. Another argument (which would also work for
√
2 instead of√

−2) is that if
√
−2 were a rational linear combination a + b

√
3 of 1

and
√
3, then either

√

3/2 ∈ Q (if a = 0), or
√
−2 ∈ Q (if b = 0),

or by squaring we’d get
√
3 ∈ Q, all clearly wrong. Therefore Q(α)

is obtained from Q by two consecutive quadratic extensions, and must
have degree 4 over Q. Of course, 1, α, α2, α3 also form a basis in Q(α)

over Q. Since all the four roots ±
√

1± 2
√
−6 = ±(

√
−2±

√
3) of f lie

in Q(α), they define four different embeddings of Q[x]/(f) into Q ⊂ C,
which however have the same range Q(

√
3,
√
−2).

170. Let α = 4
√
2. Then x4 − 2 = (x2 − α2)(x2 + α2) = (x −

α)(x + α)(x2 + α2). The roots ±iα of the last factor are not in Q(α),
and hence it is irreducible. Yet, in C, the polynomial has four roots
±α,±iα, and respectively Q[x]/(x4 − 2) has four embeddings. Since
the field containing α would contain −α, there are only two different
candidates for the images of these four embeddings: one real Q( 4

√
2)

and one “imaginary” Q(i 4
√
2).
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171. With F := Q(i) in the role of the ground field, x4 − 2 =
(x−α)(x+α)(x−iα)(x+iα) factors completely in F (α) where α = 4

√
2.

Note that no partial products of these linear factors belong to F [x].
Therefore x4 − 2 is still irreducible over F . All the four embeddings
of F [x]/(x4 − 2) into Q ⊂ C over Q(i) have the same range: once any
of the four roots is adjoined to Q(i), the other 3 also lie in the field.
Therefore the four different embeddings with the same image differ
by a group consisting of four automorphisms (including the identity)
of the field F [x]/(x4 − 2) over F . In fact it is rather obvious that
they all are obtained by iterating the transformation x 7→ ix on F [x],
x 7→ ix 7→ i2x = −x 7→ i3x = −ix 7→ i4x = x i.e. form the cyclic group
of order 4.

HW12

172. None of x = 0, 1,−1 ∈ Z3 is a root of f := x3−x−1, and hence
f is irreducible in Z3[x]. Therefore F := Z3[x]/(f) is a field of degree
3 over Z3, i.e. consists of 33 = 27 elements. The multiplicative group
F× is cyclic of order 26, whose elements’ orders can be 1, 2, 13, and 26.
Let α denote the class of x in Z3[x]/(f). Then 1, α, α2 form a basis of
F over Z3. We have α3 = α+ 1, α9 = (α+ 1)3 = α3 + 13 = α− 1, and
α13 = αα3α9 = α(α + 1)(α − 1) = α3 − α = 1. Since clearly −1 has
order 2, we conclude that −α must have order 26, and is a generator
of F× (as well as any power (−α)k with 0 < k < 26 odd 6= 13).

184. Let’s denote x by α (as in Exercise 172). We have: Φ(1) :=
13 = 1, Φ(α) := α3 = α + 1, Φ(α2) := α6 = (α + 1)2 = α2 − α + 1.

Therefore M =





1 1 1
0 1 −1
0 0 1



 = I + N , where N is upper-triangular.

Thus M3 = (I +N)3 = I3 +N3 = I, since N3 = 0 (as for any upper-
triangular 3×3-matrix. Consider the polynomial x3−σ1x

2+σ2x−σ3 :=

(x− α)(x− Φ(α))(x− Φ2(α)) = (x− a)(x− α− 1)(x− α + 1).

(We use here that Φ2(α) = α9 = α− 1). We find:

σ1 = α + (α + 1) + (α− 1) = 3α = 0,

σ2 = α(α + 1) + α(α− 1) + (α + 1)(α− 1) = 3α2 − 1 = −1,

σ3 = α(α + 1)(α− 1) = α3 − α = 1,

i.e. our polynomial is indeed x3 − x− 1 = f .

188. Since the divisors of 6 are 1, 2, 3 and 6, the general theory
of finite fields shows that F26 contains F22 , F23 (one copy of each),
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whose intersection is F21 = Z2 (since 2 and 3 are coprime). For every
α ∈ F26 , the field Z2(α) (the smallest subfield containing α) must be
one of these F2n , n = 1, 2, 3, 6, and the minimal polynomial of α must
have the respective degree n. There are 2 elements (0 and 1) in F21 ;
their minimal polynomials (x and x − 1) have degree 1. There are
2 = 22− 21 more elements in F22 and 6 = 23− 21 more elements in F23 ;
their minimal polynomials have degrees 2 and 3 respectively. Therefor
there are 26−6−2−2 = 54 remaining elements in F26 , whose minimal
polynomial must have degree 6. In fact each of these polynomials is a
divisor of x64 − x (since all α ∈ F26 satisfy α64 = α). This polynomial
has 64 simple roots, and hence all roots of the minimal polynomials
discussed above are also simple. Besides, being irreducible over Z2, two
different minimal polynomials must be coprime. Since each minimal
polynomial of degree 6 is minimal for each of its 6 distinct roots, the
number of such polynomials must be 54/6 = 9.

193. The minimal polynomial over Q for α is f = x3 − 2, and for
β is x2 − 2. The sufficient condition for θ = 3

√
2 +

√
2 to serve as a

primitive element is that it is not equal to any other sum α′ + β′ of
roots of the respective polynomials. And indeed, the other root −

√
2

of g is also real, while the other two roots of x3 − 2 are non-real. Thus
a + β = α′ + β′ is impossible unless α′ is real (hence = α), in which
case b′ = β.
Now, h(x) := g(θ − x) = (θ − x)2 − 2 = x2 − 2θx + (θ2 − 2) has

α = 3
√
2 as a root, and must have a common factor with f(x) = x3− 2.

Performing the Euclidean algorithm, we have:

f(x)− (x+ 2θ)h(x) = (3θ2 + 2)x+ (−2θ3 + 4θ − 2).

Since α is root of the L.H.S., we find 3
√
2 = (2θ3−4θ+2)/(3θ2+2). This

gives an expression of 3
√
2 as an element of Q(θ), and

√
2 = θ − 3

√
2 =

(θ3 + 6θ − 2)/(3θ2 + 2) also lies in Q(θ).
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HW13

200. (a) The field E can be described as Q( 4
√
2, i). It contains the

subfield Q( 4
√
2 ∼= Q[x]/(x4 − 2) of degree 4 over Q (e.g. because the

polynomial x4 − 2 is irreducible by Eisenstein’s criterion with p = 2).
Since Q( 4

√
2) ⊂ R contains ± 4

√
2 but does not yet contain the other

two roots ±i 4
√
2 of x4 − 2, the splitting field must be obtained by

adjoining i =
√
−1 (the ratios of the roots), and thus coincides with

Q( 4
√
2, i), which has therefore degree 8 over Q. For a basis, putting

α := 4
√
2 ∈ R>0, one can take 1, α, α2, α3, i, iα, iα2, iα3.

(b) In fact it is clear a priori that the Galois group G(E/Q), being a
subgroup of order 8 in the group S4, must be non-abelian, isomorphic
to the dihedral group D4. Indeed, since |S4| = 24, a subgroup of order 8
must be one of the Sylow 2-subgroups, which are all conjugated (hence
isomorphic), and in the rotation group of the cube (isomorphic to S4),
there are three such dihedral groups (formed by rotations of the cube
interpreted as a square prism).
To describe the action of D4 on the roots of x4 − 2, consider the

roots α, iα,−α,−iα (we remind that α = 4
√
2) as the vertices of a

square on the complex plane. The automorphism of E induced by
mapping i to i and 4

√
2 to i 4

√
2 induces the counter-clockwise rotation

of this square through 90◦. The complex conjugation i 7→ −i (and
4
√
2 7→ 4

√
2) induces the reflection of the square about the real axis.

The two transformations generate the dihedral (Galois) group.
(c) The groups D4 has 3 subgroups of index 2 (all therefore normal):

one isomorphic to Z4 and consisting of the rotations of the square, and
2 isomorphic to Z2

2, each consisting of two conjugated reflections of
the square and the central symmetry (= rotation through 180◦). The
latter rotation also generates the normal subgroup Z2 (which happens
to form the center of D4), and each of the 4 reflections generate 4 non-
normal subgroups isomorphic to Z2. The list of totally 10 subgroups is
completed by the trivial group {e}.
The last subgroup corresponds of course to the whole field E{e} =

E. When the subgroup H is the normal Z2 (generated by the central
symmetry) of the rectangle), that symmetry maps i 7→ i, and α :=
4
√
2 7→ −α = − 4

√
2. In our basis 1, α, α2, α3, iα, iα2, iα3, this symmetry

acts by preserving 1, i, α2, iα2 and changing the sign of α, α3, iα, iα3.
The fixed points of it form the subspace spanned by 1, i, α2, iα2, i.e.
the subfield Q(

√
2, i) of degree 4 over Q.

A similar analysis of conjugated reflections α, iα 7→ α,−iα and
α, iα 7→ −α, iα shows that the fixed points form two conjugate subfields
Q(α) and Q(iα) of degree 4 over Q.
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Analyzing fixed points of the other two conjugated reflections, which
are α, iα 7→ iα, α and α, iα 7→ −iα,−α (both mapping i 7→ −i), we will
conclude that the corresponding fields are isomorphic to Q[x]/(x4 + 2)
and coincide with Q(α(1 − i)/

√
2) and Q(α(1 + i)/

√
2) respectively.

(Namely, the 1st reflection interchanges α3 with −iα3, and hence pre-
serves their average α(1 − i)/

√
2, while the 2nd likewise preserves

α(1 + i)/
√
2.)

The intersection of each of these 4 degree-4 subfields of E with the
normal subfield Q(

√
2, i) yields the 2 degree-2 extensions of Q fixed by

the 2 subgroups of D4 isomorphic to Z2
2: Q(

√
2) and Q(i

√
2).

The subfield Q(i) corresponds to Z4 ⊂ D4 (mapping α 7→ iα 7→
−α 7→ −iα 7→ α, but fixing i), and of course the whole D4 corresponds
to ED4 = Q.

201. Q(
√
2,
√
3,
√
5) is the splitting field of the collection x2−2, x2−

3, x2 − 5 of three quadratic polynomials; so it is normal, is obtained
by consecutively adjoining to Q the three square roots, has the basis
1,
√
2,
√
3,
√
5,
√
2 · 3,

√
2 · 5,

√
3 · 5,

√
2 · 3 · 5 over Q, and Galois group

isomorphic to Z3
2 and generated by independent changes of the signs of

(
√
2,
√
3,
√
3) 7→ (ǫ1

√
2, ǫ2

√
3, ǫ3

√
5, where ǫi = ±1.

The group Z3
2 can be considered as a 3-dimensional vector space

over Z2, and its subgroups as Z2-subspaces: there are 7 subspaces
of dimension 1 (spanned by 7 non-zero vectors), and 7 subspaces of
dimension 2 (given by 7 non-zero linear equations).
The 7 subfields, whose elements are fixed a corresponding non-trivial

element ǫ = (±1,±1,±1) 6= (1, 1, 1) of the Galois group are:

(−1, 1, 1) : Q(
√
3,
√
5), (1,−1, 1) : Q(

√
2,
√
5),

(1, 1,−1) : Q(
√
2,
√
3), (−1,−1, 1) : Q(

√
5,
√
6),

(−1, 1,−1) : Q(
√
3,
√
10), (1,−1,−1) : Q(

√
2,
√
15),

(−1,−1,−1) : Q(
√
6,
√
10) (note that

√
15 =

√
6
√
10/2).

Writing ǫ = ((−1)a, (−1)b, (−1)c) with a, b, c ≡ 0, 1 mod 2, we have
7 non-trivial linear equations of 2-dimensional subgroups, and the cor-
responding subfields of their fixed elements:

a ≡ 0 : Q(
√
2), b ≡ 0 : Q(

√
3), c ≡ 0 : Q(

√
5),

a+ b ≡ 0 : Q(
√
6), a+ c ≡ 0 : Q(

√
10), b+ c ≡ 0 : Q(

√
15),

a+ b+ c ≡ 0 : Q(
√
30)

208. Over Zp, the polynomial xn − 1 factors into linear factors
(whose roots, therefore, are all nth roots of unity in characteristic p).
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Let n = prm where m is not divisible by p. Then xn − 1 = (xm − 1)p
r

,
i.e. all nth roots of unity in characteristic p are actually mth roots
of unity (occurring in xn − 1 with multiplicity pr). Since pr and m
are coprime, ϕ(n) is divisible by ϕ(m), and hence Fpϕ(m) ⊂ Fpϕ(n) . By

Euler’s theorem, pϕ(m) ≡ 1 mod m, and therefore the cyclic group
F×
pϕ(m) of order p

ϕ(m) − 1 contains all m distinct mth roots of unity.

Remark. When n = m is not divisible by p, the solution amounts to
the last sentence.

214. Let ζ := e2πi/5. The Galois group G(Q(ζ)/Q) = Z×
5 is gener-

ated by σ : ζ 7→ ζ2. So, the sequence {σk(ζ)} is ζ, ζ2, ζ−1, ζ−2. The
Gauss sums generating the quadratic extension intermediate between
Q and Q(ζ) are η+ := ζ + ζ−1 = 2 cos 2π/5 and η− := ζ2 + ζ−2 =
2 cos 4π/5. They are roots of x2 + x− 1 since η+ + η− = −1 = η+η− =
ζ3+ζ−1+ζ1+ζ−3. Thus, 2 cos 2π/5 = (

√
5−1)/2 is the famous golden

ratio, and can be easily constructed by straightedge and compass.


